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1. Introduction  
 

Hysteresis behaviors as the intrinsic property of inelastic 

systems, are observed in structures and components subject 

to external excitations such as earthquakes, winds, recurrent 

waves, explosions and environmental vibration or shock. 

For a typical nonlinear single-degree-of-freedom(SDOF) 

system, the equation of motion can be expressed as 

mu cu R p+ + =  (1) 

where m and c represent the mass and the viscous damping 

coefficient, respectively. ,  and  represent the 

displacement, velocity and acceleration, respectively. p 

represent the external excitation. R represents the nonlinear 

restoring force which can be described by a hysteresis 

model. A variety of such analytical models have been 

developed to describe hysteresis behaviors encountered in 

mechanics, civil engineering and many other related 

domains, such as ideal elasto-plastic model (Tena-Colunga 

1997), bilinear model (Nakashima et al. 1995, Tena-

Colunga 1997, Chen et al. 2006), multilinear model 

(Benavent-Climent 2010), Ramberg-Osgood model 

(Nakashima et al. 1995, Sireteanu et al. 2014), Bouc-Wen 

model (Chan et al. 2009, Sireteanu et al. 2014, Rahimi and 

Soltani 2017), Davidenkov model (Davidenkov 1939, Yang 

and Chen 1992), trace method model (Badrakhan 1987,  
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Badrakhan 1988), Preisach model (Bolshakov and Lapovok 

1996), etc., among which the Bouc-Wen Model has become 

one of the most widely accepted hysteresis models for 

nonlinear systems. 

Originally proposed by Bouc (1967) and later 

generalized by Wen (1976), the classic Bouc-Wen model is 

a smooth analytical model described by differential 

equations, which can be used to describe a variety of 

hysteresis behaviors for structures and components made of 

different materials, such as steel frames (Hann et al. 2009), 

timber shear walls (Zhang et al. 2002), RC joints (Sengupta 

and Li), etc. Additionally, the Bouc-Wen model is 

especially popular in describing the force-displacement 

relationship of various energy dissipation devices for 

structural vibration control, such as BRBs (Black et al. 

2004), metallic dampers (Shih and Sung 2005, Chan et al. 

2009), MR dampers (Spencer et al. 1997) and isolation 

bearings (Alessandri et al. 2015, Chen et al. 2016), etc. 

However, the classic Bouc-Wen Model is functionally 

redundant (Ma et al. 2004), i.e., a specific Bouc-Wen 

hysteresis curve does not correspond to a unique set of 

parameters, which means identification procedures that use 

input-output data cannot determine the parameters of the 

Bouc-Wen model. In order to eliminate the redundant 

parameter and facilitate the parameter identification 

procedure, a normalized form of the Bouc-Wen model was 

proposed by Ikhouane (2007). In this article, further studies 

are conducted for hysteresis characterization and 

identification of the normalized Bouc-Wen model. The 

remainder of the paper is organized as follows. In Section 2, 

the analytical expressions of the classic Bouc-Wen model 

and normalized Bouc-Wen model are introduced  
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Fig. 1 Schematic diagram of the classic Bouc-Wen model 

 

 

respectively. The relations between the normalized Bouc-

Wen model parameters and corresponding hysteretic 

characteristics of the hysteresis loops described by the 

model are studied in Section 3. In Section 4, the parameter 

identification method is then proposed based on an 

improved genetic algorithm (IGA), and verified by 

experimental test data in Section 5. Additionally, a 

simplified identification method is proposed in Section 6 

based on parameter sensitivity. Finally, a summary of 

findings is provided in Section 7. 

