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1. Introduction  
 

Beam-to-column connections along with base 

connections are usually assumed either a completely pinned 

or an entirely rigid connection. These two simplifying 

assumptions produce an incorrect estimation of the frame 

response. In fact, the steel connections are between these 

two severe assumptions and have some rotational stiffness; 

in addition, the real behavior of steel connection is 

complicated nonlinear, especially if the connection behavior 

is considered in the three dimensions in a space frame. 

AISC-LRFD (2016) described two types of steel 

constructions: fully restrained (FR) and partially restrained 

(PR), where the PR type is considered according to 

reasonable experimental and numerical studies. 

 

 

2. The studies of semi-rigid connection simulation  
 

Some researchers worked on the behavior of semi-rigid  
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connections using experimental studies to obtain the 

nonlinear behavior of the connection such as Frye and 

Morris (1975), Abdalla and Chen (1995), Chisala (1999), 

Kim et al. (2010), Wu et al. (2012), Aydin et al. (2015), 

Maali et al. (2015), Aydın et al. (2015), Maali et al. (2016), 

Maali et al. (2017), Sağıroğlu et al. (2018), Maali et al. 

(2018). As a result of its wise simulation and its broad 

usage in the literature studies, the odd-polynomial Frye and 

Morris (1975) model are used in the current study. 

On the other hand, developing an accurate model for 

semi-rigid base connections is usually unobserved in most 

of the literature studies. Merely Kanvinde and Grilli (2012) 

produce a rational model for simulating the semi-rigid base 

connection. This model takes into account the deformations 

of all different base connection elements, so it is used in this 

paper to simulate the base connections’ behavior. 

Table 1 presents a summary of the previous literature 

studies, where all the literature studies use the Frye and 

Morris (1975) model for modeling beam-to-column 

connections, in addition, Hensman and Nethercot (2001) 

model for simulating the base connection if the study 

considers the semi-rigid base connection. 

 

 

3. Optimization algorithms  
 

Two of the evolutionary population-based optimization 

algorithms are used in this paper, a biogeography-based 

optimization algorithm (BBO) and a genetic algorithm 

(GA). BBO is proposed by Dan Simon (2008), which 

imitates the colonization and extinction of species between  
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Table 1 Summary for the previous literature studies 

Study Frame Base Used algorithm Design code 

Shallan et al. (2018) Plane Semi-rigid BA, GA AISC-LRFD 

Shallan et al. (2018) Plane Fixed TLBO, GA AISC-LRFD 

Musa and Ayse (2016) Space Fixed GA, HS AISC-LRFD 

Musa Artar (2016) Plane Fixed TLBO AISC-ASD 

Musa and Ayse (2015) Plane Semi-rigid GA AISC-ASD 

Musa and Ayse (2015) Plane Fixed GA AISC-LRFD 

Musa and Ayse (2015) Space Fixed GA AISC-LRFD 

Hadidi and Rafiee (2015) Plane Fixed New HS AISC-LRFD 

Mohammad and Payam 

(2015) 
Plane Fixed Fuzzy GA AISC-ASD 

Alqedra et al. (2015) Plane Fixed ITHS AISC-LRFD 

Hadidi and Rafiee (2014) Plane Fixed Improved PSO AISC-LRFD 

Rafiee and Hadidi (2013) Plane Fixed BB-BC AISC-LRFD 

Arafa et al. (2011) Plane Fixed HS AISC-LRFD 

Hayalioglu and Degertekin 

(2010) 
Plane Semi-rigid HS AISC- LRFD 

Hayalioglu and Degertekin 

(2005) 
Plane Semi-rigid GA AISC-LRFD 

Hayalioglu and Degertekin 

(2004) 
Plane Fixed GA AISC-ASD 

Hayalioglu and Degertekin 

(2004) 
Plane Fixed GA Turkish code 

Degertekin and Hayalioglu 

(2004) 
Plane Semi-rigid GA Turkish code 

BA: Bees algorithm, ITHS: Intelligent tuned harmony 

search, TLBO: Teaching-learning-based optimization, 

HS: Harmony search, PSO: Particle swarm optimization, 

BB-BC: Big bang-big crunch 
 

 

Fig. 1 Flowchart of the basic GA 
 

 

islands. In addition, GA is inspired by John Holland, which 

simulates the evolution theory (Goldberg 1989). 

