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1. Introduction  
 

The main objective of nonlinear seismic analysis is to 

predict the structure demands subjected to future probable 

ground motions more precisely (Fatahi et al. 2011). Due to 

existence of overstrength capacity and the capabilities of 

structures for dissipating input energy of the earthquakes, 

the seismic design codes allow the structures to experience 

inelastic deformations during the ground motions, while 

linear analyzes are utilized in the most cases in order to 

provide simplicity and applicability. In addition, the seismic 

rehabilitation standards of buildings use two general 

procedures for estimating target performance point of a 

building, that are equivalent linearization and displacement 

coefficients methods. Nowadays nonlinear time history 

analyzes are accessible by various computer programs 

along with different ground motion records as the inputs. 

However, high sensitivity of the results to the record 

characteristics, large number of model assumptions, and 

long time needed for analysis, has led to an attempt to 

achieve simplified approaches. Using an equivalent linear 

system with effective parameters to estimate maximum 

response of the nonlinear system is one of these techniques, 

which has been utilized in different researches usually with  
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a focus on displacement spectra. In other words, the 

maximum displacement of a nonlinear SDOF system is 

estimated from a linear SDOF system with higher damping 

and lower stiffness. Equivalent linear parameters including 

damping and period, are called effective parameters. 

Various methods have been developed by researchers to 

linearize nonlinear systems subjected to earthquake 

excitation. Secant period as the effective linear period has 

been used in most preliminary methods. Gulkan and Sozen 

(1974) found that the secant period and effective damping 

equations derived based on harmonic excitation lead to 

smaller maximum displacement response predictions 

compared to maximum inelastic earthquake response 

because of the large damping values. Incorporating shake 

table results of small-scale reinforced concrete frames in 

addition to simulation using the Takeda hysteretic model, 

Gulkan and Sozen (1974) developed a new effective 

damping equation as a function of ductility. Kowalsky 

(1994), also using the secant period as the effective linear 

period and the Takeda hysteretic model, presented another 

equation for effective damping. Secant period also has been 

used in Capacity Spectrum Method of ATC-40 (ATC 

1996). By comparing linear and nonlinear velocity spectrum 

for a hysteretic SDOF model under seismic excitations, 

Iwan (1980) proposed two different equations for effective 

period and damping. Priestley et al. (1996) and Otani et al. 

(2000) are among other researchers, which developed 

equations for effective parameters as function of ductility 

and post yield stiffness ratio for different excited hysteretic 
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models. A new statistical approach with an optimization 

criterion has been used by Guyader and Iwan (2006) for 

calculating effective parameters of four hysteretic SDOF 

models subjected to a suite of earthquake records. The 

optimal point in two-dimensional parameter space of 

effective period and damping was taken as a point that 

minimizes the probability that error lies outside the 

engineering acceptability range. Ratio of the difference 

between linear system maximum displacement and inelastic 

system maximum displacement to the latter one has been 

considered as their simple error measure. They revealed that 

the ATC-40 (ATC 1996) equations are significantly 

unconservative and conservative respectively at high and 

low values of ductility. Oguzmert and Lui (2011) also 

presented equations for equivalent linear system parameters 

using a two-dimensional minimization technique for 

estimating inelastic seismic displacement demand of 

bilinear and degrading hysteretic SDOF models from elastic 

response spectra. They used root mean square averaged 

spectral error measure. Results show better prediction of 

inelastic displacement demand compared to other methods 

applied by most of other previous researchers for ductile 

systems with natural period between 0.3 to 3 seconds. In 

addition, Su et al. (2012) used particle swarm optimization 

technique in two-dimensional space of effective damping 

and period to obtain a linear system equivalent to the 

inelastic system in terms of displacement. 

All these studies use almost different procedures for 

utilizing equivalent linearization methodology to obtain an 

equivalent linear system, which can predict seismic 

displacement demand of inelastic SDOFs. Browning et al. 

(2008) and Yaghmaei-sabegh et al. (2014) utilized this 

method to find maximum roof displacement of reinforced 

concrete frames subjected to earthquake records. They 

presented an optimized value and not equation for effective 

damping and period for the group of studied buildings 

located on high and moderate seismicity region. 

Development in application of performance-based 

seismic design concepts is observed in the past few years, 

which has been resulted to a natural growth in the 

evaluation procedures of buildings (Fatahi et al. 2014). 

Contrary to both force-based and displacement-based 

design methods, energy-based design can directly consider 

the cumulative damage effect resulted from numerous 

inelastic cycles of the earthquake caused by deterioration of 

the hysteretic behavior of structure. In other words, 

different levels of structural damage are expected taking 

into account both the plastic deformation and cumulative 

energy absorption capacities of the main structural 

components during the earthquakes (Samimifar and 

Massumi 2018). In addition, seismic energy is a more 

comprehensive demand parameter, which can take into 

account force and displacement quantities. Considering 

these facts, many believe that energy-based methods will be 

the next generation of seismic design methods as well as 

performance based seismic evaluation methods of 

structures. Fajfar and Vidic (1994) are one of the first 

researchers investigated in this field. They developed an 

equation for estimating hysteretic energy (𝐸𝐻) of bilinear 

SDOF systems subjected to five earthquake records. The 

equation relates 𝐸𝐻  to several parameters including 

ductility reduction factor, spectral acceleration at 

fundamental period, and some of the records characteristics 

such as PGA, PGV and PGD. Then, Manferedi (2001) 

presented hysteretic energy of elasto-plastic SDOFs as a 

function of ductility, spectral acceleration, ductility 

reduction factor and equivalent number of cycles of the 

ground motion. In another study, 𝐸𝐻 has been related to 

system's period, characteristics of the records (PGA, PGV, 

PGD) and time duration regardless of any response 

parameters by Riddell and Garcia (2001). Equation 

constants are dependent on the type of hysteretic model. 