 

 

2. Normalization of the Bouc-Wen model 
 

2.1 The classic Bouc-Wen model 
 

The classic Bouc-Wen model describes the hysteresis 

behavior of a nonlinear system in the form 

R = αku + (1-α)kz (2a) 

1n n
z Au u z z u z 

−
= − −

 
(2b) 

in which {R, z, u} are the basic variables of the model, 

while {A, k, α, β, γ, n} are the parameters of the model. R, z 

and u represents the restoring force, internal hysteresis 

variable, and displacement, respectively. k controls the 

initial tangent stiffness, α governs the ratio of post-yield to 

pre-yield stiffness. A, β and γ are nondimensional 

parameters that control the shape of the hysteresis loop, 

while n is a positive scalar that decides the smoothness of 

transition from the elastic to the inelastic region. The 

overdot represents derivative with respect to time t. In 

addition, the initial value for z is 0, i.e., z(0)=0. A schematic 

diagram of the classic Bouc-Wen model is given in Fig. 1, 

which indicates that the total restoring force can be deemed 

as the parallel combination of an elastic component and a 

hysteretic component. Obviously, the restoring force is 

purely hysteretic if α=0, or purely elastic if α=1. 

 

2.2 The normalized Bouc-Wen model 
 

In order to eliminate the redundant parameter in the 

classic Bouc-Wen model, a new form of the Bouc-Wen 

model via normalizing the internal variable was proposed 

by Ikhouane (2007), which describes the hysteresis 

behavior of a nonlinear system in the form 

R = kuu + kww (3a) 

( )
1

( 1 )
n n

w u u w w u w  
−

= − + −
 

(3b) 

in which {R, u, w} are the basic variables of the model, 

while {ku, kw, λ, ξ, n} are the parameters of the model. 

Furthermore, the relation between the two different forms 

of Bouc-Wen model is shown below 

0

z
w

z
=

 
(4a) 

1

0

nA
z

 

 
=  

+   

(4b) 

ku=αk (4c) 

kw=(1-α)kz0 (4d) 

0

A

z
 =

 
(4e) 

0



 

= 
+  

(4f) 

in which z0 is the largest value of the internal hysteresis 

variable z, i.e., |z|≤z0. Considering Eq. (4a), we get |w|≤1. 

Thus, the internal hysteresis variable is scaled to unity, and 

w is named as the normalized internal hysteresis variable. In 

addition, the initial value for w is 0, i.e., w(0)=0. Instead of 

6 parameters {A, k, α, β, γ, n} in the classic Bouc-Wen 

model, the normalized Bouc-Wen model has only 5 

parameters {ku, kw, λ, ξ, n}. Meanwhile, the redundant 

parameter has been removed in the model (Ikhouane 2007), 

so that parameter identification can be implemented directly 

based on the normalized Bouc-Wen model. A schematic 

diagram of the normalized Bouc-Wen model is given in Fig. 

2, which indicates that the total restoring force can be 

deemed as the parallel combination of an elastic component 

and a hysteretic component. Apparently, the model turns 

into a pure hysteretic system if ku=0, or a pure elastic 

system if kw=0. 

 

 

3. Hysteresis characterization 
 

Typical hysteresis loops described by the normalized 

Bouc-Wen model is shown in Fig. 3. Point O is the origin 

where the loop starts. Points A and B corresponding to the 

designed maximum positive and negative displacement 

respectively, are defined as the ‘shift point’ where the 

loading direction changes, i.e., the sign of the velocity u  

changes. Points Y+  and Y−
 are defined as the positive 

and negative ‘equivalent yield point’, which are the 

intersections of the elastic tangent lines from the origin 

point and the extension lines of the plastic stage. 

Displacement and restoring force corresponding to the 

‘equivalent yield point’ is defined as the yield displacement 

uy and yield force Ry. Slope of line OY+  and OY−  is 

defined as the initial elastic stiffness Ke, while slope of line 

Y A+  and Y B−  is defined as the plastic stiffness Kp. 

Those hysteresis characteristics directly related to the  

210



 

Hysteresis characterization and identification of the normalized Bouc-Wen model 

 

kuu

kww

R , u

 

Fig. 2 Schematic diagram of the normalized Bouc-Wen model 
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Fig. 3 Hysteretic characteristics of the normalized Bouc-

Wen model 
 

 

‘equivalent yield point’ are the critical indices for the 

evaluation of structures or components described by the 

Bouc-Wen model. Other hysteresis characteristics also 

include the shift stiffness Ks defined as the slope of the 

curve immediately after the shift-point, and the smoothness 

of transition from elastic to plastic response. In this section, 

the relations between the hysteretic characteristics and the 

parameters of the normalized Bouc-Wen model are studied 

first.  
 

