
Structural Engineering and Mechanics, Vol. 70, No. 3 (2019) 367-380 

DOI: https://doi.org/10.12989/sem.2019.70.3.367                                                                 367 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

The structural optimization usually involves many 

requirements which should be met simultaneously to 

achieve a satisfactory design. Therefore, the majority of 

structural optimization problems are multi-criteria. The 

optimization of the different criteria can be performed 

simultaneously or hierarchically. Simultaneous multi-

criteria optimization leads to Pareto-optimal solutions based 

on the principle of non-dominance (Parmee 2001). The 

Pareto-optimality concept is the most widely accepted in 

multi-objective optimization. The Pareto method takes all 

objectives into consideration concurrently during the 

optimization process and no objective is considered more or 

less important than any other. Lexicographic multi-criteria 

optimization utilizes ranking among objectives, which are 

considered in a hierarchical manner according to their 

importance (Coello Coello et al. 2002, Ehrgott 2005). A set 

of solutions which fulfill the first most important criterion is 

identified first. Then, the solutions which meet the criterion 

second in importance are selected from the set found in the 

first step and so on. This a priori approach requires 

preference information before the optimization process and 

is used when objectives are easily ranked. Both variants of 

multi-criteria optimization are considered in the paper. 

The main purpose of a structure is to have sufficient 
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strength to carry imposed loads without failure. The goal of 

maximizing strength is often equivalent to minimizing the 

maximum stress and, especially in the case of beams, to 

minimizing the absolute maximum bending moment. The 

second purpose of the structure is to have adequate stiffness 

to restrict deformations. Multi-criteria beam optimization 

for a criterion related to the bending stress and the 

deflection occurs among others in Ostwald and Rodak 

(2013). Optimization of beams to minimize the maximum 

moment is presented in Wang (2006) and Kozikowska 

(2011, 2014, 2016). Optimization of beams for decreasing 

the maximum deflection is discussed in Wang (2004), Jang 

et al. (2009), Loureiro et al. (2014). Minimization of the 

maximum moment and the maximum deflection of beams is 

considered in Imam and Al-Shihri (1996) and Dems and 

Turant (1997). These articles, however, do not concern 

multi-criteria optimization of beam topology and geometry. 

Ostwald and Rodak present results of bi-criteria Pareto 

optimization of the cross-section for the simply supported 

beam. Al-Shihri determines optimal locations of supports 

for the symmetric overhanging beam in single-criterion 

optimization problems. Dems and Turant consider general 

formulas of sensitivity analysis and scalar optimization 

problems for beams and frames with rigid and elastic 

supports and hinges. They present solutions for a single-

span and a two-span beam. They take into account only 

such topographical changes that consist in moving one 

support away from the end of the beam towards the center. 

The previous articles by the author concern topology and 

geometry optimization of statically determinate beams with 

the absolute maximum moment as the scalar objective for 
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different variants of fixed and most unfavorably distributed 

load. In these earlier papers, the author does not deal with 

either optimization for displacement or multi-criteria 

optimization. The current article by the author focuses on 

bi-criteria optimization of topology and geometry of these 

beams with the absolute maximum moment and the 

maximum deflection as the objectives. Results of all these 

articles show that beam optimization problems with 

topological and geometrical design variables, such as 

locations of supports and hinges, can greatly improve the 

structural behavior and the quality of structural design. 

Therefore, topology and geometry bi-criteria optimization 

of beams with the absolute maximum moment and the 

maximum deflection as objectives is performed in the 

paper. It is assumed that beams are subjected to a uniformly 

distributed transverse load (gravitational load for horizontal 

beams). For such a load, the maximum deflection of a beam 

is always downward (considered as positive), and absolute 

value does not have to be determined. Multi-span beams are 

statically determinate if all their reaction forces may be 

calculated using three global equilibrium conditions and 

moment-balance conditions of hinges. Beams studied in the 

article carry only transverse loads and do not undergo 

horizontal displacements and forces. Therefore, their 

statical determinacy is preserved without introducing roller 

supports. 

Statically determinate multi-span beams are used in real 

structures due to their many advantages. They are more 

easily manufactured, transported, and erected. Temperature 

changes, support settlements, and fabrication errors cause 

no stresses in them. A proper arrangement of their supports 

and hinges leads to lower stresses or higher stiffness 

compared to statically indeterminate beams with the same 

number of the same supports, with a smaller number of 

hinges, or without hinges. It is because the optimization of a 

statically determinate beam in its geometric space with a 

larger number of dimensions (number of supports and 

hinges) allows to find solutions with smaller values of 

maximum moment or deflection. 

The deflection of a beam under distributed load is highly 

nonlinear with respect to positions of supports and hinges 

(Biro and Cveticanin 2016). Furthermore, the point of the 

maximum deflection is not known in advance and occurs at 

different locations for different values of topological and 

geometrical variables. Changes of locations of supports and 

hinges can cause abrupt changes in the derivatives of an 

objective function associated with displacements. Analytical 

optimization methods based on gradient descent are not 

suitable for the bi-criteria beam optimization, while genetic 

algorithms are well adapted to deal with it. Genetic 

algorithms do not explicitly assume any properties of the 

objective functions, improves no single solution but a set of 

solutions and can effectively consider conflicting 

requirements. Because of this, the genetic algorithm is used 

in the paper for lexicographic optimization and the non-

dominated sorting genetic algorithm NSGA-II (Coello 

Coello et al. 2002, Branke et al. 2008, Kaveh et al. 2013) 

for optimization in the Pareto sense. 

Evolutionary optimization techniques to solve multi-

objective problems began to appear in the literature in the 

eighties of the twentieth century. Since the late nineties, 

there has been a considerable increase in the number of 

applications of multi-objective evolutionary algorithms 

(Coello Coello et al. 2002, Branke et al. 2008, Munk et al. 

2015). Today, evolutionary algorithms, including genetic 

algorithms, are considered as some of the most valuable and 

auspicious methods for solving varied multi-criteria 

optimization problems. But, the genetic algorithm requires a 

relatively long time to obtain a good description of the 

Pareto set, so a method of local improvement is applied for 

this purpose. Though a great number of publications are 

devoted to methods of multi-criteria structural optimization, 

there are not many studies in which the specific features of 

optimal solutions of such optimization problems are 

discussed. Therefore, the article concerns the multi-criteria 

optimization of beams with particular emphasis on the 

characteristics of optimal solutions. 