The hysteric behavior is one of the most important factors 

affecting amount of hysteretic energy, as has been discussed 

and proven in some papers (Riddell and Garcia 2001, 

Decanini and Mollaioli 2001, Molazadeh and Saffari 2018). 

Developed equation by Arroyo and Ordaz (2007) for 

𝐸𝐻 spectrum is based on a parameter related to number of 

cycles in addition to velocity and pseudo-acceleration 

spectrums at the shifted period, which is the main difference 

of their method compared to previous ones. Moreover, the 

investigations (Fajfar and Vidic 1994, Manfredi 2001, 

Kunnath and Chai 2004) show that for a specific type of 

hysteretic behavior, the ratio of hysteretic energy demand to 

input energy (𝐸𝐼)  is just depended on ductility ratio. 

Cheng et al. (2015) proposed an improved equivalent 

velocity spectrum for estimating elastic input energy as a 

parameter with potential of predicting seismic structural 

response. In another research, Mezgebo (2015) using 

average and standard deviation through each class of 

selected far-field earthquake records on different soil types, 

presented equations to be adopted to general shapes for 

normalized input energy spectrum and the spectrum of 

𝐸𝐻 𝐸𝐼⁄  ratio for four different hysteretic models. 

Normalization has done by a new defined velocity index as 

the product of Cumulative Absolute Velocity and Peak 

Ground Velocity of ground motion. Similarly, in order to 

overcome the shortcomings of common energy spectrums, 

Dindar et al. (2015) expressed 𝐸𝐼  and 𝐸𝐻  design 

spectrums in the form of a simple equation for elasto-plastic 

SDOF systems considering both far- and near-field 

earthquake records. It was concluded that in short period 

region, the type of hysteretic model used does not have 

much effect on the spectrum of energy while more 

significant differences are observed in the region of post 

spectrum peak periods when model is changes. Sun et al. 

(2017) are the other researchers, which use regression 

analysis to extract a normalized cumulative hysteretic 

energy spectrum. In line with estimating energy demand, 

the relationship between PGA and PGV has been 

established. 

It was originally stated that the linear energy spectrum, 

regardless of its damping component, could be a logical 

approximation of the energy spectrum for nonlinear systems 

(Housner 1956), which was not approved by other 

researchers due to inadequate precision, especially in higher 

ductility levels (Uang and Bertero 1990). As previously 

described, due to importance of the issue many researches 

have been conducted to present equations for estimating 𝐸𝐻 

and 𝐸𝐼  of nonlinear systems and their ratio separately. Due 
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to non-comprehensive initial parameters considered in those 

studies, such as limited number of records, or use of special 

basic assumptions, there is not enough assurance to 

generalize the results. Investigations show that, even in 

cases where the quantity of inputs appears to be sufficient, 

the proposed spectra can be significantly different in similar 

cases. On the other hand, most of the equations presented 

for estimating hysteric energy spectra are very complicated 

and depend on many parameters including earthquake and 

system characteristics, which, although in some cases, have 

the proper precision but do not have the required efficiency 

and capacity required for engineering codes. 

From the practical point of view, many methods for 

evaluating the performance of structures use linear 

equivalent SDOF systems with different definitions 

according to what the purpose of that specific research is. In 

energy based methods, researchers (Enderami et al. 2014, 

Ambrisi and Mezzi 2015, Manoukas et al. 2014, Wang et 

al. 2018) were looking for an appropriate demand spectrum 

to be matched with resulting capacity curve. Although those 

definitions for demand spectrums are called “energy 

demand” but are not directly correlated with the values of 

the seismic energy obtained from mathematical integration 

of the equation of motion. In other words, the advantages 

and superiority of seismic energy spectrums to current 

response spectrums is not taken into account for these 

proposed types of energy demand. 

There are damage indices, which defined based on 

displacement and energy demands (Massumi and Gholami 

2016). Since the maximum displacement, individually, 

cannot be an appropriate criterion for damage assessment 

(Monavari and Massumi 2012), hysteretic energy has been 

evaluated in this research as a more comprehensive seismic 

demand parameter. With regard to the above literature, to 

overcome the deficiencies and complexities of the previous 

equations, a new equivalent linearization method has been 

used in this study, which can estimate seismic hysteretic 

energy of nonlinear hysteretic SDOF systems at different 

levels of ductility. Two sets of far- and near-field 

earthquake records has been utilized as the inputs of time 

history analysis. Philosophy of the procedure and its steps 

to derive equivalent linear SDOF model has been described 

in details first. In the next step, the effects of some 

parameters on the results have been discussed. Moreover, 

nonlinear regression analysis used to extract correlation 

coefficients to present classified equations for the 

equivalent parameters. Main advantage of the proposed 

model is its independency on parameters related to 

earthquake and response characteristics in its appearance, 

while incorporated frequency content and duration of 

earthquake simultaneously in itself. In fact, the simplicity as 

well as the applicability seems to be the most significant 

features of this new model, which has been obtained using 

error optimization in the space of equivalent linearization 

concept. 

 
 

2. Basics and components of seismic energy 
 

The equation of motion for an inelastic SDOF system 

subjected to a ground motion is given by 

 

Fig. 1(a) Nonlinear, and (b) equivalent linear, single-

degree-of-freedom structural models 

 

 

Fig. 2 Bilinear model 

 

 

𝑚�̈� + 𝑐�̇� + 𝑓𝑠 = −𝑚�̈�𝑔 (1) 

where 𝑚 is the mass of the system, 𝑐  is the damping 

coefficient; 𝑓𝑠  is the restoring force, �̈�𝑔  is the ground 

acceleration, and �̈� , �̇� , 𝑢 are the relative acceleration, 

velocity, and displacement of the system with respect to the 

ground, respectively. 