3.1 Initial elastic stiffness Ke 
 

Differentiate Eq. (3a) with respect to time at t=0 

0 0 0

u w

t t t

d d

dt dt

dR u w
k k

dt = = =

= +

 

(5) 

Using Eq. (3b) with w(0)=0, it leads to 

0 0t t

dw du

dt dt


= =

=  (6) 

Combining Eq. (5) and (6), with u(0)=0, it follows that 

0

u w

u

dR
k k

du


=

= +

 

(7) 

Thus, the slope of the w-u curve at origin point, i.e., the 

initial elastic stiffness Ke is obtained 

Ke = ku + λkw (8) 

 

3.2 Plastic stiffness Kp 
 

Differentiate Eq. (3a) with respect to displacement with 

u→∞ 

w
1

-1

u
-uy

uy

 

Fig. 4 Relation between w and u 

 

 

u w

u u

dR w
k k

du

d

du→ →

= +

 

(9) 

As u goes from zero to positive or negative infinity, the 

relation between w and u is shown in Fig. 4. As shown, w 

goes asymptotically to w=±1 as the displacement u goes to 

infinity. Accordingly, the slope of the w-u curve decreases 

asymptotically to zero as u approaches infinity, which gives 

0
u

dw

du →

=  (10) 

By substituting Eq. (10) into Eq. (9), we get 

u

u

dR
k

du →

=

 

(11) 

Therefore, the plastic stiffness Kp is obtained 

Kp = ku (12) 

 

3.3 Yield displacement uy 
 

Given that the restoring force of the normalized Bouc-

Wen model is comprised of an elastic linear part kuu and a 

hysteretic nonlinear part kww, the yield displacement uy is 

actually determined by the normalized internal hysteresis 

variable w.  

The initial slope of the w-u curve at the origin point can 

be obtained by Eq. (3b) with w(0)=0 and u(0)=0, which 

gives 

0u

dw

du


=

=

 
(13) 

Therefore, the initial tangent line of the w-u curve is 

w=λu (14) 

As shown in Fig. 4, the ‘equivalent yield point’ for the 

w-u curve is the intersection of the initial tangent line w=λu 

and the asymptote w=±1. Thus, the corresponding 

displacement is the yield displacement of the nonlinear 

system 

y

1
u


=  (15) 

 

3.4 Yield force Ry 
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Fig. 5 Influence of ξ on the shift stiffness 

 

 

The relation among the yield force Ry, the yield 

displacement uy and the initial elastic stiffness Ke is as 

follows 

Ry=Ke·uy (16) 

By substituting Eqs. (8) and (15) into Eq. (16), the yield 

force Ry is obtained 

Ry= ku/λ + kw (17) 

 

3.5 Shift stiffness Ks 
 

As shown in Fig. 3,  is satisfied after both the 

positive shift point A and the negative shift point B, with 

which Eq. (3b) can be revised as 

( )[1 1 ]2
ndw du

dt
w

dt
 − = −

 
(18) 

Thus, we get the slope of the w-u curve after the shift 

points 

( )[1 1 ]2
nd

w
w

du
 = − − 

 
(19) 

Differentiate Eq. (3a) with respect to displacement u 

u w

dR w
k k

udu

d

d
= +

 
(20) 

By substituting Eq. (19) into Eq. (20), the shift stiffness 

Ks is obtained 

( )s [1 1 2 ]
n

u wK k k w −= + − 
 

(21) 

Comparing Eq. (21) with Eq. (8), the following 

conclusion can be drawn: if 0≤ξ<0.5, Ks<Ke; if ξ=0.5, 

Ks=Ke; if ξ>0.5, Ks>Ke. The hysteresis loops of the 

normalized Bouc-Wen model with different values of ξ are 

shown in Fig. 5. Thus, we know that the relation between 

shift stiffness Ks and initial elastic stiffness Ke is decided by 

the parameter ξ in the model. 