The beams are modeled in the paper according to the 

classical Euler-Bernoulli beam theory. They are subjected to 

lateral loads only. Their cross-sections and deflections are 

small compared with their lengths. Therefore, deflections 

due to shear are assumed to be not significant, and 

deflections due to bending are only considered. Horizontal 

deflections are negligible, and slopes of deflection curves 

remain small. All beams have the same cross-section and 

are made of the same linear elastic material, so the flexural 

rigidity of beams EI  is constant. Cross-sections are 

symmetrical about the planes of bending, and an 

unsymmetrical bending does not take place. Equations for 

slopes and deflections are determined by integrating the 

differential equations for bending of beams. Calculations of 

deflections by the direct integration method were previously 

hindered during the optimization due to weak hardware 

capabilities of computers. Magnitudes and locations of the 

maximum deflection usually were computed in an 

approximate way. Today's computers are a lot faster, and 

maximum deflections are calculated in the paper accurately 

(within the assumptions applicable to the differential 

equation of the elastic curve). Deflections in points of zero 

slope, at free ends of beams, and in hinges are checked to 

find the maximum value. All deflection curves presented in 

figures are magnified with respect to the lengths of beams 

to improve the readability of drawings. All the simulations, 

whose results are presented in the paper, are performed 

using a software written by the author. 

 

 
2. Problem domain: Beam topology and geometry 

 

The construction of all statically determinate beam 

topologies starts with the topology with supports at all ends 

of bars (beam ends and hinges). Then supports can be 

shifted from the ends of bars. The topology t of an n- 

support statically determinate beam is represented by n-

element vector 

],,[ 1 ntt =t
 (1) 

where the topological code ti describes a shift of support i 

away from the end of the beam for i= 1 and i= n or from a 

hinge for i = 2, …, n–1 (see Fig. 1). A shift to the 
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Fig. 1 Beam topology: topological codes ti. Beam 

geometry: cantilever lengths yi, span lengths zi 

 

 
left is encoded as 1, a shift to the right as 2, and no shift as 

0. The size |Tn| of the set Tn of all beam topologies with n 

supports is equal to 

234 −= nn
T

 
(2) 

The geometry g of a beam with a fixed topology t is 

described by two sets of geometric parameters: n–1 

variables zi and n variables yi (see Fig. 1). The parameters zi 

include dimensionless lengths of spans between 

neighboring supports 

}1,,2,1{,10 − nizi 
 (3) 

The parameters yi represents dimensionless lengths of 

cantilevers (external for i= 1 and i= n, internal for i= 2, …, 

n–1) 

},,2,1{,0if10
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(4) 

All beams have the same length, normalized to unity 

11211 =+++++= − nn yzzzyL 
 (5) 

A more detailed description of the topological and 

geometrical parameters is presented in Rychter and 

Kozikowska (2009). 

 

 
3. Problem formulation of multi-objective beam 
optimization 

 
The vector of objective functions for topology and 

geometry optimization of n-support statically determinate 

beams is 

( )1 2

(0,1) (0,1)

( , ) ( , ), ( , )

( , , ) , ( , , )max max
x x

f f

M x d x
 

=

 
=  
 

f t g t g t g

t g t g

 
(6) 

where t is the beam topology described by the topological 

codes ti, g is the beam geometry described by the 

parameters zi, yi, M(t, g, x) and d(t, g, x) are the bending 

moment and the deflection of the beam at the point of a 

coordinate x. 

The topology and geometry optimization problem is to 

minimize the function f(t, g) over all spaces G of all 

admissible beam geometries g for all n-support topologies t 

from the set Tn 

),(minimize
:

gtf
gTt Gn   

(7) 

The optimization problem expressed by equation (7) is 

solved in two stages. The first stage is to optimize the 

geometry g of each beam with a fixed topology t for all 

topologies from the set Tn. The second stage is to find 

optimal topologies among all the topologies belonging to 

the set Tn on the basis of optimal values of the absolute 

maximum moment and the maximum deflection found for 

each topology in the first step. The two optimization stages 

are dependent on whether the optimization of the objectives 

is performed simultaneously or sequentially. Both 

objectives f1 and f2 are equally important and considered at 

the same time in the case of Pareto optimization, whereas 

the first objective f1 is more important and considered first 

in the case of lexicographic optimization. The simultaneous 

optimization of topological and geometrical variables is not 

carried out because it does not guarantee that all optimal 

topologies will be found. The final solutions of optimization 

depend on starting points. A bad selection of initial 

topologies in the simultaneous optimization causes that only 

some parts of the full geometric-topological search space 

are explored, and only some optimal topological layouts are 

reached. Since all statically determinate beam topologies 

are known, the exhaustive search of these topologies with 

optimal geometries is carried out in the paper, and all global 

and local optima in the full geometric-topological search 

space are found. 
 

 

4. Pareto multi-objective optimization 
 

4.1 Problem formulation of Pareto geometry 
optimization for a fixed topology 

 

The Pareto optimization problem is to minimize the 

function f(g) over the space G of all feasible beam 

geometries for a fixed topology t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

with no preference in the order in which the objective 

functions are optimized. The optimization problem can be 

formulated as follows 

( )1 2

(0,1) (0,1)

 ( ) ( ), ( )

( , ) , ( , )

Pareto-minimize

max max

G

x x

f f
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(9) 

where components zi and yj of the decision (variable) 

vectors of beam geometry g belong to a nonempty feasible 

region G  R
𝑛−1+𝑐𝐸+𝑐𝐻 , objective vectors f(g) belong to a 

feasible objective region F  R2, M(g, x) and d(g, x) are the 

bending moment and the deflection of the beam at the point 

of a coordinate x . The feasible objective region is the set 

of values of the objective functions f1 and f2 from equation 

(8) which may be attained for all admissible values of the 

geometry vector g ∈ G described by equation (9). 
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A beam geometry gPO ∈ G is a Pareto-optimal or non-

dominated solution for the given function f(g) if there exists 

no beam g ∈ G such that f1(g) ≤ f1(gPO) and f2(g) ≤ 

f2(gPO), and at least one of the inequalities is strict (Parmee 

2001). A beam geometry gWPO ∈ G is a weakly Pareto-

optimal solution if there exists no beam g ∈ G such that 

f1(g) ≤ f1(gWPO) and f2(g) ≤ f2(gWPO). The set of all Pareto-

optimal decision vectors gPO is called the Pareto-optimal set 

and is denoted by P(G) in the decision space. 

Appropriately, an objective vector is Pareto-optimal if the 

corresponding decision vector is Pareto-optimal and the set 

of all Pareto-optimal objective vectors is called Pareto front 

or Pareto frontier and is denoted by P(F) in the objective 

space. All Pareto front points are weak Pareto front points, 

but not vice versa. The terminology about multi-objective 

optimization problems has been taken from Branke et al. 

(2008). 

The geometric variables zi and yj are constrained only by 

minimum distances between supports and hinges. These 

constraints affect the sizes of feasible regions G, but do not 

affect optimal solutions, which lie away from the 

boundaries of these feasible regions.  
 