 

3.1 Genetic algorithm (GA) 
 

John Holland produced a genetic algorithm (Goldberg 

1989), which is considered the mother of all evolutionary 

optimization algorithms. It simulates the evolution theory of 

Darwin. GA begins with an initial population composed of 

a certain number of listed chromosomes, where each 

chromosome represents a suggested solution to the problem. 

Each chromosome is made of a string of genes, where each  

 

Fig. 2 The relationship between the rank of habitats S, 

emigration rate µ and immigration rate ƛ 
 

 

gene signifies a particular suggested optimization variable. 

These genes are coded in a binary format; therefore, the 

decoding procedure is carried out to translate these genes 

into decimal values. These decimal values of the variables 

are used to solve the problem and determine the fitness 

value for each individual in the initial population. 

According to the fitness value of each chromosome, the 

selection step is performed to select the nominated 

chromosomes to go through a reproduction process. The 

main parameters of the reproduction process are crossover 

and mutation, which are used for constructing the next 

generation of suggested solutions. Then, the same steps are 

repeated until reaching the last generation. Fig. 1 shows a 

flowchart of the simple GA steps. 
 

3.2 Biogeography-based optimization algorithm 
(BBO) 
 

Biogeography-based optimization (BBO) is a 

population-based optimization technique inspired by Dan 

Simon (2008), where it mimics the colonization and 

extinction of the different species between the islands.  

Same as GA, BBO starts with a certain number of 

islands or habitats forming the initial population. Each 

island represents a suggested solution for the problem and 

is characterized by a series of features called suitability 

index variables SIV, where each SIV represents a 

particular optimization variable. 

Afterward, the habitat suitability index HSI of the 

problem is calculated for each habitat in the initial 

population, followed by sorting all habitats in accordance 

with the HSI values from the worst to the best. The worst 

solution has the highest HSI value and vice versa. After 

the sorting process, each habitat acquires a certain rank S, 

where Smax represents the total number of habitats in the 

population, that is to say, the population size. 

In accordance with the habitat rank S, the 

modification parameters, immigration rate ƛs and 

emigration rate µ s are determined using the following 

equations and as shown in Fig. 2. 
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Table 2 Comparison of the characteristics names for GA 

and BBO (Simon 2008) 

GA BBO 

Gene SIV 

Chromosome Habitat 

Fitness HSI 

Reproduction Modification 

Crossover operator Migration operator 

Mutation operator Mutation operator 

Generation Iteration 

 

 

Fig. 3 Flowchart of the basic BBO algorithm 
 

 

where I and E are the upper limits of possible 

immigration and emigration rates, in that order, generally 

for simplification are taken I=E=1. 

Immigration indicates receiving new features, i.e., 

SIVs from good habitats, in contrast, emigration denotes 

sharing features of a good habitat with poor habitats. 

Hence, the habitat owns a high HSI possesses a lower 

rank S and a high immigration rate ƛ and a low 

emigration rate µ and contrariwise, where ƛ and µ limit 

from 0 to 1. A comparison between the names of GA and 

BBO characteristics is shown in Table 2. 

Together with immigration and emigration 

procedures, the mutation process is carried out to increase 

the diversity of the population and to diminish the 

probability of getting trapped in local optima. Mutation in 

BBO means a random modification in a randomly 

selected variable, i.e., SIV, where mutation rate m(s) can 

be determined as follows. 








 −
=

max

max

1
)(

p

p
msm s  (3) 

where mmax is a user-defined parameter, Ps is the 

probability of a habitat to have rank S, Ps is calculated 

based on ƛs and µs values based on Dan Simon (2008), 

and Pmax=maxSPS, S=1,.., Smax. 

The number of the elite is a user-defined number 

signifies the best habitats in the population will be  

 

Fig. 4 Assumed deformation mode and contribution of 

various components Kanvinde and Grilli (2012) 
 

 

excluded from the modification process to keep its good 

features to the next iteration. 

By means of the three modification parameters, i.e., 

immigration, emigration, and mutation, the modification 

procedure is performed to modify the population. The 

modified population acts as a population for the next 

iteration, equivalent to the next generation in GA.  

The previous steps are repeated until attainment of the 

final iteration and obtaining the most optimum solution 

throughout all the iterations as shown in Fig. 3. 
 

 

4. Modeling of a semi-rigid base connection 
 

For modeling the semi-rigid steel base connection, 

Kanvinde, Grilli and Zareian (2012) model is used in the 

current study. Kanvinde model is divided into two cases 

according to the eccentricity value e and critical 

eccentricity value ecrit. 