The energy balance equation for an SDOF system is 

derived directly by integrating the equation of motion with 

respect to the relative displacement response (Kalkan and 

Kunnath 2007). 

∫𝑚�̈� 𝑑𝑢 + ∫𝑐�̇� 𝑑𝑢 + ∫𝑓𝑠 𝑑𝑢 = −∫𝑚�̈�𝑔 𝑑𝑢 (2) 

∫𝑚�̈��̇� 𝑑𝑡 + ∫𝑐�̇��̇� 𝑑𝑡 + ∫𝑓𝑠�̇� 𝑑𝑡 = −∫𝑚�̈�𝑔�̇� 𝑑𝑡 (3) 

Kinetic (𝐸𝐾) , damping (𝐸𝐷)  and hysteretic (𝐸𝐻) 
energies represent the energy components of the system, 

which respectively compose the terms on the left hand side 

of Eq. (3). The right hand side of the equation represents 

total Input energy (𝐸𝐼)  imposed to the system. The 

hysteretic energy term also includes elastic strain energy 
(𝐸𝑆) and plastic strain energy (𝐸𝑃) caused by elastic and 

inelastic deformation the structure undergoes during the 

earthquake respectively. Thus, 

𝐸𝐾 + 𝐸𝐷 + 𝐸𝐻 = 𝐸𝐼    ;    𝐸𝐻 = 𝐸𝑆 + 𝐸𝑃  (4) 

Kinetic energy vanishes during reversal of system 

velocity (Kalkan and Kunnath 2007). Therefore, this 

component becomes zero when vibration of the structure 

stops. Hysteretic energy could inflict permanent damage to 

the structure unless otherwise dissipated through some 

mechanisms. 
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3. Methodology to derive equivalent linear model 
 

There are many uncertainties in ground motion event, 

and consequently the parameters associated with it. As 

mentioned in the previous section, many factors can affect 

both seismic input and hysteretic energies of structures, 

which can be classified in three general categories: 

nonlinear system characteristics, system response 

parameters, and earthquake characteristics. This research, 

concentrating on the main characteristics of nonlinear 

system and finding the relationship between linear and 

nonlinear energy spectrums by error minimization in the 

space of equivalent linearization concept, eliminates other 

parameters such as system responses and earthquake 

characteristics in energy estimation equation. In other 

words, since in this study hysteretic energy spectrum is 

estimated based on corresponding linear energy spectrum, 

both include the earthquake characteristics equally, and 

independent of the response parameters, thus more simple 

and practical results are made from an engineering point of 

view. 

Based on our extensive investigations on energy 

spectrums, it is concluded that the hysteretic energy of a 

nonlinear SDOF system with natural period of 𝑇0 can be 

estimated using the calculated damping energy for a linear 

system with a larger viscose damping and shifted period 

comparing to the original system. In fact, in addition to 

considering damping increase, shifted period is used as the 

natural period of equivalent linear system. The period 

shifting coefficient in this paper is henceforth called beta 

(𝛽). Since both linear and corresponding nonlinear energy 

spectra are derived from a given earthquake and 

consequently incorporated frequency content and duration 

of earthquake similarly, there is no need to directly consider 

some parameters such as number of earthquake cycles in 

the new model. In other words, the main advantage of the 

proposed model is its independency on parameters related 

to earthquake and response characteristics, which has led to 

more efficiency. 

Fig. 1 illustrates a nonlinear SDOF model with restoring 

force of 𝑓(𝑥, �̇�) dependent on hysteresis behavior and an 

equivalent linear model with increased fraction of critical 

damping, 𝜉𝑒𝑞, and shifted period, 𝑇𝑒𝑞, subjected to a ground 

motion excitation, �̈�𝑔(𝑡). The equation of motion for these 

models are respectively as follows; 

(𝑎)  �̈� + (
4𝜋𝜉0
𝑇0

) �̇� + 𝑓(𝑥, �̇�) = −�̈�𝑔(𝑡) (5) 

(𝑏)  �̈� + (
4𝜋𝜉𝑒𝑞

𝑇𝑒𝑞
) �̇� + (

2𝜋

𝑇𝑒𝑞
)

2

𝑥 = −�̈�𝑔(𝑡) (6) 

As described, the purpose of current study is to find an 
equivalent linear model to estimate hysteretic energy 
demand of Bi-Linear Hysteretic (BLH) systems using 
nonlinear time history analyses results. The force-
displacement relationship in BLH systems is illustrated in 
Fig. 2. The methodology utilizes the far-field and near-field 
record sets presented in FEMA P695 (2009) for nonlinear 
dynamic analysis. These sets respectively include twenty-
two records (44 individual components) and twenty-eight 

records (56 individual components) selected from the PEER 
NGA database. For each record, Tables 1-2 summarizes the 
magnitude, year, and name of the event, as well as site 
characteristics and epicentral distances. 

To implement the method in the form of an algorithm, it 
is necessary to calculate linear damping spectra for viscous 
damping ratios from 5 to 50% at intervals of 5%. The next 
step at this stage is to calculate the hysteretic energy spectra 
for bilinear hysteretic SDOF models in ductility range of 
1.2 to 6 ductility with a regular increment of 0.2. The post 
yield slope ratio of the nonlinear models is considered equal 
to 0, 5%, and 10% respectively as the three most commonly 
used cases.  

After calculating all the desired spectra for each record, 

an algorithm with the following steps has been coded to be 

run for each Far- and Near- set of records individually. 

