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1. Introduction  
 

The cracked bodies are characterized by the r/1  

singularity in their stress and strain fields at the crack tip. 

This kind of singularity occurs whenever the cornering 

angle in a non-convex domain is greater than 180°, in order 

for the deformed elastic body to have finite strain energy 

(Szabó and Babuška 1991). This geometry-induced stress 

singularity increases in proportional to the cornering angle, 

so that the crack tip having 2π cornering angle exhibits the 

highest singularity. In addition, the singular behavior in the 

stress field is confined within an extremely small region 

near the crack tip. For these reasons, the capturing of high 

gradient in the field towards the crack tip by the numerical 

method was not a simple task (Tong et al. 1973). In fact, the 

use of limited number of standard finite elements cannot 

successfully interpolate such a sharp gradient in the 

displacement field near the crack tip. In this context, the 

evaluation of stresses near the crack tip has been a 

continuous challenging subject over several decades. 

According to the brief literature survey, the numerical 

methods for evaluating the stresses at or/and near the crack 

tip can be classified into direct and indirect approaches. In 

the former approach, the near-tip stress field is directly 

approximated using a locally refined FE mesh (Lo and Lee 

1992, Solanki et al. 2003, Areias et al. 2016) or the 

specially-devised singular elements (Rice and Tracey 1973, 

Barsoum 1976, Cao and Liu 2012). More recently, Xiao et  
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al. (2004) extended the hybrid crack element and Hou et al. 

(2017) improved the extended FEM (XFEM), in order to 

directly evaluate the stress intensity factors (SIF) and the 

higher order terms in the asymptotic expansions. Chidgzey 

and Deeks (2005) applied the scaled boundary FEM to the 

evaluation of linear elastic crack tip stress fileds. The basic 

motivation of this approach is to more accurately 

approximate the near-tip stress field by capturing the high 

gradient in the near-tip displacement field or by artificially 

shifting the location of some nodes in standard finite 

element. 

Meanwhile, in the indirect method, the near-tip 

displacement and stress fields are approximated by 

calculating SIFs and substituting them into the known 

asymptotic stress or displacement fields. To calculate the 

SIFs, the J-integral has been widely used by virtue of its 

high calculation accuracy and the path independence. In 

case of mixed-mode SIFs, the contour integral is usually 

recasted into an equivalent domain integral form, called the 

interaction integral by introducing the weighting function, 

in order to extract KI and KII. The path independence is 

preserved even for non-homogeneous bodies (Erdogan and 

Wu 1997, Kim and Paulino 2002). The numerical 

calculation of SIFs were traditionally made by either FEM 

or boundary element method. But, since the late 1990s, the 

extension of meshfree method to the calculation of SIFs 

using the interaction integral has been actively progressed, 

inspired by the fact that the interpolation functions used for 

meshfree methods provide high smoothness (Sukumar and 

Moran 1999). 

Belytschko et al. (1995) applied the element-free 

Galerkin (EFG) method to compute the singular stress fields 

and the SIFs in 2-D fracture problems. Fleming et al. (1997) 
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enriched the EFG method by adding asymptotic fields to the 

trial basis functions in order to accurately calculate the SIFs 

with fewer degrees of freedom. Rabczuk and Belytschko 

(2004) introduced a simplified meshfree method for 

arbitrary cracks, in which the crack is treated as a collection 

of cracked particles. Pant et al. (2011) introduced a new 

enrichment criterion for modeling the kinked cracks using 

the EFG method to compute the SIFs. Ching and Batra 

(2011) enriched the polynomial basis functions in the 

meshless local Petrov-Galerkin (MLPG) method with the 

crack tip singular fields to predict the singular stress fields 

near a crack tip and the SIFs. Rao and Rahman (2000) 

applied the EFG method to calculate the SIF and to simulate 

the crack propagation in 2-D linear fracture problems under 

mode-I and mixed-mode loading conditions. Shi et al. 

(2013) and Goli et al. (2014) enriched the partition-of-unity 

(POU) method to solve multiple and mixed-mode adiabatic 

crack problems.  

Even though these methods provide the highly smooth 

interpolation functions, it is widely known that those suffer 

from the common difficulties in the enforcement of 

essential boundary condition and the numerical integration. 