4.2 Method of Pareto geometry optimization for a 
fixed topology 

 

Pareto optimization of the beam geometry for a fixed 

topology is performed by a hybrid optimization method: the 

non-dominated sorting genetic algorithm NSGA-II and a 

local search technique. In the binary tournament selection 

procedure of NSGA-II, a new population is created based 

on front numbers and crowding distances of individuals in 

the old population. All individuals which are non-

dominated by any other have front number 1. Individuals 

with front number 2 are dominated only by individuals with 

front number 1, and so on. The crowding distance value of a 

particular solution is the average distance of its two 

neighboring solutions. Each binary tournament is won by 

the individual with a lower front number or by the  
 

 

 

Fig. 2 Pseudo code for Pareto local search method 

individual with a higher crowding distance if both 

individuals have the same front numbers. Nevertheless, the 

genetic algorithm is not a good choice to find accurate 

Pareto front due to the low rate of convergence. Therefore, 

the Pareto local search method based on mutation is used in 

the paper to find the best possible approximations of Pareto-

optimal solutions in a vicinity of points found by the genetic 

algorithm. Individuals with front number 1 in the last 

population of NSGA-II algorithm create an initial actual 

Pareto set for the Pareto local search procedure. New 

candidates for members of the Pareto set are formed from 

members of an actual Pareto set by small random changes 

in some of their geometrical variables. The procedure is 

accomplished by comparing objective function values of 

candidates and members, including the non-dominated 

candidates to the Pareto set, and removing dominated 

members from the set. The size of the Pareto set varies. The 

pseudo code of the algorithm is given in Fig. 2. 
 

4.3 Results of Pareto geometry optimization for a 
fixed topology 
 

Graphical representations of feasible objective regions F 

and Pareto frontiers P(F) in the two-dimensional objective 

space allow to detect conflicts between criteria and 

toestimate the range and the shape of Pareto fronts. Feasible 

objective regions and Pareto frontiers presented in the paper 

are performed for the beam length L, the intensity of 

uniformly distributed load q and the flexural rigidity EI all 

equal to unity. The feasible objective regions for all two-

support beam topologies are shown in Figs. 3(a)-(c). The 

feasible objective region is one point for the simply 

supported beam with the topology [0,0] and only one 

geometry in Fig. 3(c), is a curve for topologies with 

different geometries obtained by changing only one 

parameter (for example for the symmetrical topologies [2,0] 

and [0,1] in Fig. 3(b)), and is an area for topologies with 

different geometries obtained by changing more than one 

parameter (for example for the topology [2,1] in Fig. 3(a)). 

Pareto-optimal frontiers of two- and three-support 

topologies are presented in Fig. 4. We can notice that the 

optimized objective functions are conflicting with each 

other with respect to beam geometrical variables except for 

the topologies [0,0] and [0,0,0] without any cantilevers. The 

geometry of the beam with the topology [0,0] is fixed and is 

not subject to optimization. Thus, its Pareto front coincides 

with the feasible objective region and is one point in the 

two-dimensional objective space. For topologies with only 

zero topological code elements, there is no conflict between 

the objective functions for the number of supports n > 2. 

Geometry optimization which tends to equalize span 

lengths of such beams improves both the absolute 

maximum moment and the maximum deflection, and the 

Pareto front is also one point (the point G for the topology 

[0,0,0] in Fig. 4(b)). In the case of all other topologies with 

at least one non-zero topological code element, it does not 

exist a single solution which simultaneously optimizes both 

objectives, and there is always a set of Pareto-optimal 

solutions. Topologies with two or more the same 

neighboring topological code elements 2 or 1 (for example 

with topologies [2,2…], […2,2,2…], […2,2,1,1…],  

370



 

Multi-objective topology and geometry optimization of statically determinate beams 

 

 

 

[…1,1…]) have not only continuous Pareto fronts but also 

single weakly Pareto-optimal solutions (the points A3 and 

C3 in Fig. 4(b)). Geometries of the weakly Pareto-optimal 

solutions, represented by the points A3 and C3, are shown in 

Fig. 5. 

Lower bounds of Pareto-optimal sets can be obtained by 

minimizing the absolute maximum moment and the 

maximum deflection individually. Points representing 

results of the single-objective optimization procedures lie at 

the extreme ends of the Pareto-optimal fronts in the 

objective space. The points for three-support topologies are 

denoted as A1, A2, … G in Fig. 4(b). Beams corresponding 

to these points are shown in Fig. 5. Values of moments, 

slopes and deflections of the beams are drawn on all 

subfigures proportionally. The beams which contain a pair 

2,2 or 1,1 in their topological codes and are optimal for the 

absolute maximum moment have two different values of the 

maximum deflection for the hinge in different zero moment 

points. The maximum deflections of the beams are 

significantly smaller for the shorter internal cantilever than 

for the longer one. The shorter internal cantilever is created 

by placing the hinge in zero moment point near the support 

corresponding to this hinge (beams A2 and C2 in Fig. 5) 

while the longer internal cantilever – in zero moment point 

away from the corresponding support (beams A3 and C3 in 

Fig. 5). 

 

 
 

4.4 Results of Pareto topology optimization 
 

Results of multi-criteria topology optimization in Pareto 

sense for the absolute maximum moment and the maximum 

deflection are shown in Figs. 4 and 6. Fig. 4 shows us that 

both objective functions are consistent in terms of optimal 

topologies. Topologies with the maximum number of 

external cantilevers cE = 2 and internal cantilevers cH = n-2 

are optimal for both the absolute maximum moment and the 

maximum deflection for any number of supports. However, 

topology optimization of beams should not only rely on 

finding the best solution among all possible topologies. 

Design conditions can limit the topological search space to 

a certain set of topologies. For example, it may be necessary 

to place supports at the ends of a beam or to place both ends 

of neighboring bars on a support. Therefore, it is advisable 

to compare Pareto fronts of all topologies in the space of 

both criteria. 

Different topologies with the same numbers of external 

and internal cantilevers (with the same optimal value of 

absolute maximum moment) have the same or very much 

the same Pareto frontiers if all the topologies have at least 

one pair of neighboring elements 2,1 or have no pair 2,1 in 

their topological codes. Pareto fronts of topologies with the 

same numbers of external and internal cantilevers, but 

topologically different in terms of the presence of the pair 

   
(a) Topology [2,1] (b) Topologies [2,0], [0,1] (c) Topology [0,0] 

Fig. 3 Feasible objective regions F for all two-support beam topologies 

  
(a) Two-support beam topologies (b) Three-support beam topologies 

Fig. 4 Pareto frontiers P(F) 
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2,1, have Pareto fronts which are partially overlapping in 

the parts corresponding to smaller values of the maximum 

deflections and markedly different in parts with smaller 

values of the maximum moments (see Pareto fronts of the 

topologies [2,1,0], [0,2,1], [2,2,0] and [0,1,1] in Fig. 4(b) 

and the topologies [0,2,1,0] and [0,1,2,0] in Fig. 6). Values 

of the maximum deflection are larger for beams with the 

part 2,1 in their topological codes. 