Step 1. Considering the shape of energy spectrums and 

the investigations carried out in the field, it is concluded 

that selected range for initial period of system should be 

classified to smaller groups in order to get more accurate 

results. Therefore, the initial period range of 0.1 to 4 

seconds has been consecutively grouped in to six subgroups 

as T0 = (0.1-0.5), (0.6-1), (1.1-1.5), (1.6-2), (2.1-3), and 

(3.1-4) in second. At the first step one of the mentioned 

group should be selected to run the following steps for it. 
 
 

Table 1 Summary of earthquakes of the far-field record set 

(FEMA P695 2009) 

No. 

Earthquake 
NEHRP 

Site Class 

Site-Source Distance 

(km) 

M Year Name Station Epicentral 
Closest to 

Plane 

1 6.7 1994 Northridge 
Beverly Hills 

– Mulhol 
D 13.3 17.2 

2 6.7 1994 Northridge 

Canyon 

Country-

WLC 

D 26.5 12.4 

3 7.1 1999 Duzce, Turkey Bolu D 41.3 12.0 

4 7.1 1999 Hector Mine Hector C 26.5 11.7 

5 6.5 1979 
Imperial 

Valley 
Delta D 33.7 22.0 

6 6.5 1979 
Imperial 

Valley 

El Centro 

Array #11 
D 29.4 12.5 

7 6.9 1995 Kobe, Japan Nishi-Akashi C 8.7 7.1 

8 6.9 1995 Kobe, Japan Shin-Osaka D 46.0 19.2 

9 7.5 1999 
Kocaeli, 

Turkey 
Duzce D 98.2 15.4 

10 7.5 1999 
Kocaeli, 

Turkey 
Arcelik C 53.7 13.5 

11 7.3 1992 Landers 
Yermo Fire 

Station 
D 86.0 23.6 

12 7.3 1992 Landers Coolwater D 82.1 19.7 

13 6.9 1989 Loma Prieta Capitola D 9.8 15.2 

14 6.9 1989 Loma Prieta 
Gilroy Array 

#3 
D 31.4 12.8 

15 7.4 1990 Manjil, Iran Abbar C 40.4 12.6 

16 6.5 1987 
Superstition 

Hills 

El Centro 

Imp. Co. 
D 35.8 18.2 

17 6.5 1987 
Superstition 

Hills 

Poe Road 

(temp) 
D 11.2 11.2 

18 7.0 1992 
Cape 

Mendocino 

Rio Dell 

Overpass 
D 22.7 14.3 

19 7.6 1999 
Chi-Chi, 

Taiwan 
CHY101 D 32.0 10.0 

20 7.6 1999 
Chi-Chi, 

Taiwan 
TCU045 C 77.5 26.0 

21 6.6 1971 San Fernando 
Hollywood 

Stor 
D 39.5 22.8 

22 6.5 1976 Friuli, Italy Tolmezzo C 20.2 15.8 
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Table 2 Summary of earthquakes of the near-field record set 

(FEMA P695 2009) 

No. 

Earthquake 
NEHRP 

Site Class 

Site-Source Distance 

(km) 

M Year Name Station Epicentral 
Closest to 

Plane 

1 6.5 1979 
Imperial Valley-

06 

El Centro 

Array #6 
D 27.5 1.4 

2 6.5 1979 
Imperial Valley-

06 

El Centro 

Array #7 
D 27.6 0.6 

3 6.9 1980 Irpinia, Italy-01 Sturno B 30.4 10.8 

4 6.5 1987 
Superstition 

Hills-02 

Parachute Test 

Site 
D 16.0 1.0 

5 6.9 1989 Loma Prieta 
Saratoga - 

Aloha 
C 27.2 8.5 

6 6.7 1992 Erzican, Turkey Erzincan D 9.0 4.4 

7 7.0 1992 
Cape 

Mendocino 
Petrolia C 4.5 8.2 

8 7.3 1992 Landers Lucerne C 44.0 2.2 

9 6.7 1994 Northridge-01 
Rinaldi 

Receiving Sta 
D 10.9 6.5 

10 6.7 1994 Northridge-01 
Sylmar - Olive 

View 
C 16.8 5.3 

11 7.5 1999 Kocaeli, Turkey Izmit B 5.3 7.2 

12 7.6 1999 Chi-Chi, Taiwan TCU065 D 26.7 0.6 

13 7.6 1999 Chi-Chi, Taiwan TCU102 C 45.6 1.5 

14 7.1 1999 Duzce, Turkey Duzce D 1.6 6.6 

15 6.8 6.8 Gazli, USSR Karakyr C 12.8 5.5 

16 6.5 1979 
Imperial Valley-

06 
Bonds Corner D 6.2 2.7 

17 6.5 1979 
Imperial Valley-

06 
Chihuahua D 18.9 7.3 

18 6.8 1985 
Nahanni, 

Canada 
Site 1 C 6.8 9.6 

19 6.8 1985 
Nahanni, 

Canada 
Site 2 C 6.5 4.9 

20 6.9 1989 Loma Prieta BRAN C 9.0 10.7 

21 6.9 1989 Loma Prieta Corralitos C 7.2 3.9 

22 7.0 1992 
Cape 

Mendocino 

Cape 

Mendocino 
C 10.4 7.0 

23 6.7 1994 Northridge-01 
LA - Sepulveda 

VA 
C 8.5 8.4 

24 6.7 1994 Northridge-01 
Northridge - 

Saticoy 
D 3.4 12.1 

25 7.5 1999 Kocaeli, Turkey Yarimca D 19.3 4.8 

26 7.6 1999 Chi-Chi, Taiwan TCU067 C 28.7 0.6 

27 7.6 1999 Chi-Chi, Taiwan TCU084 C 8.9 11.2 

28 7.9 2002 Denali, Alaska 
TAPS Pump 

Sta. #10 
C 7.0 8.9 

 

 

Step 2. Based on selected group of natural periods, the 

beta coefficient larger than 0.1 have been used with an 

increment of 0.1 to calculate equivalent period, 𝑇𝑒𝑞 . 

