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1. Introduction  
 

The behaviour of structures exposed to static and 

dynamic loads is well-characterised by their ductility. In 

general, ductility is a measure of nonlinear behaviour of the 

structure. It can be defined as a feature of the structure that 

can submit nonlinear deformations before failure. 

Significant nonlinearity occurring in ductile structures 

causes softening and slow pronounced failure Fig. 1.  

The failure of brittle structures is fast and explosive, in 

the absence of previous nonlinearities. It is preferred that all 

structures in practice are sufficiently ductile. Ductility 

enables the redistribution of internal forces in statically 

indeterminate structures and reduces induced seismic forces 

in the structure due to their softening and dissipation of 

accumulated internal energy.  

An exact mathematical definition and method for 

quantifying structure ductility has not yet to be fully agreed 

upon. Typically, it is defined through displacement (u), 

adsorbed energy (E) and curvature (φ), which correspond to 

displacement ductility, energy ductility and curvature 

ductility (Fig. 2). Also, terms deformation ductility and 

rotation ductility were used. The dimensionless ductility 

factor (coefficient) is commonly used as a measure of 

structure ductility. It is usually defined as the ratio of the 

abovementioned structure features at maximum load Fm that  
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Fig. 1 Brittle and ductile structures 

 

 

cause um, Em, φm, and features at load Fn that cause some 

nonlinearity un, En, φn. Therefore, these differently 

expressed ductility factors are interconnected. Namely, the 

accumulated energy is defined as the area under the load 

(F)-displacement (u) curve, and the curvature is also 

directly related to displacements.  

Precise calculation of the structure ductility is very 

complex because it depends on many parameters, such as 

type and rigidity of structure, material parameters, cross-

sectional parameters, reinforcement design, prestressing, 

and loading type. Many experimental and analytical studies 

have been carried out within recent decades regarding 

displacement ductility, energy ductility and curvature 

ductility of classically reinforced and prestressed concrete  
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(a) Over displacement-displacement ductility 

 
(b) Over absorbed energy-energy ductility 

 
(c) Over curvature-curvature ductility 

Fig. 2 Most common approaches to calculation of ductility 

 

 

members. Some of the literature that discusses these issues 

is presented below. 

Park and Paulay (1975) suggested that the curvature 

ductility index is the ratio of curvature at the ultimate stage 

to the curvature when the tension steel first yields. Park 

(1989) discussed definition for the required and available 

ductility used in seismic design of concrete structures. 

Abdelrahmen et al. (1995) presented displacement ductility 

index as a ratio of displacement at failure and the equivalent 

displacement of the uncracked section at a load equal to the 

ultimate load. Naaman and Jeong (1995) suggested a new 

expression of the energy ductility index. Hofstetter and 

Mang (1996) presented a paper summarising a survey of 

computational mechanics of reinforced and prestressed 

concrete structures. They noted important parameters and 

their complexity that affected the calculations and results. 

Spadea et al. (1997) presented the energy ductility factor as 

the ratio of total energy to the energy up to 75% of the 

ultimate load. Grace et al. (1998) used the ratio of inelastic 

energy to the total energy to quantify the energy ductility of 

FRP reinforced beams. Pisant and Regan (1998) examined 

the possible demands for ductility, allowing for 

redistribution of moments in linear reinforced concrete 

elements. The tests included series of beam tests and slab 

test with respective slenderness ratios; thus one important 

aspect of the size effect was investigated. Pam et. al. (2001) 

proposed analytical method that takes into account the 

stress-path dependence of the constitutive properties of the 

materials. Presented study deals with the post-peak 

behaviour and flexural ductility of doubly reinforced 

normal and high strength concrete beam sections. Dolan et. 

al. (2001) defined the curvature ductility of beams with 

FRP tendons as the ratio of the curvature at failure to the 

curvature at service load. Zou (2003) defined the 

displacement ductility factor of fibre reinforced polymer 

prestressed concrete beams as the ratio of deflection at 

failure to the deflection at first cracking, multiplied by the 

ratio of the ultimate load to the cracking load. Thomsen et. 