For a number of supports n ≤ 3, Pareto fronts of all 

topologies with the same number of supports, but with a 

different number of external or internal cantilevers, do not 

have common points, and there is no conflict between the 

objective functions in these cases. A topology that is better 

in terms of the absolute maximum moment is also always 

better in terms of the maximum deflection. The Pareto front 

of a worse topology is dominated by the Pareto front of a 

better topology. For a number of supports n > 3, the Pareto 

fronts of topologies with the same number of supports and 

with a little difference in the number of cantilevers can 

intersect (see Pareto fronts of the topologies [2,0,0,0] 

[0,0,0,1] and [0,2,1,0] in Fig. 6). If the intersection of Pareto 

fronts occurs for two topologies, none of these topologies is 

better. Some Pareto points of one topology are dominated 

by some Pareto points of the other topology and vice versa. 
 
 

5. Lexicographic multi-objective beam optimization 
 

The simultaneous multi-objective optimization approach 

produces all possible Pareto-optimal solutions and then 

leaves the user to choose from them by expressing 

preferences among the conflicting objectives. However, the 

set of Pareto-optimal solutions is usually too large, so that 

one needs certain additional rules to reduce it. Therefore, 

there are developed methodologies for finding preferred 

solutions from the Pareto set, instead of the complete set. 

One of the possible approaches is to utilize the 

lexicographic order of objectives. 

Under a hierarchical lexicographic approach, both 

criteria must be ranked in order of importance. Beams 

deflect and stress when a transverse load is applied to them, 

and main longitudinal normal stresses are caused by the 

bending moment. Exceeding the permissible stresses causes 

the failure of the beam while exceeding the allowable 

deflection rather results in aesthetic and functional 

problems. Thus, there is a natural ranking among the 

objectives, and the bi-criteria optimization of statically 

determinate beams can be considered as lexicographic with 

the absolute maximum bending moment ranked as a more 

important criterion than the maximum deflection. 
 

5.1 Problem formulation of lexicographic geometry 
optimization for a fixed topology 

 

The optimization problem is to minimize the function 

f(g) over the space G of all feasible beam geometries for a 

fixed topology t with the preference in the order in which 

the objective functions are optimized. The optimization 

problem can be formulated as follows 
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(11) 

where components zi and yj of the decision (variable) 

vectors of beam geometry g belong to a nonempty feasible 

region G  R
𝑛−1+𝑐𝐸+𝑐𝐻 , objective vectors f(g) belong to a 

feasible objective region F  R2, M(g, x) and d(g, x) are the 

bending moment and the deflection of the beam at the point 

of a coordinate x.  

A beam geometry gLO∈G is a Lexicographic optimum 

(lex-optimum) if 

)()(: gfgfg LOG
 

(12) 

 

Fig. 5 Beams corresponding to extreme ends of Pareto 

fronts 

 

Fig. 6 Pareto frontiers for a few four-support beam 

topologies 

372



 

Multi-objective topology and geometry optimization of statically determinate beams 

where   is the lexicographic ordering indicating that 

f(gLO) = f(g) or the first nonzero component of f(gLO) − f(g) 

is negative (Ben-Tal 1979). The geometry gLO 

lexicographically minimizes the vector function f(g) if gLO 

minimizes f1 and gLO minimizes f2 under the constraining 

condition that f1(g)= f1 (gLO). 

Lexicographic beam optimization is carried out in two 

steps. The absolute maximum moment is minimized first. If 

the problem has a unique solution, it is the solution gLO of 

the whole bi-objective optimization problem. Otherwise, 

gLO is a solution of minimization task for the maximum 

deflection, subject to achieving the minimum with respect 

to the absolute maximum moment. The value of the 

absolute maximum moment M of the geometry gLO is 

optimal both in scalar optimization for the absolute 

maximum moment and in lexicographic bi-objective 

optimization expressed by equations (10)-(11). The value of 

the maximum deflection d of the geometry gLO is only 

optimal in lexicographic bi-objective optimization. 

Therefore, M is described as the optimal value while d as 

the lexicographically optimal or lex-optimal value, both 

corresponding to the geometry gLO. 
 

5.2 Results of single-objective geometry 
optimization for absolute maximum moment for a fixed 
topology 

 

The first stage of lexicographic bi-objective geometry 

optimization expressed by equations (10) and (11) is single-

objective geometry optimization for the absolute maximum 

bending moment. The results of the optimization problem 

under a uniform load are given in Kozikowska (2011). The 

exact formulas for the locations of supports and hinges of 

beams optimal for the absolute maximum moment are 

found for all topologies. Lengths of beam segments with the 

optimal moment diagram at the bottom 𝑙
𝑛,𝑐𝐸,𝑐𝐻 , lengths of 

external cantilevers 𝑙𝐸
𝑛,𝑐𝐸,𝑐𝐻 , lengths of shorter internal 

cantilevers 𝑙𝐸
𝑛,𝑐𝐸,𝑐𝐻  and lengths of longer internal 

cantilevers 𝑙𝐻
𝑛,𝑐𝐸,𝑐𝐻 + 𝑙

𝑛,𝑐𝐸,𝑐𝐻  can be expressed for a beam 

optimal for the absolute maximum moment with a fixed 

topology using the following formulas 

( )
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where 𝐷𝑛,𝑐𝐸,𝑐𝐻 = 𝑛 +
√2

2
𝑐𝐸 + (√2 − 1)𝑐𝐻 − 1 , L is the 

length of the beam, the numbers of external cantilevers cE 

and internal cantilevers cH depend on the beam topology 

(Kozikowska, 2011). The value of the absolute maximum 

bending moment 𝑀
𝑛,𝑐𝐸,𝑐𝐻 of a beam optimal for the 

absolute maximum moment can be calculated from the 

formula 

( )
8

2,,
,,

HE

HE

ccn
ccn lq

M =
 

(14) 

The optimal moment diagram has the same extreme 

moment values equal to 𝑀
𝑛,𝑐𝐸,𝑐𝐻  at supports which were 

moved away from the ends of bars and in spans. The 

moment diagram of a beam with at least one pair of 

neighboring topological code elements 2,2 or 1,1 

corresponds to many optimal geometries with the same 

locations of supports and different locations of hinges. Each 

pair 2,2 or 1,1 in a beam topological code corresponds to a 

span with one hinge and two zero moment points inside. 

