
Structural Engineering and Mechanics, Vol. 70, No. 3 (2019) 269-277 

DOI: https://doi.org/10.12989/sem.2019.70.3.269                                                                 269 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

In recent years, much research has been carried out on 

carbon nanotubes since their discovery in 1991, carbon 

nanotubes are the probable and hopeful source of one of the 

greatest technological revolution, and CNTs are tubular 

macromolecules. They exhibit superior mechanical, 

electronic, and thermal properties such as high elastic 

modulus and high strength, which make them attractive for 

a wide range of applications, for example, energy storage 

media, drug delivery, novel probes and sensors, ultrafine 

nanocomponents, etc. (Ajayan 2001, Zhou 2008, Adim 

2016, Bouakaz 2014, Benferhat 2016). The recent progress 

and developing of double-walled carbon nanotubes 

(DWNTs), triple-walled carbon nanotubes (TWNTs) and 

multi-walled CNTs (MWCNTs), and may be understood as 

two, three and multiple concentric SWNTs, respectively. Its 

which interact with each other through interlayer 

interactions by weak van der Waals forces. The van der 

Waals interactions have a fundamental role in biology, 

physics and chemistry, in particular in the self-assembly 

and the ensuing function of nanostructured materials and 

these interlayer interactions will change according to the 

chirality combinations between the pairs (n, m)@(n1, m1) 

in a DWNT or among the set (n, m)@(n1, m1)@(n2, m2) in  
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a TWNT (Charlier 2007, Ho 2004, Wei 2003, Tison 2008, 

Soto 2015, Saito 2001).  

To the present, several experimental and theoretical 

study of the buckling behavior of a single walled carbon 

nanotube (SWCNT), multi-walled carbon nanotube 

(MWCNT) and nanocomposite (Abdelhak 2016, Demir 

2016, Shahba 2011, Civalek 2011, Mercan 2017, Akgoz 

2011, Tsiatas 2014, Adim 2018, Hassaine Daouadji 2016, 

Rabahi 2018, Tahar 2017, Benhenni 2018, Chaded 2017, 

Hassaine Daouadji 2017, Tayeb 2018, Benferhat 2018, 

Khelifa 2018, Bensattalah 2018) or bending are especially 

prone to buckling because of their high aspect ratios Lijima 

(1996). Can be the buckling of CNTs lead to potential 

applications as nanometer sized tunnel barriers for electron 

transport. Postma (2001), fluid-flow control nanovalves 

(Solares 2004, Tahar 2016, Zidour 2014, Rabahi 2017, 

Grujieric 2005) and instability of triple-walled carbon 

nanotubes (TWCNTs) conveying fluid (Yan 2009). 

However, the technical difficulties involved in the 

manipulation of these nano-scale structures make the direct 

determination of their buckling properties a rather 

challenging task. Therefore, the theoretical methods, 

including atomistic simulations and continuum mechanics, 

are often applied for studying the buckling behavior of 

CNTs. For example, XinHao et al. (2008) employed the 

molecular dynamics (MD) simulations to simulate 

theaxially compressed buckling behaviors of SWCNTs and 

double-walled carbon nanotubes (DWCNTs). And 

Ranjbartoreh et al. (2007) used the classical theory of shells 

for analysed the buckling behavior and critical axial 
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pressure of double-walled carbon nanotubes (a double-

shells) with surrounding elastic medium. Using a systematic 

molecular mechanics (MM) by Cao and Chen (2006) for 

analysis the effect of the displacement of single-walled 

carbon nanotubes (SWCNTs) under the axial compressive 

loads. 

However, the nonlocal continuum theory initiated by 

Eringen (1972, 1983), in this nonlocal continuum 

mechanics differs from classical continuum mechanics in 

two basic aspects: The proposed global form of the energy 

law and the stress at a point is influenced by the strain at all 

other points in the body (the small scale effects are taken 

into account). There are several studies on the axial and 

torsional buckling analyses behaviors of carbon nanotube 

with the nonlocal continuum theory in the literature. Sudak 

firstly studied the buckling of multiwalled carbon nanotubes 

using nonlocal multi-beam model (Sudak 2003). Zhang et 

al. (2004) firstly presented the nonlocal multi-shell model 

(Zhang 2004) and estimated a value of the scale effect 

parameter   for nanotubes (Zhang 2005). As a result, the 

nonlocal continuum theory can present the more reliable 

analysis and show accurate results (Heriche 2008, Rabahi 

2016, Simsek 2011, Lim 2010, Murmu 2010). He et al. 