al. (2004) investigated uses of fibre reinforced polymer 

(FRP) in strengthening of RC beams and the effects of this 

strengthening technique on the response and failure modes 

of a reference RC beam. In the article they defined the 

energy ductility as the ratio between the energy of the 

system at failure and the energy of the system at first steel 

yield. Tan et al. (2005) defined the displacement ductility 

factor as the ratio of the displacement at 95% peak load and 

the displacement at 67% peak load. Yang et al. (2008) 

experimentally investigated the ductility of high strength 

concrete beams. In the article, the researchers defined 

ductility index as the ratio of ultimate displacement at beam 

failure and displacement at yielding of tensile 

reinforcement. For the computation of the ductility index 

they calculated the point of yield displacement from the 

equivalent elasticity-plasticity relationship of secant elastic 

stiffness at 75% of the maximum load-displacement curve 

and the ultimate displacement at the point of 80% of the 

maximum load after the maximum (peak) load. Also the 

effect of concrete compressive strength, web reinforcement 

ratio, tension ratio and shear span to beam depth ratio on 

ductility were investigated. Mari et al. (2011) investigated 

the response of fibre reinforced polymer (FRP) 

strengthened concrete structures in flexure using a nonlinear 

and time-dependent evolutive analysis model, previously 

developed by the authors. The model shows generally good 

agreement between the theoretical and the experimental 

results of all tested beams and enables prediction of 

adequate failure mode of structure. Arslan (2012) explored 

the effects of seismic code parameters for columns and 

beam sections on the ductility of the section and load 

bearing system on an RC frame. Curvature ductility in RC 

sections and displacement ductility values in the frame 

system were calculated according to the axial load level on 

the columns, the longitudinal reinforcement ratio, concrete 

compression strength and the transverse strength of 

parameters. These values are calculated by changing 
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parameters, such as the transverse reinforcement, 

compression bar ratio and the concrete compression 

strength for beams. Ghallab (2014) first summarised the 

known calculation methods of the ductility of structural 

members. An experimental study was performed to 

investigate the effect of several variables on the ductility of 

reinforced continuous concrete beams externally 

strengthened using Parafil rope. Test results showed that the 

ductility of the externally prestressed concrete beams was 

significantly reduced due to prestressing. Bouzid and 

Kassoul (2016) presented approach to evaluate the 

curvature ductility factor of high strength concrete beams 

according to Eurocode 2 (EN 1992-1-1 2004). They was 

conducted a parametric study on the factors influencing the 

curvature ductility of inflected sections. Proposed formula 

allows calculating the curvature ductility factor of high 

strength concrete beams directly according to the concrete 

strength, the yield strength of steel and the ratio of tension 

and compression reinforcements. Chen et al. (2017) 

proposed a strategy for flexural ductility design of RC 

beams taking into account confinement. This study deals 

with the confinement for desirable flexural ductility 

performance of both normal and high strength concrete 

beams.  

First, this paper presents one approach and proposes 

expressions for calculation of the ductility index of 

classically reinforced and prestressed concrete girders with 

internal pre-tensioned tendons (wires), subjected to static 

load. The proposed expressions are based on load–

displacement, load-strain and load-curvature relations. 

Then, results from previously tested large-scale concrete 

girders with different ratios of prestressed and classical 

reinforcement are briefly presented. According to the 

previously proposed expressions, displacement ductility 

index, strain ductility index (separately for concrete, 

classical and prestressed reinforcement) and curvature 

ductility index are calculated for all tested girders. The 

effect of degree of prestressing and type of tested girders on 

their ductility was discussed. The expression for calculation 

of the average ductility index for classically reinforced and 

prestressed concrete girders as analysed experimental 

girders is proposed. Main conclusions of research are 

presented at the end of the paper. 

 

 

2. Proposed approach for calculation of structure 
ductility 
 

2.1 Calculation of ductility over load-displacement 
relation 
 

The addopted approach for calculation of the structure 

ductility index of classically reinforced and prestressed 

concrete girders defined by load (F)-displacement (u) 

relationship is presented in Fig. 3. Displacement ductility 

index (cdu) is calculated according to following expression 

cdu = [(um − un) (um − uo)⁄ ] ⋅ [(Fm − Fn) Fm⁄ ] (1) 

where um is a displacement at ultimate bearing capacity of 

the girder, un is a displacement at specified nonlinearity in  

 

Fig. 3 Schematic presentation of load (F)-displacement (u) 

relation 

 

 

the girder, uo is an initial displacement due to prestressing, 

Fm is a maximum load and Fn is a load at beginning of a 

specified nonlinearity. Displacement at structure failure uf 

was not considered because the accuracy of the load-

displacement relation after reaching um was questionable. 