Differing from these grid-point based meshfree methods, 

the natural element method (NEM) introduced originally by 

Braun and Sambridge (1995) uses the basis functions 

defined based on the Voronoi diagram and Delaunay 

triangulation. The basis functions called by Laplace 

interpolation functions used in NEM not only exhibit the 

high smoothness (Sukumar and Moran 1999), but those 

satisfy the Kronecker delta property. Thanks to the 

Kronecker delta property and the introduction of Delaunay 

triangulation, the natural element method does not lead to 

difficulties in imposing the essential boundary condition 

and employing the traditional Gauss quadrature rule for the 

numerical integration (Sukumar et al. 1998, Cho and Lee 

2006). This method has been refined and extended to solve 

the important engineering problems in linear and nonlinear 

solid mechanics including the crack problem by subsequent 

researchers (Chenesta et al. 2011). 

As an extension of the previous works on NEM (Cho 

and Lee 2014, Cho 2016), this paper intends to introduce a 

near-tip NEM grid refinement and to explore its usefulness 

in the calculation of SIFs and near-tip stresses. As a sort of 

local h-refinement in FEM, the near-tip grid refinement is 

constructed in two steps in which grid points are added and 

Delaunay triangles sharing the crack tip node are divided. A 

plane-state plate with symmetric edge cracks is taken for 

the numerical experiment that explores the usefulness of the 

proposed grid refinement. The usefulness is examined by 

comparing the near-tip stress distributions and SIFs with the 

exact values and those obtained using uniform NEM grids. 

The convergence of global relative error with respect to the 

total number of grid points is also investigated. 

 

 

2. Petrov-Galerkin NEM Approximation of 2-D Linear 
Elasticity Problem 
 

Referring to Fig. 1, let us consider a 2-D linear elastic 

body with a crack which occupies an open bounded domain  

 

Fig. 1 A 2-D linear elastic body with an edge crack 

 

 

2  with the boundary cND  = , 

where ΓD denotes the displacement boundary, ΓN the 

traction boundary, and 
−+ = ccc   the crack 

surfaces. Assuming the crack surface is traction-free, the 

displacement field u(x) is governed by the static 

equilibrium 

in0=   (1) 

with the displacement boundary condition 

Donˆ uu =  (2) 

and the traction boundary condition given by 




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

c

N

on

onˆ





0

t
n  (3) 

In which σ indicates the Cauchy stress and n the 

outward unit vector normal to   and t̂  the surface 

force.  

By assuming small displacement and strains, the Cauchy 

strain   is defined by the (3×2) gradient-like operator L 

such that 

( ) uLu ==  (4) 

Letting D be the (3×3) constitutive matrix, the stresses 

and strains are constituted by 

 :D=  (5) 

The boundary value problem (1) is converted to the 

weak form according to the virtual work principle: Find 

u(x) such that 

( ) ( ) dsˆd:
N
 =


 vtuv  (6) 

for every admissible displacement field v(x) in the Cartesian 

coordinate system {x,y}. In order for the Petrov-Galerkin 

natural element approximation using a given non-convex 

natural element grid NEM  composed of N nodes and a 

number of Delaunay triangles as shown in Fig. 2(a), trial 

and test displacement fields u(x) and v(x) are expanded as 
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( ) ( ) uxuxu  ==
=

N

J

JJh

1

, 

( ) ( ) vxvxv  ==
=

N

I

IIh

1

 

(7) 

with Laplace interpolation functions ϕJ(x) shown in Fig. 

2(b) and three-node triangle-based constant strain (CS)-FE 

basis functions ΨI(x) (Ergun and Ates 2015). The reader 

may refer to the references (Sukumar et al. 1998, Cho and 

Lee 2006) for more details on the concept of natural 

element method. Meanwhile, Φ and Ψ denote (2×2N) 

matrices containing N basis functions ϕJ and I , and u  

and v  are the (2N×1) nodal vectors, respectively. 

Substituting Eq. (7) into Eqs. (4)-(5) and (6) leads to 

 =
N

I

I
N

I

I
FuK  (8) 

with the node-wise matrices defined by 

( ) ( )( )= I
v

d
TI




 
LxDLK  (9) 

 
=

I
vN

dsˆTI
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tF  (10) 

in which ( )( )xI
I
v supp =  is the support of I-th CS-FE 

basis function (i.e., a Delaunay triangle), and two matrices 

  and   are defined by 
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The numerical integration in the natural element method 

is carried out Delaunay triangle by Delaunay triangle. 