(2005) used a cylindrical shell continuum model of 

modeling the van der Waals force for infinitesimal 

deformation of multi-walled carbon nanotubes to study the 

influence of the effect of vdW interaction between different 

layers of a CNT, and Ya (2010) is analysed the buckling of 

a simply supported nonlocal TWCNT of initial axial stress 

are analysed by Nonlocal shell model. 

As yet, to the best of authors’ knowledge, has not been 

studied the non-local buckling of Triple-walled carbon 

nanotubes (TWCNTs) embedded in an elastic medium 

under axial compression by nonlocal Timoshenko beam 

theory. 

In this paper, the buckling behavior of zigzag TWCNT 

embedded in an elastic medium under axial compression is 

investigated based on nonlocal Timoshenko beam model. 

The chirality and small scale effects are considered. The 

effects of the surrounding elastic medium based on a 

Winkler model and van der Waals’ (vdW) forces between 

the inner and middle, also between the middle and outer 

nanotubes are taken into account. The equivalent Young’s 

modulus and shear modulus for zigzag TWCNTs   used in 

this study are calculated by Bao et al. (2004), Civalek 

(2017), Mercan (2016) and by Tu and Ou-Yang (2002). The 

obtained results in this paper can provide useful guidance 

for the study and design of the next generation of 

nanodevices that make use of the mechanical buckling 

properties of zigzag Triple-walled carbon nanotubes. 

 

 

2. Atomic structure of carbon nanotube 
 

Carbon nanotubes are considered to be tubes formed by 

rolling a graphene sheet about the T


 vector. A vector 

perpendicular to the T


 is the chiral vector denoted by 
hC


.Using 0= hCT


 

Translational vector T


, the chiral vector 
hC


 and the  

 

Fig. 1 Hexagonal lattice of graphene sheet including base 

vectors 

 

 

corresponding chiral angle define the type of CNT, i.e., 

zigzag, armchair, chiral can be expressed with respect to 

two base vectors 
1a
  and 

2a


 as under (Charlier 2007, 

Civalek 2010) 
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Where NR is the greatest common divisor of (2m+n) and 

(2n+m), but n and m are the indices of translation, which 

decide the structure around the circumference. Fig. 1 

depicts the lattice indices of translation (n, m) along with 

the base vectors, 
1a


 
and 

2a
 . If the indices of translation 

are such that m=0 and n=m then the corresponding CNTs 

are categorized as zigzag and armchair, respectively. 

Considering the chirality the diameter and the chiral angle 

of the CNT can be calculated by the chiral vector for each 

nanostructure. 

The radius of the zigzag nanotube in terms of the chiral 

vector components can be obtained from the relation (Tokio 

1995) 

na
R 3

2
=

 
(2) 

where “a” is the length of the carbon–carbon bond which is 

1,42Ao. 

 

 

3. The nonlocal Timoshenko beam model  
 

The nonlocal continuum elasticity theory assumed that 

the stress at a reference point is considered to be a 

functional of the strain field at every point in the body 

proposed by Eringen (1972, 1983). The nonlocal elasticity 

theory is applied in various types of nanostructures (nano 

FGM structures, nanotube..) such as the static, free 

vibration, the buckling, wave propagation and thermo-

mechanical analysis of (CNTs) (Zemri 2015, Civalek 2013, 

Aisssani 2015, Larbi 2015, Tounsi 2013, Bensattalah 2016, 

Wang 2003). The local or classical theory of elasticity is 

obtained when the effects of strains at points other than x 

are neglected. For homogeneous and isotropic elastic solids, 

the constitutive equation of non-local elasticity can be given 

by Eringen. Non-local stress tensor (t) at point (x′) is 

defined by 

270



 

Theoretical analysis of chirality and scale effects on critical buckling load of zigzag… 

 

( )K x x' ,  S( x')dx,

V

 = −

 
(3) 

where S(x') is the classical, macroscopic stress tensor at 

point x', K(x-x'), ) is the kernel function and  is a material 

constant that depends on internal and external characteristic 

length (such as the lattice spacing and wavelength).  