A-condition 1, low-eccentricity case 

In this condition, e < ecrit and the spring rotation θr of 

the base connection is produced by concrete strain at the 

base plate edge εconc.
toe  and concrete strain at the center of 

the anchor rods in the opposite side εconc.
rod  

( )
)2/(

..
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d rod
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conc
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+

−
=


  (4) 

where d is the concrete depth under the base plate, and 

(𝑆 + 𝑁/2) distance is shown in Fig. 4. 

B- condition 2, high eccentricity case 

In this condition, e > ecrit and the spring rotation θr of 

the base connection is created by anchor strain ∆rod Due 

to a tensile force, concrete stain  ∆conc. and plate flap 

deformation on both compression side  ∆comp.  and 

tension side  ∆ten. As shown in Fig. 4 and Eq. (5). 
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For simplification, some parameters are considered 

constant throughout the analysis process as follows: Rod 

gross diameter=2.5 cm, d =70 cm, two anchor rods are 

used with 50 cm length, pate thickness equals 2.5 cm, 

and the base plate extension out of column section=15 

cm for each side, the pedestal extension out of the base  
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Table 3 The curve-fitting constants 

Connection type 
Curve-fitting constants 

C1 C2 C3 

1 4.28×10-3 1.45×10-9 1.51×10-16 

2 3.66×10-4 1.15×10-6 4.57×10-8 

3 2.23×10-5 1.85×10-8 3.19×10-12 

4 8.46×10-4 1.01×10-4 1.24×10-8 

5 1.83×10-3 1.04×10-4 6.38×10-6 

6 1.79×10-3 1.76×10-4 2.04×10-4 

7 2.10×10-4 6.20×10-6 -7.60×10-9 

8 5.10×10-5 6.20×10-10 2.40×10-13 

 

Table 4 The standardization parameter (𝜿) 

Connection type Standardization parameter (𝜿) 

1 𝜿 = 𝑑𝑎
−2.4𝑡𝑎

−1.81g0.15 

2 𝜿 = 𝑑𝑎
−2.4𝑡𝑎

−1.81g0.15 

3 𝜿 = 𝑑−1.287𝑡−1.128𝑡𝑐
−0.415ℓa

−0.694g1.35 

4 𝜿 = 𝑑−1.5𝑡−0.5ℓa
−0.7db

−1.5 

5 𝜿 = 𝑑g
−2.4𝑡p

−0.4𝑑b
−1.5 

6 𝜿 = 𝑑g
−2.4𝑡p

−0.6 

7 𝜿 = 𝑑−1.5𝑡−0.5ℓt
−0.7db

−1.1 

8 𝜿 = 𝑑𝑝
−2.3𝑡𝑝

−1.6𝑡𝑤
−0.5g1.6 

 

Table 5 The fixed connection size parameters 

Connection type Fixed connection size parameters (cm) 

1 𝑡𝑎 = 2.54, g = 11.43 

2 𝑡𝑎 = 2.858, g = 25.4 

3 𝑡 = 2.54, 𝑡𝑐 = 2.54, g = 11.43 

4 𝑡 = 2.54, 𝑑𝑏 = 2.858 

5 𝑡𝑝 = 2.54, 𝑑𝑏 = 2.858 

6 𝑡𝑝 = 2.54 

7 𝑡 = 3.81, 𝑑𝑏 = 2.858 

8 𝑡𝑝 = 2.54, g = 25.4 

 
 

plate=10 cm for each side. 
 

 

5. Modeling of a semi-rigid beam-to-column 
connection 
 

Frye and Morris (1975) model is used in the current 

paper for simulating semi-rigid beam-to-column 

connections. In addition to its easiness to apply, it is an odd-

power polynomial model, which is rationally reliable for 

modeling the nonlinear M-𝜃𝑟  behavior of the semi-rigid 

connections, as expressed in the following equation.  

5

3

3

2

1

1 )()()( MCMCMCr  ++=  (6) 

where C1, C2, and C3 are the curve-fitting constants, and κ is 

a standardization constant dependent on the connection type 

and its geometry, as shown in Tables 3 and 4 (Dhillon and 

O’Malley III 1999). 

 

Fig. 5 Semi-rigid beam-to-column connection types (Hadidi 

and Rafiee 2015) 

 

Fig. 5 reveals that Frye and Morris's model is valid for 

eight different types of semi-rigid beam-to-column 

connections and Fig. 6 shows the moment-rotation curves 

for the eight connections. 