Step 3. A constant target ductility is selected (1 < 𝜇 ≤
6). Constant increments of 0.2 are used when the loops 

come back to the current step. (counter: 𝑟 = 1…𝑚) 

Step 4. An input value from the assumed range is 

assigned to the equivalent damping ratio, 𝜉𝑒𝑞 . (counter: 

𝑗 = 1…𝑞) 

Step 5. Beta is the next parameter that should be 

selected from the specified range of second step. (counter: 

𝑖 = 1…𝑝) 

Step 6. Depending on which set of records is being 

investigated, one of the 44 (far-field) or 56 (near-field) 

earthquake records is picked. (counter: 𝑘 = 1… 𝑠) 

Step 7. According to selected class of initial periods, an 

input value for 𝑇0 is selected. Value of 0.1 is used as the 

period increment when the loops come back to the current 

step. (counter: 𝑙 = 1…𝑛) 

After this step, two independent series of commands 

(substeps) should be executed in parallel, which named as 

7.1 and 7.2. 

Step 7.1.1. The equivalent period is calculated; 

𝑇𝑒𝑞 = 𝛽𝑇0 (7) 

Step 7.1.2. Damping energy is calculated for the linear 

SDOF system with natural period of 𝑇𝑒𝑞  and viscous 

damping ratio of 𝜉𝑒𝑞 , 𝐸𝐷(𝜉𝑒𝑞 , 𝑇𝑒𝑞). 

Step 7.2.1. The nonlinear BLH SDOF model parameters 

are selected (post yield slope ratio and linear viscous 

damping of 𝜉0 = 5%). 

Step 7.2.2. Hysteretic energy is calculated for the 

bilinear SDOF system with post yield ratio of 𝛼, natural 

period of 𝑇0  and damping ratio of 𝜉0 , 

𝐸𝐻(𝜉0, 𝑇0, 𝐵𝐿𝐻, 𝛼, 𝜇). 
Step 8. If 𝑙 ≤ 𝑛 , should be returned to Step 7, 

otherwise, Step 9 is the next to continue. 

Step 9. If 𝑘 ≤ 𝑠 , should be returned to Step 6, 

otherwise, Step 10 is the next to continue. 

Step 10. The root mean square averaged spectral error 

function (ε) should be computed at this step as follows; 

ε ((
𝑇𝑒𝑞

𝑇0
)
𝑖

, (𝜉𝑒𝑞)𝑗)

=

√
  
  
  
  
  
  
 
 

1

𝑛
∑

[
 
 
 
 
 ∑ ((𝐸𝐷 ((

𝑇𝑒𝑞
𝑇0
)
𝑖

, (𝜉𝑒𝑞)𝑗))

𝑙𝑘

− (𝐸𝐻)𝑙𝑘)
𝑠
𝑘=1

∑ (𝐸𝐻)𝑙𝑘
𝑠
𝑘=1

]
 
 
 
 
 
2

𝑛

𝑙=1

 

(8) 

Step 11. If 𝑖 ≤ 𝑝 , should be returned to Step 5, 

otherwise, Step 12 is the next to continue. 

Step 12. Since equivalent damping is considered 

constant during each loop, the minimum of error has to be 

search over the space of equivalent periods. For the 

specified equivalent damping, the minimum error 

corresponds to the optimum equivalent period of defined 

model. Actually at this step, an optimized pair of equivalent 

period ratio and damping (𝑇𝑒𝑞 𝑇0⁄ , 𝜉𝑒𝑞) is obtained. 

Step 13. If 𝑗 ≤ 𝑞 , should be returned to Step 4, 

otherwise, Step 14 is the next to continue. 

Step 14. If 𝑟 ≤ 𝑡 , should be returned to Step 3, 

otherwise, Step 1 is the next to select another class of 

periods and repeat all the steps of algorithm. 

Step 15. If the whole process was done for all six classes 

of first step, the algorithm is finished. 
 
 

4. Equivalent linear parameters 
 

Considering constant values for equivalent damping in 

the range of 5 to 50 percent, the optimum ratio of equivalent 

to initial period resulted from the far- and near-field sets of 

records are respectively shown in Fig. 3 and Fig. 4 as a 

function of ductility for BLH systems with 10% post yield  
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(𝑎)  0.1 ≤ 𝑇 < 0.5 

  
(𝑏)  0.5 ≤ 𝑇 ≤ 1.0 

  
(𝑐)  1.0 < 𝑇 ≤ 1.5 

  
(𝑑)  1.5 < 𝑇 ≤ 2.0 

  
(𝑒)  2.0 < 𝑇 ≤ 3.0 

  
(𝑓)  3.0 < 𝑇 ≤ 4.0 

Fig. 3(a)-(f); Optimized ratio of equivalent to initial period of BLH systems with post yield slope ratio of 10% and 

corresponding minimized error for far-field record set; (dp: equivalent damping) 
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(𝑎)  0.1 ≤ 𝑇 ≤ 0.5 

  
(𝑏)  0.5 < 𝑇 ≤ 1.0 

  
(𝑐)  1.0 < 𝑇 ≤ 1.5 

  
(𝑑)  1.5 < 𝑇 ≤ 2.0 

  
(e)  2.0 < 𝑇 ≤ 3.0 

  
(𝑓)  3.0 < 𝑇 ≤ 4.0 

Fig. 4(a)-(f); Optimized ratio of equivalent to initial period of BLH systems with post yield slope ratio of 10% and 

corresponding minimized error for near-field record set; (dp: equivalent damping) 
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slope ratio. It is observed that for a given value of ductility, 

increasing equivalent damping will also increase the ratio of 

equivalent to initial period, while the corresponding error 

measure decreases. Consequently, the minimum error 

occurs at the largest equivalent damping. It has been 

determined that from an engineering design point of view 

adesirable range of error values is between 0 and 20% 

(Guyader and Iwan 2006). Almost all current error values 

are existed in this desired range as can be seen in Figs. 3 

and 4. 