Namely, the path of the load-displacement curve depends 

on several parameters, such as loading rate, accuracy of 

testing equipment, and size of test sample. From eq. (1) it is 

clear that the value of the displacement ductility index is in 

following range 

0 ≤ cdu ≤ 1 (2) 

The ductility index cdu=0 corresponds to the ideal brittle 

structures. A ductility index of cdu=1 corresponds to the 

ideal ductile structures where the first nonlinearities 

occured in Fn=0. Not taking into consideration the 

displacement larger than um, smaller values for cdu were 

obtained. 

The first factor on the right side in Eq. (1) includes the 

effect of differences in displacement at maximum load and 

displacement at specified nonlinearity in the concrete 

girder. The second factor includes the effect of differences 

in maximum load and load that produces the specified 

nonlinearity in the concrete girder. Namely, it includes the 

effect of the remaining (reserve) load capacity after 

reaching Fn. According to Fig. 3, by comparing the load-

displacement relationship for two different concrete 

structures with equal values of uo, un, um, Fm and different 

values of Fn (Fn1,Fn2 where Fn1>Fn2), it can be concluded 

that a structure with Fn2 has a greater displacement ductility 

index than a structure with Fn1, i.e., (Fm-Fn2) > (Fm-Fn1). 

From Eq. (1) and Fig. 3 it is also clear that cdu→0 if (Fm-

Fn)→0. That correspondence to the elastic-ideal brittle and 

elastic-ideal plastic behavior of the concrete girder. 

The adopted value of Fn directly affects cdu. Generally, 

Fn  should correspond to appearances of certain 

nonlinearities in the structure. It is logical to take a load Fn 

that causes the appearance of the first nonlinearities in the 

concrete structure. The first nonlinearity is usually 

associated with the appearance of cracks in the concrete 

tensile zone after exceeding the limit tensile strain (stress) 

of concrete. Next, the structure stiffness suddenly falls and 

increases its displacements, as well as the strains (stresses)  

 uf

F

fa
il

u
re

Fn

u
lt

im
at

e 
b
ea

ri
n
g
 c

ap
ac

it
y

u

 un  um

Fm

 uo  u

 F

259



 

Jure Radnić, Radoslav Markić, Nikola Grgić and Dragan Ćubela 

 

 

Fig. 4 Schematic presentation of load (F)-strain (ɛ) relation 

 

 

Fig. 5 Schematic presentation of load (F)-curvature (φ) 

relation 

 

 

in the classical reinforcement, prestressed reinforcement 

and compression concrete. Therefore, it is logical to adopt 

un=ucr and Fn=Fcr, where ucr, Fcr are the displacement and 

loading at the appearance of concrete cracks. 

In concrete structures with a small cross-sectional 

compressive area of concrete, initial structure nonlinearities 

are related to the occurrence of concrete yielding in 

compression. In that case adopted un, Fn should correspond 

to such a state. 

In a prestressed concrete girder with high strains 

(stresses) in the tendons, initial nonlinear behaviour can 

occur due to yielding of prestressed reinforcement. Next, un, 

Fn should represent such a state. In a girder with small 

compressive flange width with higher lateral slenderness, 

less lateral stability and brittle behaviour may occur even 

for service loads. 