Following the literature studies (Hadidi and Rafiee 

2014), (Hadidi and Rafiee 2015) and others, and for 

simplification, some of the connection size parameters are 

taken constantly throughout the analysis procedure, as 

shown in Table 5. Furthermore, for connections 1, 2, and 8, 

da & dp=web depth-10.16 cm, and for connections 5 and 6, 

dg=beam depth+15.24 cm (Shallan et al. 2018). 

After determining the relative rotation of semi-rigid 

connection Ɵr, the relative rotational stiffness K of a semi-

rigid connection will be determined using the following 

equations. 

rA

A
A

M
K


=  

rB

B
B

M
K


=  (7) 

where A and B represent the A and B ends of a member. 

 

 

6. Nonlinear analysis process using the stiffness 
method for a space frame 
 

Stiffness method is an effective way to analyze complex 

structures. The stiffness matrix [K] for a fully rigid space 

member as shown in Fig. 7 such as a column with a fixed 

base is as follows, where 1, 2, and 3 imply X, Y, and Z axis, 

respectively. 
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Fig. 6 Moment-Rotation curves of semi-rigid connection 

types (Hadidi and Rafiee 2015) 

 

 

Fig. 7 A space frame member with end forces 

 

 

     PE kkk +=  (8) 

where [KE] is the conventional linear-elastic stiffness matrix 

and [KP] is the geometric stiffness matrix to consider the P-

∆ effect using member axial force N and member length L 

as follows. 
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(9) 

Dhillon and O’Malley III (1999) developed a linear 

stiffness method to non-linear stiffness method to consider 

the rotational stiffness of the semi-rigid connections for 

beams of plane frames. In addition, Sagiroglu and Aydin 

(2015) updated Dhillon and O’Malley 6X6 matrix [k] to be 

12X12 matrix, which is applicable to the space frame as it 

will be illustrated in the following equations.  
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where E is the modulus of elasticity, G is the shear 

modulus, A is the cross-section area, L is the member 

length, J is the torsional constant, and IZ & IY is the second 

moment of inertia with respect to Z&Y axes; ɑi,j, ei,j, b, f  

are stiffness constants equal 4,4,2,2 for rigid connections, 

respectively, otherwise, for semi-rigid connections, it is 

determined according to following equations. 
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(19) 

where K represents the rotational stiffness for a semi-rigid 

connection as expressed in Eq. (7), A & B denotes member 

ends, and Z&Y imply Z&Y axis, respectively. 

Fixed-end moment {p} is recalculated to consider the 

semi-rigidity effect as follows (Sagiroglu and Aydin 2015). 
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(21) 

where Δi and Δj are formulas of the fixed-end moment at a 

member ends.  

The stiffness matrix of a column with a semi-rigid base 

will be determined according to Eq. (8), where the 

rotational stiffness of the base end will be determined based 

on Eq. (7) using Ɵr calculating using Eqs. (4) or (5) and the 

value of the upper end is taken an infinite number such as 

1010.  

The previous analysis is carried out in an iterative 

process (10 iterations are used in the current study) until 

convergence is achieved considering updating node 

coordination at each iteration to consider geometric  
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Fig. 8 Analysis procedure (Sagiroglu and Aydin 2015) 

 

Table 6 A comparison between Artar and Daloglu (2016) 

and the current study 

Items Artar and Daloglu (2016) Current study 

Algorithms GA & HS GA & BBO 

Program used Sap 2000 Matlab 

Analysis method FEM Stiffness method 

No. of available semi-rigid 

connections 
6 8 

Connection stiffness Constant Nonlinear 

Base case Fixed 
Fixed & semi-rigid & 

Hinged 

Section optimization Yes Yes 

Connection optimization No Yes 

P-∆ effect No Yes 

Geometric nonlinearity No Yes 

FEM: Finite element method 
 

 

nonlinearity as summarized in Fig. 8. 

Table 6 shows a comparison between the current study 

and the literature study, Artar and Daloglu (2016), which 

performs a space frame optimization with semi-rigid beam-

to-column connections. As shown in the table, Artar and 

Daloglu (2016) study considers the semi-rigidity of beam-

to-column connections by assuming a constant rotational 

value for each connection type instead of considering the 

nonlinearity, that because of using Sap2000 (Habibullah 

2013) to perform a linear analysis.  