The Petrov-Galerkin natural element (PG-NE) method 

employs the Delaunay triangle-based CS-FE basis functions 

to expand the test displacement field. The main reason is to 

achieve both the numerical integration accuracy and the 

easy implementation of conventional Gauss quadrature rule 

(Cho and Lee 2006). The numerical integration in most 

meshfree methods is usually performed by applying the 

conventional Gauss quadrature rule to an extra background 

mesh which is additionally generated. But, differing from 

other meshfree methods, natural element method does not 

need additional effort to construct an extra background 

mesh because Delaunay triangles which are generated a 

priori during the process for defining the Laplace 

interpolation functions automatically construct a 

background mesh. Furthermore, the support of CS-FE basis 

functions is composed of a union of Delaunay triangles, so 

that the intersection between the CS-FE basis function ψI 

and Laplace basis function ϕJ is always contained within  

 
(a) 

 
(b) 

Fig. 2(a) Non-convex NEM grid NEM  consisted of 

Delaunay triangles, (b) Laplace interpolation function ϕJ(x) 

at the crack tip 

 

 

Delaunay triangles. Therefore, one can accurately and 

easily integrate KI in Eq. (9) by applying the Gauss 

quadrature rule to each Delaunay triangle, as in the finite 

element method. 

 

 

3. Interaction integral in natural element method 
 

Referring to Fig. 1, for two-dimensional planar 

configuration, the rate of released energy per unit crack 

extension in the x-direction can be defined by the J-integral 

formulation given by 

dsn
x

u
WJ

j

i

ijj 













−=




1

1  (13) 

where W=σ·ε/2 is the strain energy density and σij are 

Cauchy stresses evaluated along an arbitrary contour Γ 

enclosing the crack tip in a counter-clock wise sense. The 

integral is independent of the choice of contour and the 

integrand is determined by the natural element analysis. For 

a mixed-mode crack problem, J is related to the stress 

intensity factors such that ( ) E/KKJ III
22 += , according 

to Irwin’s relation (Irwin 1957). In which E  becomes E 

for plane stress and E/(1−v2) for plane strain, respectively. 

In order to extract KI and KII, the interaction integral 

(Shih and Asaro 1988, Daimon and Okada 2014) which 

considers two equilibrium states of a cracked body is 

employed. State 1 is the actual equilibrium state of a body 

subject to the prescribed boundary conditions while state 2 

denotes an auxiliary equilibrium state which will be chosen 

as the asymptotic fields for mode I or II. Then, the J-

integral for the sum of the two equilibrium states is 
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expressed by 
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Here, the interaction integral denoted by M(1,2) for the 

two equilibrium states is defined by 
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with W(1,2) being the mutual strain energy defined by 
( ) ( ) ( ) ( ) ( )  2122121 /W ,  += . And, it is related to 

the stress intensity factors KI and KII in modes I and II as 

following 

( ) ( ) ( ) ( ) ( )( )212121 2
IIIIII

, KKKK
E

M +=  (16) 

Referring to Anderson (1991), the closed form near-tip 

displacement fields for modes I and II in two-dimensional 

linear fracture mechanics are available. And, the mode I 

stress intensity factor 
( )1
IK  for state 1 can be determined 

by making state 2 as the pure mode I asymptotic field with 
( ) 12 =IK  

( ) ( )1I Mode 1 2
I

, K
E

M =  (17) 

In a similar manner, the stress intensity factor KII of 

mode II can be also determined (i.e., 
( ) ( ) E/KM II

II  Mode, 11 2= ). 

The line integral (15) is not best for numerical 

calculation because the integration of displacement 

gradients, strains and stresses of states 1 and 2 along path Γ 

is rather painstaking. Thus, it is desired to be transformed 

into an area integral form, for which Eq. (15) is firstly 

rewritten as 
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by substituting the path Γ with occC  +++= +−
 

as shown in Fig. 3 and by multiplying a sufficiently smooth 

weighting function q(x). The weighting function has unity 

on Γ, zero on Γo, and arbitrary value between 0 and 1 within 

the interior domain A. By taking the divergence theorem to 

Eq. (18) and letting the inner path Γ be shrunk to the crack 

tip, the interaction integral ends up with 
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Meanwhile, the integral domain A and the weighting 

function q(x) for the interaction integral (19) are constructed 

by specifying a domain defining radius rint as shown in Fig. 