 

2.2 Calculation of ductility over load-strain relation 
 

Aanalogously to approach presented in section 2.1, the 

structure ductility index can be calculated on the basis of 

the load (F)-strain (ɛ) relationship (Fig. 4) by 

cdε = [(εm − εn) (εm − εo)⁄ ] ⋅ [(Fm − Fn) Fm⁄ ] (3) 

where cdɛ is the strain ductility index, ɛm is the strain of 

some material of girder that correspond to maximum load, 

ɛn is the strain at specified nonlinearity in that material, ɛo is  

 

Fig. 6 Cross-section curvature 

 

 
(a) Girders type A 

 
(b) Girders type B 

 
(c) Girders type C 

 
(d) Girders type D 

 
(e) Girders type E 

Fig. 7 Basic geometry of tested girders, Radnić et al. (2015) 

 

 

the initial strain due prestressing, Fm is the maximum load 

and Fn is the load that causes ɛn. Part of the F-ɛ relation  
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Table 1 Reinforcement data and initial prestressing force for 

tested girders 

Girder Ap As μp Po (kN) 

A1 12≠3/8" / 1.0 696 

A2 8≠3/8" 4Ø 12 0.73 464 

A3 4≠3/8" 6Ø 14 0.40 232 

A4 / 6Ø 18 0 / 

B1 14≠3/8" / 1.0 812 

B2 11≠3/8" 17Ø 6+1Ø 8 0.76 638 

B3 7≠3/8" 18Ø 8 0.54 406 

B4 4≠3/8" 18Ø 10 0.30 232 

B5 / 24Ø 10 0 / 

C1 10≠3/8" / 1.0 580 

C2 8≠3/8" 2Ø 14 0.80 464 

C3 5≠3/8" 3Ø 16 0.56 290 

C4 3≠3/8" 3Ø 20 0.33 174 

C5 / 1Ø 22+2Ø 25 0 / 

D1 12≠3/8" / 1.0 756 

D2 10≠3/8" 4Ø 8 0.88 630 

D3 6≠3/8" 4Ø 16 0.53 378 

D4 4≠3/8" 4Ø 18 0.37 252 

D5 / 4Ø 20+1Ø 22 0 / 

E1 6≠3/8" / 1.0 348 

E2 4≠3/8" 2Ø 12 0.73 232 

E3 2≠3/8" 3Ø 14 0.40 116 

E4 / 3Ø 18 0 / 

 

 

over ɛ>ɛm is not considered for the same reason as the load-

displacement relation (see section 2.1). It is also clear from 

Eq. (3) that 

0 ≤ cdε ≤ 1 (4) 

Strain ɛ can correspond to the strain of classical 

reinforcement (ɛs), concrete strain (ɛc) and strain of 

prestressing reinforcement (ɛp), i.e., 

ε = εs = εc = εp (5) 

Load Fn is defined as in section 2.1.  

 

2.3 Calculation of ductility over load-curvature relation 
 

The structure ductility index defined by load (F)-

curvature (φ) relation can be calculated according to Fig. 5, 

analogous to those in sections 2.1 and 2.2, by 

cdφ = [(φm − φn) (φm − φo)⁄ ] ⋅ [(Fm − Fn) Fm⁄ ] (6) 

where cdφ is the curvature ductility index, φm is the 

curvature at load Fm, and φn is the curvature at specified 

nonlinearity that is caused by load Fn. Loads Fm and Fn are 

the same as described in section 2.1 and 2.2. The following 

also applies 

0 ≤ cdφ ≤ 1 (7) 

 
(a) Concrete 

 
(b) Classical reinforcement B 

 
(c) Prestressed reinforcement 

Fig. 8 Established stress-strain relation 

 
 

Curvature is defined over cross-section curvature, as 

φ = (εs
b + εc

u) d⁄  (8) 

where εs
b is the strain of lower classical reinforcement in the 

bottom flange, εc
u is the concrete strain of upper edge of the  
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concrete girder and d is distance from the aforementioned 

locations (Fig. 6).  

 
 
3. Performed experimental tests 
 

Results from previous experiments on several large-

scale concrete girders with different ratios of prestressed 

and classical reinforcement are briefly presented below. 

Radnić et al. (2015) provide detailed data on these tests. 

Prefabricated girders are widely used in practice, and their 

basic geometry is presented in Fig. 7. The girders are 

supported at the ends and loaded by force F gradually up to 

failure. Spans of girders were l=5.5-9.5 m, with height 

h=0.15-0.52 m and ratios l/h=14.4–36.7.  