Nonlocal constitutive relations for present nanobeams 

can be written as 

2

x
x x2

E
x


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
− =

  
(4a) 

2

xz
xz xz2
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
− =

  
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Where E and G are the Young’s and shear moduli, 

respectively, and γxz,
 
εx, are the shear strain in plane xz and 

the normal strain in the x direction, respectively. 

where μ=(e0a)2 is nonlocal parameter, a an internal 

characteristic length (e.g., length of C–C bond, lattice 

spacing, granular distance) and e0 a constant. Choice of e0a 

(in dimension of length) is crucial to ensure the validity of 

nonlocal models. This parameter was determined by 

matching the dispersion curves based on the atomic models 

(Eringen 1972, 1983). For a specific material, the 

corresponding nonlocal parameter can be estimated by 

fitting the results of atomic lattice dynamic and experiment.  

Using the free body diagram of an infinitesimal element of 

the beam structure subjected to an axial loading P, the force 

equilibrium equations in vertical direction and the moment 

on the one-dimensional structure can be derived as follows 

)(xq
dx

dV
=

 

dM dw
V P

dx dx
= +

 

(5) 

where P is the axial compression and q(x) is the distributed 

transverse force along axis x. w is the transverse 

displacement, M and V are the resultant bending moment 

and the resultant shear force, respectively.  

Substituting the kinematics relationships, bending 

moment, and shear force into Eqs. (4), the bending moment 

M and the shear force V for the non-local model can be 

expressed as  

2

2

M d
M EI

x dx





− =
  

(6a) 
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Where  is the rotation angle of cross-section of the 

beam. Also, A is the cross-section area of the beam, Ithe 

moment of inertia and  a correction factor depending on 

the shape of the cross-section of the considered beam.  

Substituting Eqs. (6) into Eqs. (5) and eliminating  

yield the following differential equation 

4 2 2 2 2

4 2 2 2 2

d w d EI d d d w
EI 1  1 q( x ) 1 P 0

dx dx  AG dx dx dx
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

     
+ − − + − =     
       

(7) 

The above equation is the equilibrium equation of a 

Timoshenko beam considering the non-local effects. 

 

 

Fig. 2 A TWCNT under axial compression embedded in an 

elastic medium 

 

 

4. Triple-walled carbon nanotubes 
 

Fig. 2 shows a TWCNT under axial compression 

embedded in an elastic medium. In this figure R1, R2 and R3 

are: the radius of the inner, the middle and the outer tubes, 

respectively. Also, p is the buckling pressure of the 

TWCNT, Young’s modulus E and h the thickness of the 

inner, the middle and outer nanotubes. We assume in 

throughout this section that the ends of all nanotubes are 

simply supported.  

In this study, the buckling analysis of TWCNTs 

embedded in an elastic medium under axial compression 

has been investigated using the Timoshenko beam theory 

(TBT) based on the non-local continuum model. In this 

model, the effects of the surrounding elastic medium based 

on the Winkler model and the vdW force between the inner, 

middle and outer nanotubes are considered. The small-scale 

effect is clearly considered in the formulation. 

For the outer tube which specified with subscript 3, the 

normal pressure q3(x) can be defined as 

W vdW

3 3 32q ( x ) q ( x ) q ( x )= +  (8) 

Where vdW

32q ( x )  denotes the vdW force between the 

outer and middle tubes and W

3q ( x )  the interaction pressure 

due to the elastic medium. Based on the Winkler model, the 

elastic medium force can be written as 

W

3 w 3q ( x ) K w ( x )= −   (9) 

where Kw is the spring constant of the Winkler-type 

foundation. 

For the middle tube which specified with subscript 2, 

the normal pressure q2(x) is due to the vdW force, then 

vdW vdW

2 23 21q ( x ) q ( x ) q ( x )= +  (10) 

Where vdW

23q ( x ) denotes the vdW force between the 

middle and outer tubes and vdW

21q ( x )  the vdW force 

between the middle and inner tubes. 