Each such a span allows two alternative locations of the 

hinge in zero moment points. The total number of different 

optimal geometries gH for a fixed topology equals the 

number of different locations of such single hinges in nH 

spans 

Hn
Hg 2=

 
(15) 

where nH is the number of pairs 2,2 or 1,1 in the topological 

code t where 2,2 indicates one pair, 2,2,2 – two pairs and so 

on. A single hinge which is placed in zero moment point 

near the support associated with this hinge creates shorter 

internal cantilever of the length 𝑙𝐻
𝑛,𝑐𝐸,𝑐𝐻  while placed in 

zero moment point distant from the associated support 

creates longer internal cantilever of the length 𝑙𝐻
𝑛,𝑐𝐸,𝑐𝐻 +

𝑙
𝑛,𝑐𝐸,𝑐𝐻  (see Figs. 5 and 7). 

 

5.3 Results of geometry optimization for maximum 
deflection in the set of beams optimal for absolute 
maximum moment for a fixed topology 

 

The second stage of the lexicographic bi-objective 

geometry optimization, expressed by equations (10) and 

(11), is to find geometries with the smallest maximum 

deflection from all the geometries optimal for the absolute 

maximum moment. Beams without single hinges in spans 

with two zero moment points (without any pair 2,2 or 1,1 in 

topological codes) are unique solutions of the single-

objective optimization for the absolute maximum moment. 

They are also lex-optimal solutions of the bi-objective 

optimization for the absolute maximum moment and the 

maximum deflection, and the second stage of the 

lexicographic bi-objective optimization is then not needed. 

Otherwise, the single-objective optimization for the 

absolute maximum moment does not have a unique 

solution, and the second stage is accomplished by the 

exhaustive search of all different geometries gH with the 

same optimal moment diagram and different locations of 

single hinges in spans with two zero values of this moment 

diagram. The results of this exhaustive search are shown for 

the topologies [2,2,1,1] and [0,1,1,1,0] in Fig. 7. Values of 

moments, slopes and deflections are drawn on both 

subfigures proportionally. The smallest maximum 

deflection, marked as d(gLO), have beam geometries with all 

shorter internal cantilevers of the length 𝑙𝐻
𝑛,𝑐𝐸,𝑐𝐻 , expressed 

by equation (13). These beam geometries are also Pareto 

optimal. Beam geometries with at least one longer internal 

cantilever of the length 𝑙𝐻
𝑛,𝑐𝐸,𝑐𝐻 + 𝑙

𝑛,𝑐𝐸,𝑐𝐻  have much 

higher values of the maximum deflection, marked as 

d(gWPO). These beam geometries are not lex-optimal; they 

are only weakly Pareto optimal. 

Exact locations and values of the maximum deflection 
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of all lexicographically optimal beams are found in zero 

slope points. The maximum deflection of a beam with any 

number of supports and any topology corresponds to one of 

three types. The types depend on the beam topology and are 

marked with subscripts 00, 21, and 20/01. A statically 

determinate multi-span beam consists of primary and 

secondary beams, and at least one primary beam is required. 

The maximum deflection d00 occurs when all primary 

beams are simply supported, the maximum deflection d21 – 

when at least one primary beam has both ends extending 

beyond supports, and the maximum deflection d20/01 – when 

at least one primary beam has an overhang on one side and 

no primary beam has overhangs on both sides. The 

maximum deflections can be expressed as the product of 

one of three constant coefficients, designated 𝑤00
𝐷 , 𝑤21

𝐷 , 

𝑤21/01
𝐷 , and the expression q(𝑙

𝑛,𝑐𝐸,𝑐𝐻)4 / EI. Similarly, the 

horizontal distance from the point of the maximum 

deflection to the nearest support is the product of one of 

three constant coefficients, designated as 𝑤00
𝐿 , 𝑤21

𝐿 , 

𝑤20/01
𝐿 , and the length 𝑙

𝑛,𝑐𝐸,𝑐𝐻 . 

If the topological code of a beam consists of only zero 

 

 
 

elements (the beam does not have any cantilevers) then the 

maximum deflection of the beam of any number of supports 

can be calculated as for the simply supported beam with the 

topology [0,0] (see Fig. 8). Values of moment, slope and 

deflection have been scaled so that all maximum values are 

the same in Figs. 6-8. The maximum deflection is in the 

middle of each segment of the length 𝑙
𝑛,𝑐𝐸,𝑐𝐻  and the 

horizontal distance from the point of the maximum 

deflection to the nearest support can be expressed by the 

equation 

0,0,
00

0,0,
00

nLn
A lwl =

 
(16) 

where the constant coefficient 𝑤00
𝐿 = 1/2 and ln,0,0= L/(n−1) 

in accordance with equation (13) for cE = 0 and cH = 0. The 

value of the maximum deflection is given by 

( )
EI

lq
wd

n
Dn

40,0,

00
0,0,

00 =
 

(17) 

where 𝑤00
𝐷 = 5/348, q is an intensity of evenly distributed 

load and EI is a constant flexural rigidity of the  

 

 

(a) Topology [2,2,1,1] (b) Topology [0,1,1,1,0] 

Fig. 7 All geometries optimal for absolute maximum moment 

  
(a) Topology [0,0], cE = 0, cH = 0 (b) Topology [0,0,0,0], cE = 0, cH = 0 

Fig. 8 Lexicographically optimal beam geometries with maximum deflection d00 
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beam. Values of moment, slope and deflection have been 

scaled so that all maximum values are the same in Figs. 8-

10. 

If there is at least one pair of neighboring elements 2 

and 1 in the topological code of a beam (where 2 appears 

before 1 and not vice versa) then the maximum deflection 

of the beam with the lexicographically optimal geometry 

occurs in the center of each two-support beam with the 

topology [2,1] overhanging supports (see Fig. 9). The 

horizontal distance from the point of the maximum 

deflection to the nearest support is 

HEHE ccnLccn
A lwl

,,
21

,,
21 =

 
(18) 

where the constant coefficient 𝑤21
𝐿 =√2/2. The maximum  

 

 

 

deflection can be expressed as follows 

( )
EI

lq
wd

HE

HE

ccn
Dccn

4,,

21
,,

21 =
 

(19) 

where 𝑤21
𝐷 = 1/48. 