4. The value of unity is assigned to all the nodes within the 

circle, while the value of zero is specified to the remaining 

nodes within a NEM grid. Then, a union of interior  

 

Fig. 3 An extended closed path and the integral domain A 

 

 

Fig. 4 The integral domain A and the weighting function 

q(x) by a domain defining circle 

 

 

darkened eight Delaunay triangles generates a rectangular 

and its boundary serves as an interior path Γ shown in the 

previous Fig. 3. In addition, one can define another union of 

grayed Delaunay triangles in which only one or two nodes 

have the value of unity, and its boundary becomes the outer 

path Γo. Hence, the union of grayed Delaunay triangles 

automatically becomes an integral domain A, where the 

weighting function q(x) has the value between zero and 

unity. The interaction integral M(1,2) is numerically 

calculated by applying the Gauss quadrature rule to the 

Delaunay triangles within the integral domain A. 

 

 

4. Near-tip grid refinement in NEM 
 

In this section, the proposed near-tip grid refinement for 

the natural element method is described in detail. A NEM 

grid is composed of finite number of nodes and Delaunay 

triangles, as represented in Fig. 5(a). As addressed in 

earlier, the near-tip refinement is performed in two steps 

and the first step is schematically represented in Fig. 5, 

where nd_crk indicates the crack tip node. The darkened 

eight triangles are to be divided into sixteen sub-triangles, 

as represented in Fig. 5(b). In addition, a grid point (i.e., 

node) is to be created at the intersecting point of four sub-

triangles, resulting in a creation of four nodes and eight sub-

triangles in the first refinement step. The radial distances r1 

of four grid points from the crack tip node are the same. 

Referring to Fig. 6, the global node numbers are 

assigned to the four created nodes in a manner of NODE+1, 

NODE+2, NODE+3 and NODE+4 with NODE being the 

total number of nodes in a NEM grid before refinement. As 

well, the global element numbers are assigned to the eight  
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(a) 

 
(b) 

Fig. 5 First refinement: (a) selection of near-tip Delaunay 

triangles, (b) creation of 4 grid points and 8 Delaunay 

triangles 

 

 

Fig. 6 Specification of local node numbers and neighbor 

elements for newly created triangular elements 

 

 

created sub-triangles in the similar manner of ELEM+1, . . . 

, ELEM+8 with ELEM being the total number of triangles 

in a NEM grid before refinement. Meanwhile, for the 

sixteen sub-triangles, the local node numbers are updated or 

newly assigned starting from 1 to 3 clockwise. In addition, 

the neighbor element information is assigned to three local 

sides of each sub-triangle. Where, 1, 2 and 3 mean the local 

node numbers where the global node numbers are assigned, 

while 1, 2 and 3 in rectangles indicate the three sides of 

triangle where the neighbor element numbers are assigned. 

The neighbor element number becomes 0 when no neighbor 

element exists on the local side. 

The second near-tip grid refinement is represented in 

Fig. 7, where eight triangles are chosen for further division. 

Eight triangles are divided into sixteen sub-triangles, as in 

the first refinement, but five grid points are created because 

two nodes are needed for the two crack faces. The radial 

distances r2 of five nodes from the crack tip node are the 

same. The suitable values of the radial distances r1 and r2 

will be determined through the preliminary experiment in 

the next section 5. The global node numbers for five created 

nodes and the global element numbers for eight created  

 
(a) 

 
(b) 

Fig. 7 Second refinement: (a) selection of near-tip Delaunay 

triangles, (b) creation of 5 grid points and 8 Delaunay 

triangles 

 

 

Fig. 8 Specification of local node numbers and neighbor 

elements for newly created triangular elements 

 

 

triangles are assigned in the same manner for the previous 

first refinement. As a result, the total numbers of nodes and 

triangular elements which were created through the first and 

second grid refinement are nine and sixteen respectively. 