Investigating the energy spectrum of the far- and near-

field earthquake records shows that, on average, spectral 

energy values in short period region increase with period 

until the maximum value is reached whereas, a decreasing 

trend for energy is generally observed with increasing 

periods thereafter. The peak values of the hysteretic energy 

spectrums of the far- and near-field sets of records occurs 

approximately at periods (here called Tp) of 0.5 and 1 

seconds respectively. As a result, the trend obtained for the 

optimum equivalent period ratios is different depending on 

whether the period in question is greater than Tp or less than 

that. Generally speaking, for periods smaller than Tp, 

optimum equivalent period ratios increase with ductility, 

while for longer periods this is the opposite and dominant 

trend is descending. 

For initial periods larger than Tp, results extracted from 

the far-field set indicate that, generally, the optimum ratio 

of equivalent to initial period decreases as the ductility 

increases. Of course, when initial periods are moving 

toward larger quantities, slope of the graphs is reducing so 

 

 

that in larger ductilities, the equivalent period ratio can be 

considered to be approximately equal to a constant value 

(almost like a straight line). The results obtained from the 

near-field records (in the range of periods larger than Tp) 

also show a decrease in the ratio of equivalent period with 

increasing ductility when smaller periods groups are 

intended, while in the range of larger periods, with 

increasing ductility, the rate of decline gradually decreases 

as far as for periods greater than 2 seconds, ascending trend 

can be observed in corresponding charts. 

The graphs depicted in the Figs. 3-4 also indicate a 

decrease in the ratio of equivalent period with increase of 

initial period. For nonlinear SDOF oscillators, increasing 

initial period will generally decrease absorbed hysteretic 

energy as a response amplitude, which makes it possible to 

achieve the desired response by applying smaller coefficient 

(𝛽) within the linear damping spectrum compared to when 

systems with smaller periods are intended. 

It can be observed that for a specified system and a 

given equivalent damping, the optimum equivalent period 

ratio obtained based on the far-field set of records is larger 

than the corresponding value obtained from the near-field 

set. Assuming a BLH system with post yield slope ratio 

of10% as an example, the results of far and near set of 

earthquake records for a constant equivalent damping of 

25% are compared in Fig. 5. It is worth noting that based on 

Figs. 3-4, this conclusion is confirmed for all the studied 

cases. 

Since hysteretic energy is one of the components of the 

seismic input energy, their ratio (𝐸𝐻 𝐸𝐼⁄ ) has been  

  

  

Fig. 5 Comparing results of far- and near-field sets of record for a constant equivalent damping of 25% and BLH systems 

with post yield slope ratio of 10% 
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calculated for all the specified cases herein. As expected, in 

the range of common structural systems period (up to 4 

seconds), for a given value of ductility, the ratio of 

hysteretic to input energy, on average, is larger when near-

field set of records is selected. Indeed, if the near-field 

earthquake records are considered, hysteric energy will be 

provided a larger contribution in input energy compared to 

far-field set of records. Therefore, assuming a constant 

value for ductility, it is necessary to apply a larger shift to 

the initial period of system over the linear damping energy 

spectrum in order to obtain desired value of the hysteretic 

energy as a far-field earthquake record is intended 

compared with a record of near-field. 

Since three different values for the post yield stiffness 

ratio of the studied models are considered, the effect of this 

parameter on the responses is also evaluated. As a result, it 

is observed that in all cases, the post yield slope ratio 

variation from 0 to 10% does not significantly affect the 

values of the equivalent parameters. Fig. 6 compares the 

responses for different values of this parameter in some 

cases as examples. 

As previously described, the proposed equivalent linear 

model for hysteretic energy estimation can be written as 

follows. 

𝐸𝐻
𝑖𝑛𝑒𝑙(𝐵𝐿𝐻, 𝛼, 𝜇, 𝑇0, 𝜉0) = 𝐸𝐷

𝑒𝑙(𝑇𝑒𝑞 , 𝜉𝑒𝑞) (9) 

Three-variable nonlinear regression analysis has been 

utilized to provide the best fit to the datasets resulted from 

the proposed procedure for each of defined cases. The 

optimum values of 𝑇𝑒𝑞 𝑇0⁄  may be graphed as function of 

ductility for a constant value of 𝜉𝑒𝑞 . Observations upon 

many sets of optimal points revealed a relatively different  

 

 

trend in both the equivalent period and damping present for 

ductilities between 4.0 and 6.0 for far records set and also 

between 3.5 and 6.0 for near records set as initial period 

greater than 𝑇𝑝  was intended. Optimal points are fitted 

with a rational function (ratio of two polynomials) for all 

cases. The equivalent parameters equations are presented 

separately for far- and near-field earthquake records. 

Constant coefficients in Eqs. (10)-(13) for the models with 

post yield slope ratios of 0%, 5% and 10% are shown in 

Tables 3-4. 