 

 

7. Optimization formulation 
 

The algorithms used in the following numerical 

examples are genetic and biogeography-based optimization 

algorithms. The used parameters for GA are 0.9 for the 

uniform crossover and 0.05 for the mutation. While the 

used parameters for BBO are 1 for I and E, and elite 

ratio=20% of the population size. Both of the algorithms 

have a population size of 100, and maximum 

generations/iterations of 50. The design variables, objective 

function and design constrains are as follows. 

Design variable 

Design variable is members cross-section selected 

among 64 available cross-sections for each member, and 

connection types selected among eight available 

connections shown in Fig. 5.   

Objective function 

The total weight of the steel frame is determined as 

follows. 

i

NM

i

is LAW 
=

=
1

  (22) 

where γs is the steel density, Ai is the cross-sectional area, 

Li is the member length, NM represents the total number of 

members.  

The objective function F(x) is expressed in the 

following equation. 
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where C is the penalty coefficient equals zero for the 

solutions achieve all constraints, or else, it equals one. 

Design constraints 

To confirm that the resulted optimum frame is safe and 

usable, the following constraints are used in the current 

study. 

1. AISC-LRFD (2016) strength constraint using the 

interaction equation of the bending moment and the axial 

force as shown in the following equations 
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For  2.0<
n

u

P

P


 

1
2

1















++











nyb

uy

nzb

uz

n

u

M

M

M

M

P

P



 
(25) 

where Pu and Pn are the required and the nominal strength 

of a member, respectively, and ∅ is a reduction factor 

equals 0.9. Furthermore,  Muz and Muy  are the required 

flexural strengths of a member about the Z&Y axis, 

respectively. Also,  Mnz and Mny are the nominal flexural 

strengths of a member about the Z&Y axis, respectively, 

where the bending reduction factor ∅b equals 0.9. 

2. Moreover, the roof drift and inter-story drift 

constraints are taken into account, where the allowable roof 

drift equals frame height/400. And the allowable inter-story 

drift is measured by story height/400.  

3. Due to construction requirement, the size fitting 

constraint is considered by preventing a column depth or 

area on a higher floor to be bigger than the same column 

depth or area on a lower floor. 

 

 

8. Numerical examples 
 

Using BBO and GA optimization techniques, two 

benchmark examples are investigated in this paper, where  

No 

 Calculate Ɵr using Eqs. (4), 

(5) and (6) to update 

rotational stiffness values in 

Eq. (7) and then update 

geometric and stiffness 

matrices in Eqs. (9) and (10) 

Start 

Solve the frame as with fully rigid 

connections ai, aj, ei, ej=4; b, f=2 

 

Forming of [K] matrix and {p} vector 

Solve the end forces 

{ff} 

{ff}-

End  

(Write the results of analysis) 

   

226



 

Design optimization of semi-rigid space steel frames with semi-rigid bases using… 

 

Table 7 Member sections and connections of optimum 

frames resulted by BBO 

Group 

members 

FF SF SS SH 

Sections Sections Connections Sections Connections Sections Connections 

1 W14X38 W16X36 - W14X38 - W24X68 - 

2 W12X19 W14X26 1 W18X35 7 W27X94 2 

3 W18X35 W18X35 5 W10X22 5 W12X19 1 

 

Table 8 Member sections and connections of optimum 

frames resulted by GA 

Group 

members 

FF SF SS SH 

Sections Sections Connections Sections Connections Sections Connections 

1 W16X40 W16X36 - W16X36 - W24X68 - 

2 W12X19 W16X26 1 W16X40 7 W27X94 5 

3 W16X31 W18X35 7 W12X19 3 W8X15 7 

 

 

simultaneous cross sections and beam-to-column 

connections optimization are carried out using Frye and 

Morris (1975) model and Kanvinde (2012) model. Four 

cases of steel frame are considered; (1) fully fixed FF (2) 

semi-rigid beam-to-column connections with fixed base SF 

(3) semi-rigid beam-to-column connections with semi-rigid 

bases SS (4) semi-rigid beam-to-column connections with 

hinged bases SH. The properties of the used steel, and 

available sections are as follows. 

Steel properties 

The properties of the used steel are: E = 200 GPa, yield 

stress fy = 250 MPa , shear modulus G = 77.2 GPa, and 

the unit weight of material γs = 7.85 t/m2 , based on 

AISC-LRFD (2016). 

Available sections 

According to Artar and Daloglu (2016), 64 cross 

sections are available from W8x15 to W40x183. 

 

8.1 Two stories, 16-member steel space frame 
 

The first example is two stories, 16-member steel space 

frame, this example is optimized as a fully fixed frame and 

as a semi-rigid frame with fixed bases by Artar and Daloglu 

(2016). 