Fig. 8 represents the update or newly assignment of local 

node numbers and neighbor element numbers for the newly 

created eight sub-triangles. 

 

 

5. Numerical experiments 
 

The near-tip grid refinement algorithm was coded in 

Fortran and combined into our in-house PG-NEM program 

in which an interaction integral module (Cho and Lee 2014) 

and a patch recovery module (Cho 2016) were built in. As a 

numerical example for benchmark test, a rectangular plate 

shown in Fig. 9 with symmetric edge cracks is taken, which 

is in the plane strain state and subject to uniform vertical 

distributed load σ∞. The material properties are as follows: 

E=200 Gpa and v=0.3. This problem was firstly tested by 

Tracey (1971) and later revisited by Barsoum (1976) for the 

numerical study using the singular quadratic iso-parametric  
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Fig. 9 A plane strain rectangular plate with symmetric edge 

cracks (unit: m) 

 

 
(a) 

 
(b) 

Fig. 10 NEM grids: (a) uniform grid with near-tip 

refinement, (b) fine gradient grid generated by utilizing 

ANSYS (N=2,516) 

 

 

elements. A darkened quarter is taken for the crack analysis 

from the symmetry of problem. 

Three different NEM grids were used for the crack 

analysis, 11×41 uniform grid, 11×41 uniform grid plus 

near-tip refinement shown Fig. 10(a), and a gradient fine 

grid shown in Fig. 10(b). The gradient fine grid was 

generated with the help of ANSYS such that the grid 

density increases towards the crack tip. Both the uniform 

and fine grids were used for the comparison purpose. In Fig.  

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Comparison of stress distributions along the circular 

path Γ (r/a=0.0139): (a) σxx, (b) σyy, and (c) τxy 
 

 

10(a), four nodes and eight sub-triangles were created near 

the crack tip according to the first and second grid 

refinement. And, the radial distances r1 and r2 were set by 

1/10 of the distances d1 and d2, from the parametric 

preliminary experiment. It has been observed that the 

numerical accuracy decreases when the radial distance 

becomes smaller than 1/10 of d1 and d2. Meanwhile, rint 

indicates the domain defining radius, which was introduced 

in Fig. 4, for the interaction integral. It was set by two times 

of the square of the area of a rectangular element composed 

of two Delaunay triangles (Moës et al. 1999). 
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Table 1 The computed absolute and relative errors to the 

NEM grid density 

NEM 

grid 

Absolute error 

( )Eh
ˆ uu −  Relative error ξG (%) 

Uniform 
Locally 

refined 
Uniform 

Locally 

refined 

3×9 1.182E-05 1.642E-05 20.565 18.141 

7×25 1.129E-05 1.049E-05 13.908 11.592 

11×41 9.929E-06 8.322E-06 10.968 9.193 

17×65 7.964E-06 6.693E-06 8.798 7.394 

21×81 7.174E-06 6.042E-06 7.926 6.675 

 

 

Fig. 12 Comparison of convergence rates between uniform 

and locally refined NEM grids 

 

 

The crack analyses were performed for all three NEM 

grids, and next the bare stress fields which were obtained by 

direct differentiating the approximated displacement fields 

were smoothened and enriched through the stress recovery. 

The numerical integration for both the crack analyses and 

the stress recovery was carried out with 13 Gaussian points. 

Figs. 11(a)-(c) comparatively represent the distributions of 

dimensionless relative stresses along the circular path Γ 

shown in Fig. 9, where the radius r was set by 0.0139a. The 

stress intensity factor for this problem is expressed by (with 

the correction factor C of 1.02 (ASTM 1965), 

C
b

a
tan

a

b
aK I 








= 

2

2 


  (20) 

so that the near-tip stress field is analytically possible.  

First of all, it is found that the uniform NEM grid show 

almost uniform distributions which are totally different 

from the exact ones. But, the gradient fine grid shows the 

distributions similar to the exact ones even though the 

levels are lower than the exact ones. This trend can be also 

found from the distributions which were obtained using the 

refined grid. Thus, the effectiveness of the proposed near-

tip refinement has been clearly justified that the refined grid 

can represent the near-tip stress distributions similar to 

those obtained using the gradient fine grid, even with grid 

points less than 20% of the total nodes of gradient fine grid. 