For the inner tube which specified with subscript 1, the 

normal pressure q1(x) is only due to the vdW force, then 

vdW

1 12q ( x ) q ( x )=  (11) 

The interaction forces (pressure) vdW

i ( i 1 )q ( x )+
, exerted on 

the ith tube due to the (i+1)th tube, and the interaction forces 
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(pressure) vdW

( i 1 ) iq ( x )+
, exerted on the (i+1)th

 
tube due to the 

ith tube, are related by 

vdW vdW

i ( i 1 ) i ( i 1 ) i ( i 1 )q ( x ) R q ( x ) R i 1,2....n 1+ + + = −  = −
 (12) 

Using Eq. (12) we have  

vdW vdW vdW vdW

12 1 21 2 23 2 32 3q ( x ) R q ( x ) R and q ( x ) R q ( x ) R = −   = −   (13) 

The van der Waals interaction potential, as a function of 

the interlayer spacing between two adjacent tubes, can be 

estimated by the Lennard-Jones model. The interlayer 

interaction potential between two adjacent tubes can be 

simply approximated by the potential obtained for two flat 

graphite monolayers, denoted by g(), where  is the 

interlayer spacing (Girifalco 1956, 1991, Sears 2006, 

Heireche 2009, Batra 2007, Wang 2007). Since the 

interlayer spacing is equal or very close to initial 

equilibrium spacing, the initial van der Waals force is zero 

for each of the tubes provided they deform coaxially. Thus, 

for small-amplitude sound waves, the van der Waals 

pressure should be a linear function of the difference of the 

deflections of the two adjacent layers at the point as follows 

)( 121212 wwtcq −=  (14a) 

)( 1212
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R
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Where wi(i=1,2 and 3) shows the deflection of the ith 

tube; and ci(i+1) is the intertube interaction coefficient per 

unit length between two tubes, which can be estimated by 

Sudak (2003) 

2

i
i ( i 1 ) 2

320 ( 2R ) erg / cm
c , ( d 0.142 nm ) and i 1,2...n 1

0.16 d
+ = = = −

 
(15) 

where Ri the radius of ith. The buckling pressure is the same 

for third tubes that is (Wang and Mioduchowski 2003) 

PPPP === 321
 (16) 

Using Eq. (7) and applying Eqs. (8), (10), (11) and (13), 

the governing equilibrium equations for the inner, middle 

and the outer tubes can be written as 
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Let us assume the buckling modes as (Heireche 2008). 









= x

L

m
Aw


sin1

 

,

 








= x

L

m
Bw


sin2

,








= x

L

m
Cw


sin3

 
(18) 

The above equations satisfy the simply supported 

boundary conditions which are 

0
2
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Replacing Eq. (17) into Eqs. (16), one can easily obtain 
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where K11, K12, K13, K21, K22, K23, K31, K32 and K33 in Eqs. 

(20) are defined as 
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(21i) 

For nontrivial solution, the determinant of the 

coefficient matrix in Eq. (20) must be zero. This gives the 

buckling pressure of the zigzag TWCNT in which the 

effects of the small scale and the van der Waals force 

between the inner and the outer tubes are shown. 

 

 

5. Results and discussions 
 

The Young’s moduli used in this study of three types of 

single-walled carbon nanotubes(SWCNTs), armchair, 

zigzag and chiral tubules, are calculated by Bao et al. 

(2004) and Tu and Ou-Yang (2002) indicated that the 

relation between Young’s modulus of multi-walled carbon 

nanotubes (MWCNTs) and the layer number N' can be 

expressed as 

SWNTMWNT E
h

t

htN

N
E

+−
=

1'

'  
(22) 

where EMWNT, ESWNT, t, N' and h are Young’s modulus of 

multi-walled nanotubes, Young’s modulus of single-walled 

nanotubes, effective wall thickness of single -walled 

nanotubes,  number  of layers and layer  distance. 

EMWNT=ESWNT if N'=1, which corresponds to the case of 

single-walled carbon nanotubes. Based on the formulations 

obtained above with the nonlocal Timoshenko beam  
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Table 1 Lists the values of Young’s modulus of single and 

double carbon nanotube for different chirality’s 

(n,m) 

Young’s modulus 

SWNT-GPa 

(Bao2004) 

DWNT-GPa 

(Tu2002) 

TWNTGPa 

(Tu2002) 

Zigzag    

(14,0) (23,0) (32,0) 939.032 856.397 831.992 

(17,0) (26,0) (35,0) 938.553 855.960 831.568 

(21,0) (30,0) (39,0) 936.936 854.486 830.135 

(24,0) (33,0) (42,0) 934.201 851.991 827.712 

(28,0) (37,0) (46,0) 932.626 850.555 826.316 

(31,0) (40,0) (49,0) 932.598 850.529 826.291 

(35,0) (44,0) (53,0) 933.061 850.952 826.702 

 