The general form of the equations for far-field set of 

records is assumed to be 

     0.1 ≤ 𝑇0 < 0.5 
  
⇒ 

𝑇𝑒𝑞

𝑇0
=

102

𝐴𝜇3 + 𝐵𝜇2 + 𝐶𝜇 + 𝐷𝜉𝑒𝑞 + 𝐸
    1 < 𝜇 ≤ 6 

(10) 

   0.5 ≤ 𝑇0 ≤ 4.0 
  
⇒ 

{
  
 

  
 
𝑇𝑒𝑞

𝑇0
=

102

𝐴𝜇3 + 𝐵𝜇2 + 𝐶𝜇 + 𝐷𝜉𝑒𝑞 + 𝐸
         1 < 𝜇 < 4

𝑇𝑒𝑞

𝑇0
=

102

𝐹𝜇 + 𝐺𝜉𝑒𝑞
2 + 𝐻𝜉𝑒𝑞 + 𝐼

                      4 ≤ 𝜇 ≤ 6

 
(11) 

For near-field set of records the following general form 

is considered as well. 

     0.1 ≤ 𝑇0 ≤ 1.0 
  
⇒ 

𝑇𝑒𝑞

𝑇0
=

102

𝐴𝜇3 + 𝐵𝜇2 + 𝐶𝜇 + 𝐷𝜉𝑒𝑞 + 𝐸
    1 < 𝜇 ≤ 6 

(12) 

  

  

Fig. 6 Comparing the optimized ratio of equivalent to initial period of BLH systems with post yield slope ratio of 0%, 5% and 

10% for two different constant equivalent dampings (dp) taking into account both far- and near-field sets of record 
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 1.0 < 𝑇0 ≤ 4.0 
  
⇒ 

  

{
  
 

  
 
𝑇𝑒𝑞

𝑇0
=

102(𝜉𝑒𝑞 + 𝐴)

𝐵𝜇3 + 𝐶𝜇2 + 𝐷𝜇 + 𝐸𝜉𝑒𝑞 + 𝐹
   1 < 𝜇 < 3.5

𝑇𝑒𝑞

𝑇0
=

102

𝐺𝜇 + 𝐻𝜉𝑒𝑞
2 + 𝐼𝜉𝑒𝑞 + 𝐽

                3.5 ≤ 𝜇 ≤ 6

 

(13) 

All data fitting is done by a nonlinear least squares 

approach that minimizes the absolute error difference 

between the optimal point and the analytical expression. 

The three dimensional fitted curves including eight different 

cases are illustrated in Fig. 7 as examples. R-square is the 

square of the correlation between the response values and 

the predicted response values, which can measure how  

 

 

successful the fit is in explaining the variation of the data 

statistically. It is also called the square of the multiple 

correlation coefficient. R-square can take on any value 

between 0 and 1, with a value closer to 1 indicating that a 

greater proportion of variance is accounted for by the 

model. It can be observed that R-square values are all about 

0.99, which represents a great fit. 

 

 

5. Conclusions 
 

The energy based seismic evaluation (EBSE) methods 

are ensuring that structural capacity can meet the hysteretic 

energy demand of an earthquake. In the other words, the 

evaluation is satisfactory if the hysteretic energy demand of 

a system due to an earthquake can be dissipated through an  

  
(a) 2 < T0 ≤ 3 ;  1 < μ < 4 ;  Far − Field Set (b) 3 < T0 ≤ 4 ;  1 < μ < 4 ;  Far − Field Set 

  
(c) 2 < T0 ≤ 3 ;  4 ≤ μ ≤ 6 ;  Far − Field Set (d) 3 < T0 ≤ 4 ;  4 ≤ μ ≤ 6 ;  Far − Field Set 

  
(e) 2 < T0 ≤ 3 ;  1 < μ < 3.5 ;  Near − Field Set (f) 3 < T0 ≤ 4 ;  1 < μ < 3.5 ;  Near − Field Set 

  

(g) 2 < T0 ≤ 3 ;  3.5 ≤ μ ≤ 6 ;  Near − Field Set (h) 3 < T0 ≤ 4 ;  3.6 ≤ μ ≤ 6 ;  Near − Field Set 

Fig. 7(a)-(h); Examples of optimum equivalent linear parameters (equivalent period ratio and equivalent damping) for 

BLH system with 10% of post yield slope ratio: discrete points and curve fit to data 
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inelastic deformation. Since EBSE is a rational approach for 

seismic evaluation taking into account the accumulated 

earthquake induced damage, there is a need to develop 

hysteretic energy spectrum equations overcoming some 

deficiencies and in particular complexities of the previous 

equations to be able to be applied in the code regulations. 

Accordingly, a new equivalent linear model has been  

 

 

 

represented, which is capable to predict hysteretic energy of 

nonlinear SDOF systems at different levels of ductility. 

Minimization of error has been developed through the 

concept of equivalent linearization, which resulted in 

equivalent damping and period as the representative 

parameters of the linear model. Two sets of ground motions 

based on the distance from fault rupture has been utilized, 

Table 3 Constant coefficients of equivalent linear parameters equations, Eqs. (10)-(11), the case of far-field record set 