Next, the global error analyses were carried out for  

Table 2 The computed mode-I SIFs a/K I   with 

respect to the crack length 

Method 
Crack length a 

4 6 8 10 12 14 16 

Theory (C=1.02) 1.0549 1.1028 1.1795 1.2987 1.4896 1.8206 2.4981 

NEM 
Uniform 0.9806 1.0007 1.0430 1.2437 1.4789 1.9294 2.5746 

Refined 1.0933 1.1001 1.1199 1.2854 1.4224 1.7992 2.4582 

 

 
Fig. 13 Variation of the normalized mode-I stress intensity 

factor a/K I   to the crack length a 

 

 

uniform and refined grids. Letting û  be the displacement 

field obtained using the gradient fine grid, the absolute 

global error 
( )Eh

ˆ uu −  in the energy norm is defined 

by 

( )
( ) ( ) ( ) ( )hhhEh UˆUdAˆˆˆ uuuu −−−=−  

 2

12  (21) 

with U(·) being the total strain energy uh being the 

displacement fields obtained using refined and uniform 

grids. Meanwhile, the global relative error ξG is defined by 
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Note that the solution obtained using the gradient fine 

grid is assumed to be an exact solution because the exact 

displacement field is not accessible. 

The computed absolute and relative errors for uniform 

and refined grids are recorded in Table 1 with respect to the 

density of NEM grid. For all the NEM grids, it is observed 

that the errors of the near-tip refined grid are smaller than 

those of uniform grid. Meanwhile, both errors of uniform 

and refined grids show the monotonic decrease in 

proportional to the grid density. Fig. 12 represents the log-

log scale of the global relative error ξG with respect to the 

total node number N. It is found that the convergence rates 

(the slope of two plots) are almost similar for both NEM 

grids, even though the refined grid shows smaller errors for 

the whole range of total node number.  
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Next, the stress intensity factors (SIF) KI were 

calculated using uniform and refined grids and compared 

with the exact ones given in Eq. (20). The normalized 

mode-I SIFs a/K I   with respect to the crack 

length a  are compared in Table 2. It is found that the 

near-tip refined grid leads to the SIFs close to the exact 

ones than uniform grid, such that the maximum relative 

errors are 5.05% for the refined grid and 11.57% for 

uniform grid. The variation of normalized SIFs is 

represented in Fig. 13, where the better prediction accuracy 

of the refined grid is clearly observed, except for the crack 

length a  of 12. Thus, it has been justified that the near-tip 

refined grid leads to smaller error in the prediction of neat-

tip stresses and SIFs, for all the grid densities and the crack 

lengths. 

 

 
4. Conclusions 
 

In this paper, a near-tip grid refinement method has been 

introduced for the reliable and effective crack analysis by 

the natural element method (NEM). The Delaunay triangles 

sharing the crack tip node were divided into two sub-

triangles, and grid points (i.e., nodes) were newly created at 

the centers of squares built with four sub-triangles. This 

grid refinement was accomplished in two subsequent steps, 

with a uniform NEM grid. The radial distances r1 and r2 of 

newly created nodes from the crack tip node were set by 

1/10 of the diagonal lengths d1 and d1 of triangles. The 

validity and usefulness of the proposed refinement method 

have been justified through the crack analyses of a plane 

rectangle with symmetric edge cracks. The crack analyses 

were carried out using three types of NEM grids, uniform, 

gradient fine and near-tip refined grids, for the sake of 

comparison purpose.  

From the comparison of stress distributions around the 

crack tip, the uniform grid showed the totally different 

distribution, but the near-tip refined grid lead to the 

distribution quite similar to one of the gradient fine grid, 

even with grid points less than 20% of the total nodes of 

gradient fine grid. This enrichment of near-tip stress field 

by the proposed refinement was also confirmed from the 

error analysis. The refined grid shows smaller errors for the 

whole range of total node number, even though the 

convergence rate is almost similar to one of uniform grid. 

Furthermore, it has been justified that the near-tip refined 

grid leads to the SIFs more close to the exact ones than 

uniform grid, such that the maximum relative errors are 

5.05% at the refined grid and 11.57% at uniform grid. 

However, the proposed method is limited to the regular 

NEM grid so that the extension to the irregular NEM grid 

deserves the research topic for future work. 
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