 
Fig. 3 Non-local critical buckling load of (14,0) (23,0) 

(31,0) TWCNT with different nonlocal values and first 

mode N=1 for different ration L/d  based on Timoshenko 

beam model 

 

 

models, the critical buckling loads of Triple-walled carbon 

nanotubes (TWCNT's) are discussed here. To investigate 

the critical buckling loads of (TWCNTs), the results 

including the aspect ratio of the (TWCNTs), the vibration al 

mode number and effect of nonlocal small-scale coefficient. 

In addition, to explore the effect of chirality, the critical 

buckling loads of different chiral of (TWCNTs) are 

compared. The parameters used in calculations for the 

zigzag SWCNTs, DWCNTs and TWCNTs are given as 

follows: the effective thickness of CNTs taken to be 0.258 

nm (Wu et al. 2006), the mass density =2,3g/cm3 (2008). 

The shear coefficient =9/10. It should be noted that 

according to the previous discussions about the values of e0 

and a in detail, e0a is usually considered as the single scale 

coefficient which is smaller than 2.0 nm for nanostructures 

(Heireche 2008, Wang 2007). 

The parameters such as the small scale parameter, the 

spring constant of elastic medium (i.., similar values of 

modulus parameters were taken by Ansari et al. (2015, 

2012)) and the carbon nanotube aspect ratio affect the 

instability region of TWCNT. The effect of each parameter 

on the instability of TWCNT based on the nonlocal 

Timoshenko beam model is discussed here. 

In Table 1, the Young’s modulus of SWCNTs, 

DWCNTs and TWCNTs employed in this study, are  

 

Fig. 4 Effect of the Winkler modulus parameter on critical 

buckling load for various small-scale coefficients (L/d=10, 

N=1) 

 

 

calculated by Bai et al. (2004), Tu and Ou-Yang (2002) 

respectively. The results show the decreasing of Young’s 

modulus (TWCNTs) for some chirality nanotube. The 

reason for this phenomenon is attributed to the weak van 

der Waals forces between the inner and outer tube. 

Fig. 3 depicts the nonlocal critical buckling load of 

zigzag TWCNT with different nonlocal values and first 

mode N=1 for different respect to length-to-diameter ratio 

based on nonlocal Timoshenko beam model. The parameter 

value of e0a=0 nm implies that the nonlocal effect is 

neglected. It can be seen that the effect of nonlocal 

parameter e0a on the nonlocal critical buckling load is 

significant, especially at L/d20. Increasing the nonlocal 

effect decreases the nonlocal critical buckling load.  

The influences of the Winkler modulus parameter on 

critical buckling load of zigzag TWCNT on the non-local 

critical buckling load are shown in Figure 4. It is noticed 

that the critical buckling loads are sensitive to stiffness of 

the surrounding polymer elastic medium. As the Winkler 

modulus parameter increases (soft elastic medium to hard 

medium), the critical buckling loads also increase. This is 

because increasing the elastic medium constant makes the 

Triple-walled carbon nanotubes become stiffer.  

The variation of non-local critical buckling loads of 

triple-walled carbon nanotubes (TWCNTs) zigzag chirality 

in the absence and presence of an elastic medium for the 

first and the sixth modes with different length-to-diameter 

ratios based on the non-local Timoshenko beam model are 

listed in Table 2. In this table, it is observed that as the 

mode number increases, the critical buckling load increases. 

In addition, it is observed, that the non-local critical 

buckling loads is more affected by elastic medium and the 

long of nanotube. If length-to-diameter ratios increase the 

non-local buckling load gets reduced and vice versa in case 

without an elastic medium and inversely in case with elastic 

medium. Finally, the results show the dependence of the 

different chirality’s of carbon nanotube, Aspect Ratio and, 

vibrational mode number on the non-local critical buckling 

loads.  