If there is at least one non-zero element and no pair 2,1 

in the topological code of a beam (there is at least one 

primary beam overhanging one support and there is no 

primary beam overhanging both supports) then the 

maximum deflection of the beam with the lex-optimal 

geometry is near the center of each two-support beam with 

the topology [2,0] or [0,1] (see Fig. 10). The horizontal 

distance from the point of the maximum deflection to the 

nearest support (right support for the topology [2,0] and left 

support for the topology [0,1]) is equal to 

  

(a) Topology [2,1], cE = 2, cH = 0 (b) Topology [2,1,1,1], cE = 2, cH = 2 

  
(c) Topology [2,0,2,1,0], cE = 1, cH = 2 (d) Topology [0,2,1,2,2,1], cE = 1, cH = 4 

Fig. 9 Lexicographically optimal beam geometries with maximum deflection d21 

  
(a) Topology [2,0], cE = 1, cH = 0 (b) Topology [0,1],  cE = 1, cH = 0 

  
(c) Topology [2,2,2,0],  cE = 1, cH = 2 (d) Topology [2,0,1,1,0],  cE = 1, cH = 2 

 

(e) Topology [0,1,1,1,2,0],  cE = 1, cH = 4 

Fig. 10 Lexicographically optimal beam geometries with maximum deflection d20/01 
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where the constant coefficient 
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is the trigonometric root of cubic slope function. The 

maximum deflection in this zero slope point is equal to 

( )
EI
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Where 

( ) ( )
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5.4 Equivalence relation of beam topologies with 
lex-optimal geometries 

 

Tn is the set of n-support beam topologies. Any two 

different topologies ti and tj of the set Tn are equivalent with 

respect to the relation RMd if optimal values of the absolute 

maximum moments Mi and Mj, and lex-optimal values of 

the maximum deflections di and dj of these topologies are 

equal. It has been shown in Kozikowska (2011) that Mi and 

Mj are equal if the numbers of external cantilevers cE and 

internal cantilevers cH of these topologies are the same. 

Thus, the equivalence relation RMd can be expressed as 

, , , , , , , ,
if

Md

E H E H E H E H

i jR

n c c n c c n c c n c c

i j i jM M d d



=  =

t t
 (22) 

where 𝑀𝑖

𝑛,𝑐𝐸,𝑐𝐻
, 𝑀𝑗

𝑛,𝑐𝐸,𝑐𝐻
, 𝑑𝑖

𝑛,𝑐𝐸,𝑐𝐻
, 𝑑𝑗

𝑛,𝑐𝐸,𝑐𝐻
are optimal 

values of the absolute maximum moment and lex-optimal 

values of the maximum deflection for the topology ti and tj 

with cE external cantilevers and cH internal cantilevers. The 

equivalent condition (22) can be expressed on the basis of 

the properties of two different n-support beam topologies ti 

and tj as 
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, , , ,

, ,

, , ,
21

, , , ,

there is at least one pair there is no pair 2,1

2,1 in both topologies  in both topologies

if

E H E H

E H E H E H E

Md

n c c n c c
i j

n c c n c c n c c n c
i j i j

i j E i E j H i H jR

M M

d d d d d

c c c c

=

= = =

 =  =

 
  

 

t t

,
20/01

Hc
d=

 (23) 

Based on the relation RMd, the set Tn can be divided into 

disjoint equivalence classes of beam topologies called 

topological classes 𝐓𝑖
𝑛𝑀𝑑 . 

5.5 Results of lexicographic topology optimization: 

topological classes 𝐓𝑖
𝑛𝑀𝑑  

 

The sequence {𝐓𝑖
𝑛𝑀𝑑} is the set of n-support topological 

classes 𝐓𝑖
𝑛𝑀𝑑  which are sorted according to the 

lexicographical order of the values 𝑀𝑖
𝑛𝑀𝑑 and 𝑑𝑖

𝑛𝑀𝑑. The 

class 𝐓𝑖
𝑛𝑀𝑑  precedes the class 𝐓𝑗

𝑛𝑀𝑑  in the sequence 

{𝐓𝑖
𝑛𝑀𝑑} if 

( ) ( )nMd
j

nMd
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nMd
j
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j

nMd
i ddMMMM =

 
(24) 

where 𝑀𝑖
𝑛𝑀𝑑, 𝑑𝑖

𝑛𝑀𝑑, 𝑀𝑗
𝑛𝑀𝑑 and 𝑑𝑗

𝑛𝑀𝑑 are optimal values 

of the absolute maximum moment and lex-optimal values of 

the maximum deflection in the topological class 𝐓𝑖
𝑛𝑀𝑑  

and 𝐓𝑗
𝑛𝑀𝑑, respectively. 

Beam topologies from a topological class 𝐓𝑖
𝑛  

(Kozikowska 2011) can have the same value or two 

different values of the maximum deflection. The class 𝐓𝑖
𝑛 

with equal values of the maximum deflection for all 

topologies remains unchanged as a class 𝐓𝑖
𝑛𝑀𝑑 . Such a 

class can have values of the maximum deflection d21, d20/01, 

or d00. The class 𝐓𝑖
𝑛  with two different values of the 

maximum deflection is divided into two distinct classes: 

𝐓𝑗
𝑛𝑀𝑑with the smaller value d20/01 and 𝐓𝑗+1

𝑛𝑀𝑑  with the larger 

value d21. 

The first topological class 𝐓1
𝑛𝑀𝑑  with maximum 

possible number of cantilevers cE  = 2 and cH  =  n – 2 has 

at least one pair 2,1 in all topological codes of beams for 

any number of supports. Values of the maximum deflection 

are the same for all beams and can be calculated from the 

formula (19). The first two-support class 𝐓1
2𝑀𝑑  is 

presented in Fig. 9a, the first three-support class 𝐓1
3𝑀𝑑 – in 

Fig. 14(a), and the first five-support class 𝐓1
5𝑀𝑑 – in Fig. 

11. Moment diagrams, slope diagrams, and deflection 

curves are plotted in Figs 11-13 maintaining proportions. 

If all beams in a topological class 𝐓𝑖
𝑛 do not have any 

pair 2,1 and have at least one non-zero element in their 

topological codes (at least one primary beam has one 

overhang and no primary beam has two overhangs) then the 

class 𝐓𝑖
𝑛  is equal to a topological class 𝐓𝑗

𝑛𝑀𝑑  with 

maximum deflections d20/01 expressed by equation (21). 

There are three such classes 𝐓𝑗
𝑛𝑀𝑑  for a fixed n > 2, 

corresponding to different values of the parameters cE and 

cH: the class 𝐓4𝑛−10
𝑛𝑀𝑑  for n ∈ <3,4> and 𝐓6𝑛−20

𝑛𝑀𝑑  for n ≥ 5  

with cE  = 2  and cH = 0 (for example the class 𝐓2
3𝑀𝑑 in 

Fig. 14(b)), the class 𝐓6𝑛−13
𝑛𝑀𝑑  with cE  = 1 and cH  = 0 (for 

example the class 𝐓5
3𝑀𝑑 in Fig. 14(e)) and the penultimate 

class 𝐓6𝑛−12
𝑛𝑀𝑑  with cE  = 0  and cH  = 1 (for example the 

class 𝐓6
3𝑀𝑑 in Fig. 14(f)). 