The geometry, wind loads, and member grouping are 

shown in Fig. 9. In addition the vertical load on all beams is 

20 kN/m, whereas, the allowable roof drift and inter-story 

drift are 1.8 cm and 0.9 cm, respectively. 

Tables 7 and 8 show the member cross-sections and 

story connections for the optimum solutions using BBO and 

GA, respectively, for the four frame cases.  

Moreover, the roof drift, inter-story drift and total frame 

weight of the optimum frames in this study are compared 

with those in previous studies in Table 9. The comparison 

shows that GA achieves better results than BBO for the four 

frame cases. Besides, the stiffest connection type 7 is 

usually selected.  

Figs. 10 and 11 show the effect of the four frame cases 

on the roof drift and the weight, respectively, where these 

figures show that FF case results in the lightest frame  

 

 

Fig. 9 Two stories, 16-member steel space frame (Artar and 

Daloglu 2016) 

 

 

Fig. 10 The roof drift using BBO and GA 

 

 

Fig. 11 The total frame weight using BBO and GA 

 

 

followed by SS case then the SF case, while SH case results 

in the heaviest frame. Moreover, and unpredictably, SH 

results in the smallest roof drift.  

The same study is carried out using GA but without 

considering the inter-story drift constraint. Table 10 shows 

the member cross-sections, story connections, roof drift, 

inter-story drift and frame weight for the optimum solutions 

using GA for the four frame cases without considering the 

inter-story drift constraint. 

Moreover, Figs. 12 and 13 show the effect of the four 

frame cases on the roof drift and the weight, respectively. 

Similar to previous results these figures show that FF 

case results in the lightest frame followed by SS and SF 

cases, while SH case results in the heaviest frame.  

 1.00

 1.50

 2.00

FF SF SS SH

GA BBODrift (cm)

Case

 30.00
 40.00
 50.00
 60.00
 70.00

FF SF SS SH

GA BBOWeight (kN)

Case
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Table 9 Comparisons between the current study and 

previous works 

Study Algorithm Case 
Conn. 

type 
R.d (cm) In.d (cm) W(kN) 

Artar and 

Daloglu 

(2016) 

GA 

FF 37.68 0.85 1.63 ـــ 

SF 2 1.41 0.57 41.94 

SF 3 1.48 0.58 40.67 

SF 4 1.38 0.59 39.40 

SF 5 1.66 0.86 39.32 

SF 6 1.46 0.62 37.79 

SF 7 1.72 0.88 37.68 

HS 

FF 37.36 0.82 1.60 ـــ 

SF 2 1.42 0.56 40.67 

SF 3 1.48 0.66 40.65 

SF 4 1.35 0.62 38.38 

SF 5 1.56 0.69 38.05 

SF 6 1.62 0.82 37.52 

SF 7 1.61 0.81 37.52 

Current study 

BBO 

FF 33.37 0.82 1.58 ـــ 

SF O 1.75 0.90 34.83 

SS O 1.79 0.90 34.38 

SH O 1.09 0.78 65.13 

GA 

FF 32.95 0.83 1.58 ـــ 

SF O 1.71 0.87 34.82 

SS O 1.69 0.86 34.15 

SH O 1.14 0.81 63.89 

R.d: Roof drift, In.d: Inter-story drift, W: Weight, O: 

Optimized, i.e/, optimized as shown in Tables 7 and 8 
 

Table 10 Properties of the optimum frames resulted by GA 

without considering the inter-story drift constraint 

Group 

members 

FF SF SS SH 

Sections Sections Connections Sections Connections Sections Connections 

1 W16X40 W16X36 - W16X36 - W21X50 - 

2 W12X19 W12X19 1 W18X35 7 W24X68 7 

3 W16X26 W18X35 7 W12X19 1 W12X19 7 

R.d (cm) 1.77 1.71 1.73 1.80 

In.d (cm) 0.95 0.87 0.87 1.32 

W(kN) 31.37 32.51 32.51 49.09 

 

 

Fig. 12 The roof drift using GA 

 

 

Fig. 13 The total frame weight using GA 

 

Table 11 Gravity loads on the beams 

Beams 
Uniformly distributed load (kN/m) 

Outer beams Inner beams 

Roof beams 7.38 14.77 

Floor beams 10 .72 21.44 

 

Table 12 Wind loads on the external beams 

Floor no. Windward (kN/m) Leeward (kN/m) 

1 1.64 1.86 

2 1.88 1.86 

3 2.10 1.86 

4 2.29 1.86 

5 2.44 1.86 

6 2.57 1.86 

7 2.69 1.86 

8 2.79 1.86 

9 2.89 1.86 

10 1.49 1.86 

 

 

Contrarily to previous results, SH results in the largest 

roof drift and inter-story drift also which mightily violates 

the inter-story-drift constraint. 