The values of the non-local critical buckling load (Pcr) 

for (TWNTC) type zigzag with different chiralities, in the 

absence and presence of an elastic medium, calculated by 

the nonlocal Timoshenko beam model, are listed in Table.  
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Table 2 Comparison between the values of non-local critical 

buckling load for different zigzag chirality’s and Winkler 

modulus parameter of carbon nanotube, when the value of 

scale coefficients (e0a) is 2 nm and first mode N=1 and in 

sixth mode N=6 

N=1,    Pcr(nN) 

(TWCNTs) Zigzag L/d 
(Kw=0 

N/m2) 
(Kw=107N/m2) 

(Kw=5.107 

N/m2) 
(Kw=15.107N/m2) 

(14,0) (23,0) (32,0) 
10 28.000 28.056 28.087 28.118 

100 0.37 3.177 5.985 8.793 

(17,0) (26,0) (35,0) 
10 29.729 29.773 29.816 29.859 

100 0.363 4.368 8.373 12.379 

(21,0) (30,0) (39,0) 
10 31.988 32.051 32.114 32.176 

100 0.366 6.27 12.173 18.078 

(24,0) (33,0) (42,0) 
10 33.600 33.751 33.831 33.911 

100 0.374 7.924 15.475 23.026 

(28,0) (37,0) (46,0) 
10 36.000 36.155 36.26 36.366 

100 0.39 10.431 20.472 30.515 

(31,0) (40,0) (49,0) 
10 37.921 38.048 38.175 38.302 

100 0.405 12.534 24.664 36.795 

(35,0) (44,0) (53,0) 
10 40.400 40.649 40.808 40.967 

100 0.427 15.633 30.841 46.049 

N=6,    Pcr (nN) 

(14,0) (23,0) (32,0) 
10 21.593 21.594 21.594 21.595 

100 11.945 12.025 12.105 12.185 

(17,0) (26,0) (35,0) 
10 29.146 29.147 29.148 29.149 

100 12.102 12.216 12.330 12.444 

(21,0) (30,0) (39,0) 
10 39.665 39.667 39.668 39.670 

100 12.540 12.707 12.874 13.041 

(24,0) (33,0) (42,0) 
10 45.604 45.606 45.609 45.611 

100 12.961 13.175 13.388 13.602 

(28,0) (37,0) (46,0) 
10 48.008 48.011 48.015 48.019 

100 13.649 13.932 14.216 14.5 

(31,0) (40,0) (49,0) 
10 43.126 43.131 43.136 43.141 

100 14.232 14.574 14.917 16.353 

(35,0) (44,0) (53,0) 
10 23.503 23.51 23.517 23.523 

100 15.067 15.496 15.924 16.353 

 

 

2. As is seen, the non-local critical buckling load (Pcr) 

increase as the diameter of carbon nanotubes increases at 

different chiralities. 

Fig. 5 illustrates the non-local critical buckling load 

using nonlocal Timoshenko Beam Theory (TBT) under 

axial compression versus the respect to length-to-diameter 

ratio (L/d) for different Winkler elastic medium. It can be 

seen that the non-local critical buckling load under axial 

compression in the presence of the surrounding elastic 

medium Kw0 is higher than that in the absence of the 

surrounding elastic medium Kw=0 for long nanotubes. Since 

considering the Winkler elastic medium causes to stiff the 

outer tube. Also, the difference between the two cases 

increases with increasing L/d; whereas, for short nanotubes,  

 

Fig. 5 Non-local critical buckling load of (14,0) (23,0) 

(31,0) TWCNT with different Winkler modulus of elastic 

medium and first mode N=1 for e0a=2nm based on 

Timoshenko beam model 

 

 

the difference between the two cases is negligible. This 

means that for short nanotubes, the spring constant of the 

Winkler type can be ignored. 

 
 
6. Conclusions 
 

This paper studies the Influence of Winkler modulus 

parameter, non-local small-scale coefficient, the aspect ratio 

and the chirality of a carbon nanotube on the nonlocal 

critical buckling loads using non-local Timoshenko beam 

theory. The obtained numerical results show that: 

- If Winkler modulus parameter increases, the critical 

buckling loads also increase. This is because increasing the 

elastic medium constant makes the Triple-walled carbon 

nanotubes become stiffer, mostly for long nanotubes. 

- Increasing the value of scale coefficient decreased the 

critical buckling load, especially at higher L/d ratio.  

- The effect of chirality on the non-local critical 

buckling load will diminish with the scale coefficients 

increasing. 

- Increasing the value of mode the critical buckling load, 

also increase.  
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