𝜶 𝑇0 A B C D E F G H I 

0% 

0.1 ≤ 𝑇 < 0.5 -1.164 16.49 -82.51 -19.28 254.8     

0.5 ≤ 𝑇 ≤ 1 0.232 -3.266 14.34 -15.43 5.232 -0.325 22.98 -35.43 30.92 

1 < 𝑇 ≤ 1.5 0.095 -1.539 7.379 -14.89 17.00 -0.815 -2.863 -12.70 30.87 

1.5 < 𝑇 ≤ 2 0.421 -4.067 12.88 -18.65 17.85 -0.118 0.376 -18.19 31.27 

2 < 𝑇 ≤ 3 0.448 -4.158 12.46 -29.08 27.62 -0.932 6.632 -32.82 43.64 

3 < 𝑇 ≤ 4 0.710 -6.154 16.86 -41.02 34.71 -1.070 13.28 -49.68 53.78 

5% 

0.1 ≤ 𝑇 < 0.5 -1.121 16.61 -86.40 -25.05 260.7     

0.5 ≤ 𝑇 ≤ 1 0.142 -2.823 14.14 -15.30 5.025 -0.499 22.20 -34.65 32.04 

1 < 𝑇 ≤ 1.5 0.047 -1.388 7.619 -14.81 16.59 -0.795 -5.477 -10.98 30.52 

1.5 < 𝑇 ≤ 2 0.434 -4.139 13.10 -18.34 17.58 -0.221 0.490 -19.04 32.41 

2 < 𝑇 ≤ 3 0.416 -3.936 12.17 -28.74 27.58 -0.846 6.253 -32.41 43.44 

3 < 𝑇 ≤ 4 0.500 -4.812 14.50 -40.71 35.82 -1.082 11.70 -48.65 54.01 

10% 

0.1 ≤ 𝑇 < 0.5 -1.261 18.39 -93.36 -27.78 267.2     

0.5 ≤ 𝑇 ≤ 1 0.195 -3.276 15.43 -15.47 4.193 -0.341 24.80 -36.87 32.23 

1 < 𝑇 ≤ 1.5 0.043 -1.441 8.012 -14.88 16.25 -0.791 -5.139 -11.09 30.70 

1.5 < 𝑇 ≤ 2 0.450 -4.302 13.63 -18.37 17.18 -0.204 -2.464 -16.91 32.20 

2 < 𝑇 ≤ 3 0.385 -3.732 11.84 -28.77 27.74 -0.707 5.230 -31.56 42.99 

3 < 𝑇 ≤ 4 0.452 -4.449 13.81 -40.16 36.00 -1.077 11.16 -48.17 54.29 

Table 4 Constant coefficients of equivalent linear parameters equations, Eqs. (12)-(13), the case of near-field record set 

𝜶 T0 A B C D E F G H I J 

0% 

0.1 ≤ T ≤ 0.5 -1.231 17.51 -87.57 -40.90 272.5      

0.5 < T ≤ 1 -1.252 17.20 -77.39 -118.3 287.4      

1 < T ≤ 1.5 3.707 -2.218 5.596 27.05 -44.37 62.43 -0.903 19.64 -30.16 40.32 

1.5 < T ≤ 2 13.49 11.09 -96.17 265.9 -279.5 301.9 -1.105 0.848 -22.60 42.92 

2 < T ≤ 3 1.673 2.814 -22.54 54.16 -28.80 47.36 -1.581 12.14 -41.35 53.56 

3 < T ≤ 4 2.237 0.793 -8.539 21.84 -77.07 122.7 -2.482 37.97 -74.12 68.48 

5% 

0.1 ≤ T ≤ 0.5 -1.325 18.81 -94.07 -40.43 277.8      

0.5 < T ≤ 1 -1.298 18.26 -83.81 -118.2 293.6      

1 < T ≤ 1.5 3.441 -3.002 10.67 17.02 -40.21 61.66 -1.786 18.25 -28.95 44.21 

1.5 < T ≤ 2 18.00 10.10 -96.30 294.0 -378.2 435.5 -1.288 1.309 -22.59 43.85 

2 < T ≤ 3 1.484 2.776 -21.62 51.15 -21.54 40.17 -1.660 12.01 -41.45 54.26 

3 < T ≤ 4 2.250 0.400 -6.422 18.90 -76.87 124.3 -2.764 38.59 -74.43 69.76 

10% 

0.1 ≤ T ≤ 0.5 -1.303 18.65 -94.63 -39.88 277.8      

0.5 < T ≤ 1 -1.496 20.53 -92.20 -134.6 305.0      

1 < T ≤ 1.5 3.064 -2.537 8.716 17.71 -34.15 52.98 -1.553 20.51 -30.38 43.47 

1.5 < T ≤ 2 22.37 9.553 -98.18 320.0 -474.4 569.7 -1.319 -1.515 -20.63 44.13 

2 < T ≤ 3 1.587 2.731 -21.47 51.51 -24.66 44.48 -1.608 15.12 -43.21 54.59 

3 < T ≤ 4 2.272 0.118 -4.503 15.03 -77.04 127.7 -2.663 39.25 -75.04 69.84 

299



 

Maryam Samimifar, Ali Massumi and Abdolreza S. Moghadam 

referred to as the far- and near-field. The equivalent linear 

parameters determined in this study reflect the differences 

in the ground motion characteristics. For example, for a 

constant equivalent damping, the optimum equivalent 

period ratio is longer as calculated based on far-field 

records set comparing to the records set of near-field. This 

is expected because hysteric energy will be provided a 

larger contribution in input energy whenever the near-field 

earthquake records are considered and consequently period 

elongation occurs more quickly compare to far-field set of 

records. In addition, it is concluded that optimum equivalent 

period ratios increase with ductility for classes of initial 

period smaller than Tp, whereas for the other classes 

generally descending trend is observed. For a given value of 

ductility, it is observed that the ratio of equivalent to initial 

period is increased as equivalent damping increases while 

the minimum error corresponds to the larger values of 

equivalent damping. In this study, it is also investigated to 

see how period classes and post yield slope ratio can affect 

parameters of the new equivalent linear model. 

The equivalent linear parameter equations developed in 

this methodology represent a significant improvement over 

the existing previous equations. The methodology has 

produced equivalent linear parameters, which are not 

dependent on response related parameters and, also records 

characteristics such as PGA, PGV, PGD or number of 

cycles. The equations are significantly more applicable 

specially to utilize in performance-based engineering. 
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