 

8.2 Ten stories, 568-member steel space frame 
 

The Second example is ten stories, 568-member steel 

space frame, this example is optimized as a fully fixed 

frame by Hasançebi et al. (2010), Kaveh and Talatahari 

(2012) and Aydodu and Saka (2012). And optimized as a 

semi-rigid frame with fixed bases by Artar and Daloglu 

(2016). The geometry and members grouping are shown in 

Fig. 14. 

Tables 11 and 12 show the gravity and wind loads, 

respectively, where two load cases are considered, wind 

loads at X direction then in Y direction. 

The member cross-sections and story connections for 

the current optimum solutions using BBO and GA for the 

four frame cases are shown in Tables 13 and 14, 

respectively. 

The allowable roof drift and inter-story drift are 9.14 cm 

and 0.914 cm, respectively.  
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Fig. 14 Ten stories, 568-Member steel space frames, (a) 

Plan view, (b) Elevation, (c) Member grouping, (d) 3D 

view. Asterisks first group: inner column, second group: 

side columns, third group: corner columns, fourth group: 

outer beams, fifth group: inner beams and so forth (Artar 

and Daloglu 2016) 

 

 

Furthermore, the roof drift, inter-story drift and total 

frame weight of the optimum frames in the current study are 

compared with those in previous studies in Table 15. 

Similar to the first example result, GA achieves better 

results than BBO for the four frame cases. 

In addition, the stiffest connections types 7, 6, and 5 are 

usually selected, while the most flexible type 1 is usually 

selected for the roof floor. 

Figs. 15 and 16 show the influence of the four frame 

cases on the roof drift and the weight, respectively, where 

these figures show that FF case results in the lightest frame 

followed by SS case then the SF case, while SH case results 

in the heaviest frame. Furthermore, SH results in largest 

roof drift, where the lower floors in this frame are highly 

controlled by strength constraint more than other constraints 

due to its weight. 

 

 

9. Conclusions 
 

Actual simulation of semi-rigid steel connections is very 

important to achieve accurate results for the frame analysis. 

This study attempts to perform optimization for fully fixed 

and semi-rigid frames, whereas beam-to-column and base 

connections are simulated using logically Frye and Morris 

(1975) and Kanvinde (2012) models, respectively. The 

current study is carried out to two benchmark problems  

Table 13 Member sections and connections of optimum 

frames resulted by BBO 

Group 

members 

FF SF SS SH 

Sections Sections Connections Sections Connections Sections Connections 

1 W40X149 W40X183 - W40X183 - W40X183 - 

2 W10X33 W14X34 - W12X30 - W14X43 - 

3 W12X26 W8X21 - W8X21 - W10X22 - 

4 W8X21 W8X28 3 W8X28 3 W10X22 6 

5 W21X50 W18X35 7 W18X35 7 W24X68 7 

6 W16X36 W14X38 - W14X38 - W21X62 - 

7 W24X68 W30X108 - W30X108 - W24X68 - 

8 W40X149 W30X108 - W30X108 - W40X149 - 

9 W18X35 W18X50 2 W18X76 2 W18X35 6 

10 W18X40 W18X76 7 W18X50 7 W18X40 7 

11 W16X36 W14X38 - W14X38 - W21X62 - 

12 W24X68 W30X108 - W30X108 - W24X68 - 

13 W40X149 W30X108 - W30X108 - W40X149 - 

14 W16X36 W16X36 2 W16X36 2 W18X50 7 

15 W14X30 W14X53 5 W14X53 5 W14X34 5 

16 W16X36 W14X38 - W14X38 - W14X61 - 

17 W24X68 W30X108 - W30X108 - W24X68 - 

18 W40X149 W30X108 - W30X108 - W40X149 - 

19 W12X26 W16X36 7 W16X36 7 W14X30 5 

0 W16X31 W14X34 5 W14X34 5 W18X35 5 

21 W8X15 W14X38 - W14X38 - W10X33 - 

22 W14X26 W30X108 - W30X108 - W14X38 - 

23 W12X26 W30X108 - W30X108 - W24X68 - 

24 W8X21 W24X68 4 W24X68 4 W14X26 2 

25 W14X30 W14X34 1 W14X34 1 W12X30 1 

 