Girder types A, B and C were made by normal strength 

concrete class of C40/50 and girder types D, E were made 

by high strength concrete class of C90/105. The girders 

exhibited large differences in bending stiffness 

All types of tested girders (A-E) had more subtypes, 

with different ratio of prestressed and classical 

reinforcement: prestressed reinforcement only, dominantly 

prestressed and small classical reinforcement, an equal 

prestressed and classical reinforcement, small prestressed 

and dominantly classical reinforcement, and classical 

reinforcement only. Total reinforcement is adopted so that 

all subtypes of every type of girder have an equal ultimate 

bearing capacity. However, some girders had small 

differences in ultimate bearing capacity due to deviations in 

such parameters as actual surface, strengths and position of  

 

 

steel bars, cross-sectional geometry. 

The coefficient of prestressed reinforcement μp is 

defined by 

μp = Ap Atot⁄ = Ap (Ap + nAs)⁄ ;

n = 𝑓𝑠 𝑓𝑝⁄ = 650MPa 1900MPa⁄ = 0.342
 (9) 

where Ap is the area of prestressed reinforcement in the 

bottom belt of the girders, Atot is the total area of tension 

reinforcement in the bottom belt of the girders, As is the 

area of the classical reinforcement in the bottom belt of the 

girders, fs is the tensile strength of the classical 

reinforcement and fp is the tensile strength of the prestressed 

reinforcement (tendons). Data of adopted reinforcement and 

initial prestressing force (Po) in tendons for all tested 

girders are presented in Table 1. 

Tendons with a diameter of 3/8'' and a cross-sectional 

area of Ap=52 mm2 were used in all prestressed concrete 

girders. A prestressed reinforcement in the Y1860S7 class 

strength and classical reinforcements in the B500B class 

strength according to Eurocode 2 (EN 1992-1-1 2004) were 

used. The initial tensile stress in the tendons in girders type 

A, B, C, E were σpo=1076.4 MPa and in girders type D were 

σpo=1170 MPa. 

Experimentally determined stress-strain relations for 

classical reinforcement (σs-ɛs), prestressed reinforcement 

(σp-ɛp) and concrete in compression (σc-ɛc) are presented in 

Fig. 8.  

The midspan of the concrete girders were measured for 

each increment of load F: vertical displacements, strains of 

concrete on the girder’s bottom and top, strain of classical  

   
(a) girders type A (b) girders type B (c) girders type C 

  
(d) girders type D (e) girders type E 

Fig. 9 Load (F)-vertical displacement in the midspan of the girders (u) relation 
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reinforcement on the girder’s bottom and top, strain of 

lower tendons and width of the main crack. Some measured  

 

 

 

results are briefly presented and discussed below. 

The load (F)-vertical displacements (u) relation is  

   
(a) girders type A (b) girders type B (c) girders type C 

  
(d) girders type D (e) girders type E 

Fig. 10 Load (F)-concrete strain on the top of the girders in the midspan (ɛc) relation 

   
(a) girders type A (b) girders type B (c) girders type C 

  
(d) girders type D (e) girders type E 

Fig. 11 Load (F)-strain of prestressed reinforcement at the bottom of the girders in the midspan (ɛp) relation 
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presented in Fig. 9, load (F)-concrete strain on the top of 

the girders (ɛc) relation is presented in Fig. 10, load (F)- 

 

 

 

strain of classical reinforcement at the bottom of the girders 

(ɛs) relation is presented in Fig. 11, and load (F)-strain of  

   
(a) girders type A (b) girders type B (c) girders type C 

  
(d) girders type D (e) girders type E 

Fig. 12 Load (F)-strain of classical reinforcement at the bottom of the girders in the midspan (ɛs) relation 

   
(a) Displacement ductility index cdu (b) Strain ductility index cdεs (c) Strain ductility index cdεc 
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(d) Strain ductility index cdεp (e) Curvature ductility index cdφ 

Fig. 13 Relation of displacement, strain and curvature ductility index to the ratio of prestressed reinforcement  (μp) for Fn=Fcr 
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Fig. 14 Average ductility index cd for each type of tested 

girders 

 

 

Fig. 15 Average ductility index dc  for all tested girders 

 

 

prestressed reinforcement (ɛp) relation is presented in Fig. 

12. 

All girders with prestressed reinforcement experienced 

camber before application of the load F, and all girders with 

classical reinforcement only experienced deflection. 