There is only one topology without any cantilevers (cE  

= 0  and cH  = 0) in the last n-support topological class 

with the maximum deflection d00 expressed by equation 

(17). Such a class is the same as the last class 𝐓3(𝑛−1)
𝑛 . The 

class 𝐓3
2𝑀𝑑 is given in Fig. 8(a), 𝐓7

3𝑀𝑑 – in Fig. 14(g), 

and 𝐓13
4𝑀𝑑 – in Fig. 8(b). 

All four beam topologies in the topological class 𝐓11
5𝑀𝑑 

from Fig. 12, with cE  = 0 and cH  = 3 do not include a pair 

2,1 and have the maximum deflection d20/01, expressed 
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by equation (21). Topologies in the class 𝐓12
5𝑀𝑑 , presented in 

Fig. 13, have the same number of supports and cantilevers 

as the topologies from Fig.12. However, they form a 

separate class because their topological codes include a pair 

2,1, and their maximum deflection d21 is expressed by 

equation (19). The maximum deflection d20/01 is smaller 

than the maximum deflection d21 for beams with the same 

number of supports and cantilevers (the same 

length 𝑙
𝑛,𝑐𝐸,𝑐𝐻). The class 𝐓11

5𝑀𝑑 precedes the class 𝐓12
5𝑀𝑑 

because classes with equal values of the absolute maximum 

moment are ordered by increasing values of the maximum 

deflection. The class 𝐓7
5 is the sum of the classes 𝐓11

5𝑀𝑑 

(Fig. 12) and 𝐓12
5𝑀𝑑 (Fig. 13). 

The whole set of three-support topological classes 

𝐓3
𝑛𝑀𝑑  under a uniform load with all optimal moment 

diagrams and lex-optimal deflection curves is presented in 

Fig. 14. Values of moments and deflections are drawn 

proportionally in all subfigures. The total number of classes 

𝐓𝑖
𝑛 equivalent in terms of the optimal moment only is equal 

to 3(n-1) according to equation (5.9) in Kozikowska (2011). 

The number of the classes 𝐓𝑖
𝑛 with only one formula for 

the maximum deflection is equal to 5 for n ≥ 3 (the first 

class with the deflection d21, the last class with the 

deflection d00, and three classes with the deflection d20/01). 

Each of the other 3(n−1) −5 = 3n−8 classes 𝐓𝑖
𝑛 is divided 

into two classes 𝐓𝑖
𝑛𝑀𝑑  equivalent in terms of the optimal 

moment and the lex-optimal deflection: of smaller 

deflection d20/01 and of larger deflection d21. The total 

number of n-support topological classes 𝐓𝑖
𝑛𝑀𝑑  is equal to 





−=−+

=
=
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(a) 𝐓1

3𝑀𝑑, cE = 2, cH = 1 

 
(b) 𝐓2

3𝑀𝑑, cE = 2, cH = 0 

 
(c) 𝐓3

3𝑀𝑑, cE = 1, cH = 1 

 
(d) 𝐓4

3𝑀𝑑, cE = 1, cH = 1 

 
(e) 𝐓5

3𝑀𝑑, cE = 1, cH = 0 

 
(f) 𝐓6

3𝑀𝑑, cE = 0, cH = 1 

 
(g) 𝐓7

3𝑀𝑑, cE = 0, cH = 0 

Fig. 14 All three-support classes 

  
(a) Topology [2,2,2,2,1] and symmetrical (b) Topology [2,2,2,1,1] and symmetrical 

  
(c) Topology [2,1,2,2,1] and symmetrical (d) Topology [2,1,2,1,1] and symmetrical 

Fig. 11 The class 𝐓1
5𝑀𝑑 with maximum deflection d21 

  
(a) Topology [0,2,2,2,0] and symmetrical (b) Topology [0,1,1,2,0] and symmetrical 

Fig. 12 The class 𝐓11
5𝑀𝑑 with maximum deflection d20/01 

  
(a) Topology [0,1,2,1,0] and symmetrical (b) Topology [0,2,1,1,0] and symmetrical 

Fig. 13 The class 𝐓12
5𝑀𝑑 with maximum deflection d21 
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The division of beam topologies into classes 𝐓𝑖
𝑛𝑀𝑑  is 

very useful in the design of statically determinate beams 

with a constant cross-section, made of the same material. 

Proper selection of topologies allows us to obtain the 

maximum deflection over 20% lower for beams with the 

same optimal absolute maximum moment (𝑑20/01
𝑛,𝑐𝐸,𝑐𝐻/𝑑21

𝑛,𝑐𝐸,𝑐𝐻  

≈ 0.788). 

The plot in Fig. 15 shows values of the absolute 

maximum moment and the maximum deflection in all 

classes 𝐓𝑖
𝑛𝑀𝑑 with lexicographically optimal geometries, 

under a uniform load, for a number of supports n ∈ 

<2,5>. The values of the absolute maximum moment and 

the maximum deflection of the last class are assumed to be 

all equal to 100% in each subfigure with a different number 

of supports. Optimal values of the absolute maximum 

moment in consecutive classes 𝐓𝑖
𝑛𝑀𝑑  for a fixed n form a 

non-decreasing sequence {𝑀𝑖
𝑛𝑀𝑑 } (strictly increasing or 

constant). For this sequence the following relationships hold 

nMd
i

nMd
i

nMd
i

nMd
i MMMMni 21126,1 ++ −

 
(26) 

where 𝑀𝑖
𝑛𝑀𝑑  is the minimal value of the absolute 

maximum moment in topological class 𝐓𝑖
𝑛𝑀𝑑 . 

 
 

Lexicographically optimal values of the maximum 

deflection in consecutive classes 𝐓𝑖
𝑛𝑀𝑑  for a fixed n form a 

non-monotonic sequence {𝑑𝑖
𝑛𝑀𝑑}. For this sequence the 

following relationships hold 

( )

( ) ( )1 1 2

1,6 12 6 21for 4

nMd nMd nMd nMd nMd nMd

i i i i i i

i n i n n

d d d d d d+ + +

  −   − 

    
 (27) 

where 𝑑𝑖
𝑛𝑀𝑑  is the lex-optimal value of the maximum 

deflection in a topological class  𝐓𝑖
𝑛𝑀𝑑 . The lex-optimal 

value of the maximum deflection 𝑑6𝑛−21
𝑛𝑀𝑑 = 𝑑21

𝑛,1,2
  in the 

class 𝐓6𝑛
𝑛𝑀𝑑  with cE = 1 and cH = 2, for n >4, meets the 

conditions 

6 21 6 20 6 21

6 19 6 21 6 18

nMd nMd nMd

n n n

nMd nMd nMd

n n n

d d d

d d d

− − −

− − −

 