Table 14 Member sections and connections of optimum 

frames resulted by GA 

Group 

members 

FF SF SS SH 

Sections Sections Connections Sections Connections Sections Connections 

1 W36X150 W40X183 - W40X183 - W40X183 - 

2 W8X28 W14X34 - W12X30 - W14X43 - 

3 W16X26 W8X21 - W8X21 - W10X22 - 

4 W8X24 W8X28 3 W8X28 3 W10X22 6 

5 W18X35 W18X35 7 W18X35 7 W24X68 7 

6 W18X50 W14X38 - W14X38 - W21X62 - 

7 W24X68 W30X108 - W30X108 - W24X68 - 

8 W36X150 W30X108 - W30X108 - W40X149 - 

9 W21X50 W18X76 2 W18X50 2 W18X35 6 

10 W14X30 W18X50 7 W18X76 7 W18X40 7 

11 W18X50 W14X38 - W14X38 - W21X62 - 

12 W24X68 W30X108 - W30X108 - W24X68 - 

13 W36X150 W30X108 - W30X108 - W40X149 - 

14 W14X30 W16X36 2 W16X36 2 W18X50 7 

15 W14X30 W14X53 5 W14X43 5 W14X34 5 
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Table 14 Continued 

16 W12X26 W14X38 - W14X38 - W14X61 - 

17 W24X68 W30X108 - W30X108 - W24X68 - 

18 W36X150 W30X108 - W30X108 - W40X149 - 

19 W16X26 W8X35 7 W10X22 7 W14X30 5 

20 W10X26 W14X34 5 W14X34 5 W18X35 5 

21 W10X15 W14X38 - W14X38 - W10X22 - 

22 W24X68 W30X108 - W30X108 - W14X43 - 

23 W8X24 W30X108 - W30X108 - W14X61 - 

24 W8X21 W24X68 4 W24X68 4 W14X26 4 

25 W16X26 W14X34 1 W14X34 1 W14X30 1 

 

Table 15 Comparisons between the current study and 

previous works 

Study Algorithm Case 
Conn. 

type 
R.d (cm) In.d (cm) W (kN) 

Hasançebi et al. 

(2010) 
TSO FF 2,307 ـــ ـــ ـــ 

Kaveh and 

Talatahari (2012) 
PSO FF 2,369 ـــ ـــ ـــ 

Aydodu and Saka 

(2012) 
ACO FF 2,242 ـــ ـــ ـــ 

Artar and Daloglu 

(2016) 

GA 

FF 1,987 0.91 7.14 ـــ 

SF 2 7.83 0.91 2,252 

SF 3 7.43 0.91 2,735 

SF 4 7.81 0.89 2,498 

SF 5 7.22 0.86 2,454 

SF 6 7.05 0.91 2,339 

SF 7 7.15 0.91 2,324 

HS 

FF 2,109 0.91 7.86 ـــ 

SF 2 7.76 0.91 2,537 

SF 3 7.91 0.91 2,505 

SF 4 7.30 0.90 2,290 

SF 5 7.40 0.91 2,275 

SF 6 7.00 0.91 2,315 

SF 7 7.18 0.91 2,177 

Current study 

BBO 

FF 2,041 0.91 7.08 ـــ 

SF O 6.85 0.91 2,349 

SS O 7.20 0.91 2,339 

SH O 8.24 0.91 2,460 

GA 

FF 1,898 0.79 5.77 ـــ 

SF O 7.32 0.91 2,347 

SS O 7.20 0.91 2,287 

SH O 8.15 0.91 2,459 

TSO: Technology Selection and Operation, ACO: Ant 

colony optimization 

 

 

using BBO and GA algorithms and the following results are 

found. 

• Fully fixed frame FF case result in the lightest frame, 

along with a relatively small roof drift. 

• The SH case result in the heaviest frame and the 

largest roof drift. 

• On the other hand, if the frame is highly controlled by  

 

Fig. 15 The roof drift using BBO and GA 

 

 

Fig. 16 The total frame weight using BBO and GA 

 

 

inter-story drift constraint more than other constraints such 

in small frames, the SH will result in the smallest roof drift. 

• Furthermore, the stiffest connections types are usually 

selected for most of the floors except higher floors where 

the most flexible connections are selected. 

• GA achieves better results than BBO for all examples 

and for all frame cases. 
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