Behaviour of all concrete girders was linear-elastic before 

cracking of the concrete in tension. The loading value 

Fn=Fcr at the moment of first cracking in concrete was 

especially dependent on ratio of prestressed and classical 

reinforcement i.e., of degree of prestressing. An increase in 

μp, resulted in increased value of Fcr. At the moment of 

concrete cracking, strains of classical reinforcement, 

prestressed reinforcement and compression concrete were 

suddenly increased. Additionally, vertical displacements of 

the girders were increased due to decreasing bending 

stiffness. 

Further increases of load F, at the beginning of yielding 

of classical reinforcement, produced a rapid decrease of 

girder bending stiffness and increase of its deflection. There 

was also a great increase of strains in the prestressed 

reinforcement and in the concrete on the top of the girders. 

Displacements and strains significantly increased just 

before girder failure. Girders of the same type had increased 

displacement at failure after decreasing the degree of 

prestressing. Although tests assumed that all subtypes of 

concrete girders had the same load bearing capacity, a fairly 

large discrepancy was visible between some girders. 

4. Ductility index of tested girders 
 

On the basis of the adopted approach and presented 

expressions in section 2., the ductility index for tested 

girders presented in section 3., overall displacements, 

strains and curvatures are calculated according to Figs. 9-12 

and presented in Fig. 13. The ductility index calculation 

adopted Fn=Fcr, as first nonlinearities were caused by the 

appearance of the first cracks in concrete i.e., exceeding of 

tensile strength of concrete, in all tested girders. 

Displacement ductility index cdu is presented in Fig. 

13(a), strain ductility index cdεs (corresponds to the strain of 

classical tension reinforcement) in Fig. 13(b), strain 

ductility index cdεc (corresponds to the strain of concrete in 

compression) in Fig. 13(c), strain ductility index cdεp 

(corresponds to the strain of prestressed reinforcement) in 

Fig. 13(d), and curvature ductility index cdφ in Fig. 13(e).  

It is noticeable that all diagrams on Fig. 13(a)-13(e) are 

not only similar in shape, but that they also have similar 

ductility index. This similarity of observed ductility index is 

expected since the displacements, curvatures and strains are 

interdependent. In expressions (1), (3) and (6) for the 

calculation of ductility index, the second index on the right 

side of the expressions is taken as equal across all 

expressions. Ductility index are the largest for girders 

reinforced with classical reinforcement and smallest for 

girders reinforced with only prestressed reinforcement. 

Ductility index of prestressed girders decrease 

approximately linearly with an increasing coefficient of 

prestressed reinforcement μp.  

From Fig. 13 it is clear that all observed ductility index 

depend on girder type (A, B, C, D, E). Namely, tested 

girders had different bending stiffness, shape of cross-

section, concrete strength (modulus of elasticity), 

percentage of reinforcement and other characteristics. 

However, this difference is small and ranges up to 

approximately ±7 percent of the average value.  

As expected, for classically reinforced girders, type B 

had the maximum ductility index while type D had the 

minimum ductility index. Girder type B had by far the 

greatest span-height ratio (36.7) accompanied by a very 

small bending stiffness. Girder type D was made using high 

strength concrete, and it had a low centre of gravity of 

cross-section (lower tensile stresses and crack opening at 

higher loading), smaller span-height ratio (19) and generally 

the highest bending stiffness. 

For prestressed concrete girders, girder type D had the 

minimum ductility index, which is logical. The differences 

between the ductility indexes for the observed girders 

decreased with the increasing of prestressed reinforcement. 

For fully prestressed girders some ductility index had 

similar values. 

One of the parameters that affect the ductility index is 

the percentage of tensile reinforcement in concrete girders. 

For tested girders type A; B; C; D; E the percentage of 

tensile reinforcement (expressed via classical 

reinforcement) amounted to approximately 0.54; 0.52; 0.51; 

0.61; 0.83. Therefore, the girders contained medium 

reinforcement and were expected to have a large ductility 

when reinforced with only classical reinforcement. In 

girders with a very low percentage of tensile reinforcement, 
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failure could appear at the occurrence of first cracks in 

concrete. Ductility index of such girders is equal to zero. In 

a case of high percentage of tensile reinforcement in 

girders, the girder bending stiffness increases and postpones 

the occurrence of the first cracks. Those girders will have a 

small ductility index. 