  
 (28) 

Let us consider the sequence {𝑟𝑛
𝑑}∞

𝑛=2
 whose 

members are ratios of lexicographically optimal values of 

the maximum deflection, 𝑑6𝑛−11
𝑛𝑀𝑑  for n ≥ 3 (𝑑3

𝑛𝑀𝑑for n = 2) 

and 𝑑1
𝑛𝑀𝑑of the extreme classes 𝐓6𝑛−11

𝑛𝑀𝑑  for n ≥ 3 (𝐓3
𝑛𝑀𝑑  

for n = 2) and 𝐓1
𝑛𝑀𝑑 , respectively 

  

(a) 2 supports (b) 3 supports 

 

(c) 4 supports 

 

(d) 5 supports 

Fig. 15 Values of the objectives in topological classes 𝐓𝑖
𝑛𝑀𝑑  for different numbers of supports 
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(29) 

The sequence {𝑟𝑛
𝑑} starts with the value 

5(1+√2)
4

8
≈ 21.23 

for n = 2, then it decreases monotonically and converges to 

the limit 5/2. This means that the values of the maximum 

deflection of extreme classes become closer to each other 

with a growing number of supports, but the deflection of the 

worst class 𝐓6𝑛−11
𝑛𝑀𝑑  is at least two and a half times greater 

than the maximum deflection of the best class  𝐓1
𝑛𝑀𝑑 . 

Properties of the sequence {𝑟𝑛
𝑀}∞

𝑛=2
, whose members are 

ratios of optimal values of the absolute maximum moments 

of the extreme classes, are discussed in Kozikowska (2011). 

 

 

6. Conclusions 
 

The paper has dealt with the bi-objective optimization of 

statically determinate beams of any number of supports and 

any topology. The absolute maximum bending moment and 

the maximum deflection have been chosen as optimization 

criteria, and topological and geometrical parameters have 

been used as design variables. Pareto and lexicographic 

optimization variants have been considered and studied. 

The feasible objective regions have been presented in 

the objective space. The non-dominated sorting genetic 

algorithm coupled with the local search technique has been 

used to obtain Pareto-optimal solutions of the optimization 

problem. Conflicts between both criteria have been 

detected, and representative Pareto-optimal fronts and 

solutions have been examined for many topologies. 

The use of lexicographic approach is particularly 

justified in the bi-objective optimization of statically 

determinate beams because we rather do not have 

difficulties in putting the objective functions into an 

absolute order of importance. Furthermore, the single-

objective optimization for the absolute maximum moment 

has led to alternative optima of different values of the 

maximum deflection for beams with pairs of 1,1 or 2,2 in 

their topological codes. As a result of the lexicographic 

optimization, beams optimal for the maximum deflection 

have been found among these alternatives, and their 

geometric characteristics have been determined. An 

important contribution of the paper has been to find the 

exact analytical expressions for the locations and values of 

the maximum deflection for all lexicographically optimal 

beams of any topology and any number of supports. 

Beam topologies with lexicographically optimal 

geometries have been split up into topological classes with 

the same values of both objectives. The characteristic 

features of these classes have been presented. It has been 

detected that beams with different topologies but with the 

same number of cantilevers and the same optimal value of 

the absolute maximum moment can differ in values of the 

maximum deflection. The maximum deflection of lex-

optimal beams with at least one pair 2,1 in their topological 

codes is almost 27% larger than the deflection of beams 

without this pair. 

Locations of beam supports in real structures are usually 

determined based on architectural aesthetic requirements 

and structural design limitations. A lot of support layouts of 

optimal statically determinate beams are symmetrical, 

regular, and meet aesthetic standards. The beams have 

minimum values of the absolute maximum moment and 

also handle structural constraints. The right selection of 

topologies can significantly reduce the maximum deflection 

of the beams. The existence of many optimal beams 

provides huge design opportunities because it offers a 

variety of satisfactory solutions. Therefore, the results of the 

paper can be used in many practical design tasks. 
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Notations 
 

cE, cH number of external and internal cantilevers 

d(…,x) deflection at the point of coordinate x 

EI constant flexural rigidity of beam 

f 
bi-objective optimization function with 

components f1, f2 

F feasible objective region in objective space 

g beam geometry described by parameters zi, yi 

gPO, gWPO 
Pareto-optimal and weakly Pareto-optimal beam 

geometry 

gH 
number of different geometries optimal for 

absolute maximum moment 

G feasible region in decision space 

l 
length of beam segment with optimal moment 

diagram at the bottom 

lE, lH, L 
length of external and internal cantilever of 

optimal beam and length of beam 

M(…, x) bending moment at the point of coordinate x 

M, Mi 
optimal value of absolute maximum moment (for 

topology ti) 

n number of supports 

nH number of pairs 2,2 or 1,1 in beam topology 

p number of topological classes 

P Pareto front 

q intensity of uniformly distributed load 

SCS size of checked set 

SPS size of actual Pareto set 

t, ti beam topology (topological code of beam) 

ti topological code of support i, i = 1, 2, …, n 

Tn set of all topologies with n supports 

𝐓𝑖
𝑛             

class of beam topologies with geometries optimal 

for absolute maximum moment 

x axial coordinate 

yi dimensionless length of cantilever, i = 1, 2, …, n 

zi dimensionless length of span, i = 1, 2, …, n–1 

(. )𝑛,𝑐𝐸,𝑐𝐻  
quantity for n-support optimal beam with cE  

external and cH internal cantilevers 
 
 

For lex-optimal beam geometries 
 

d lex-optimal value of maximum deflection 

𝑑𝑖 , 𝑑𝑖
𝑛𝑀𝑑    lex-optimal value of maximum deflection (for 

topology ti and class 𝐓𝑖
𝑛𝑀𝑑) 

gLO lex-optimal beam geometry 

lA 
horizontal distance from point of maximum 

deflection to the nearest support 

𝑀𝑖
𝑛𝑀𝑑        

optimal value of absolute maximum moment in 

class 𝐓𝑖
𝑛𝑀𝑑  

RMd 
equivalence relation of beam topologies with lex-

optimal geometries 

{𝑟𝑛
𝑑,𝑀}        

sequence of ratios of d or M in extreme classes 

𝐓𝑖
𝑛𝑀𝑑  

𝐓𝑖
𝑛𝑀𝑑         

class of beam topologies with lex-optimal 

geometries 

𝑤𝐷 , 𝑤𝐿    
coefficient for calculating value and position of 

maximum deflection 

(.)00 quantity for topology with only zero elements 

(.)20/01 
quantity for topology with at least one non-zero 

element and without any pair 2,1 

(.)21 quantity for topology with at least one pair 2,1 
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