From an engineering standpoint, it can be said that the 

displacement and curvature ductility index are more 

acceptable than the strain ductility index. Namely, girder 

displacements and curvatures could be easily observed 

during the increase of loading, while the strains in materials 

of girder are visually hidden. However, if we take all 

observed ductility index cdu, cdεs, cdεc, cdεp, cdεφ for each type 

of tested girders as equally measurable and calculate the 

average value, then we can declare it as an average ductility 

index or just ductility index. Calculated values of cd for 

different tested girders are presented in Fig. 14, where their 

small differences are visible.  

The average value of ductility index cd between all 

girder types A,B,C,D,E in Fig. 14 can be calculated using 

linear interpolation at discrete points of each girder’s 

subtypes, marked as cd and graphically presented on Fig. 15 

(continuous line). 

The resulting curve can be approximated by line 

equation, as 

𝑐𝑑̅ = 0.882 − 0.512𝜇𝑝 (10) 

and also graphically presented on Fig. 15 (dashed line). 

Expression (10) can be used for calculation of ductility 

index of classically and prestressed concrete girders in 

practice, under condition that the girders characteristics 

(e.g., bending stiffness, mechanical properties of concrete, 

percentage and mechanical properties of reinforcement, and 

cross-sectional shape) are similar to the tested girders 

presented in section 3. 

 

 

5. Conclusions 
 

The paper initially presented one approach in addition to 

expressions for the calculation of ductility index of 

classically reinforced and prestressed concrete girders 

subjected to short term static load. Ductility index are 

defined based on displacement (displacement ductility 

index), curvature (curvature ductility index) and strains in 

concrete, classical and prestressed reinforcement (strain 

ductility index). Expressions for ductility index are the 

product of two influences: (i) the remaining displacements 

(curvatures, strains) after the appearance of the specified 

nonlinearities in the girder in relation to the total 

displacements (curvatures, strains) at reaching the 

maximum girder bearing capacity, (ii) the remaining load 

after specified nonlinearities in the girder in relation to the 

maximum load at girder failure. Ductility index defined 

with this approach are in the range of zero to one (0-1). The 

ductility index equal to zero corresponds to the girders 

lacking nonlinearities just before failure (so-called brittle 

collapse). Ductility index equal to one correspond to the 

girders where nonlinearities have begun to appear at the 

beginning of the loading.  

Proposed expressions for the calculation of ductility 

index were applied to the results of performed static 

experimental tests of five different types of large-scale 

concrete girders with different ratios of prestressed and 

classical reinforcement. This study showed that 

displacement ductility index, curvature ductility index and 

strain ductility index differ slightly. This is logical because 

displacements, curvatures and strains are connected and 

interdependent and the second member in the expressions 

for calculation of ductility index will always be equal. The 

average ductility index is introduced and calculated as the 

average value of displacement ductility index, curvature 

ductility index and strain ductility index.  

Ductility index of prestressed girders decrease 

approximately linearly with increasing coefficient of 

prestressed reinforcement μp. Such factors as bending 

stiffness, shape of cross-section, concrete strength, and 

percentage of reinforcement influence ductility index.  

Based on previous analyses, an expression for the 

calculation of average ductility index or just ductility index 

of classically reinforced and prestressed concrete girders is 

suggested.  

This expression can only be used for girders in practice 

that are similar to the tested girders.  

According to the proposed approach, the value of the 

ductility factor always ranges between 0 (without ductility) 

and 1 (ideal ductile structures with nonlinear load-

displacement relation in all range of load action up to 

structure collapse), what is practical and easy to remember. 

Ductility index were defined over multiple structural 

parameters (displacement, curvature and strains of all 

materials). The analysed examples shows that the value of 

ductility index across all parameters was very close, which 

was expected and confirmation of the appropriate approach, 

because considered parameters were interrelated for all 

structures.  

In accordance with the proposed approach and author’s 

experience in the design (calculation) and realisation of 

concrete structures in practice, we consider that for 

classically reinforced concrete elements average ductility 

index should be Cd ≥ 0.6 and for full-prestressed (µp=1) 

should be Cd ≥ 0.3.  
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