 

3.6 Transition from elastic to plastic response 
 

A major difference between the bilinear model and the 

Bouc-Wen model is that the former simplifies the transition  

 

Fig. 6 Influence of n on the smoothness of transition 

 

 

from elastic to plastic response to a single point, while the 

latter features a smooth transition from elastic to plastic 

response, which is more accordant with the actual 

conditions. Structures and components may exhibit 

different smoothness of transition due to various materials, 

forms of structure, and boundary conditions, etc. Thus, the 

transition is also an aspect of the hysteretic characteristics 

concerned. 

As shown in Fig. 2, the restoring force defined by the 

normalized Bouc-Wen model is the parallel combination of 

an elastic linear component kuu and a nonlinear hysteretic 

component kww. Therefore, the transition is determined by 

the hysteretic component, i.e., the normalized internal 

variable w. Furthermore, the essence of the transition is 

actually the process that the slope of the w-u curve decrease 

from λ to 0, as shown in Fig. 4. As the transition only 

occurs when 0u w  , according to Eq. (3b), the slope of 

the w-u curve during transition is 

[1 ]
nd

w
w

du
= −

 
(22) 

Consider the process that w increases from 0 to 1 as 

shown in Fig. 4. Based on Eq. (22), if n is relatively small, 

the slope of the w-u curve decreases steadily as w increases. 

Thus, the transition tends to be smoother. If n is relatively 

large, the slope of the w-u curve stays almost unchanged 

when w is not near 1, and drops dramatically to 0 as w 

approaches near 1. Thus, the transition tends to be sharper. 

The transition of the normalized Bouc-Wen model with 

different values of n is shown in Fig. 6. Theoretically, when 

n→∞, the transition reduces to a sharp turning point, which 

made the normalized Bouc-Wen model equivalent to the 

bilinear model. Thus, we know that the smoothness of the 

transition is determined by the parameter n in the 

normalized Bouc-Wen model. Additionally, it should be 

noted that n needs to remain positive to avoid divergence of 

the solution. 

 
 
4. Identification scheme 
 

4.1 Definition and calculation of objective function 
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In order to identify the parameters of the normalized 

Bouc-Wen model based on a set of force-displacement test 

data, the error between the reconstructed hysteresis curves 

by the model and original hysteresis curves by the test 

needs to be minimized. Therefore, the parameter 

identification can be deemed as an optimization problem to 

minimize the objective function defined as 

exp sim 2

1

( )
N

i i

i

SSE R R
=

= −
 

(23) 

where SSE represents the sum of squared error between the 

experimental data and the model simulation data. N is the 

total number of sampling points. exp

iR  is the restoring force 

of the ith sampling point in the test data, while sim

iR  is the 

restoring force of the ith sampling point in the simulation 

data. 

When generating the simulation data using the model, 

there are generally two different situations regarding the 

type of the experimental test. For a displacement-controlled 

test, such as the pseudo-static loading test, the time history 

of displacement and its derivatives are readily available, so 

that the simulation data can be obtained directly by solving 

Eq. (3). For a force-controlled or acceleration-controlled 

test, such as the pseudo-dynamic test or the shaking-table 

test, the simulation data can be obtained by combining Eq. 

(1) and Eq. (3), then transforming the equations into a state-

space form, and finally solving the simultaneous equations 

using first-order differential equation solvers, such as the 

Runge-Kutta method (Charalampakis and Koumousis 2008, 

Shampine and Reichelt 1997). 

 

4.2 The improved genetic algorithm (IGA) 
 

Genetic algorithms (GAs) are a class of meta-heuristic 

algorithms which can be used to generate high-quality 

solutions for a variety of optimization problems. The first 

genetic algorithm was originally proposed by Holland 

(1975), and then developed by Goldberg (1989). After years 

of efforts, the genetic algorithms have been widely accepted 

as a powerful optimization tool and applied to various 

domains (Dao et al. 2017). The basic idea of the genetic 

algorithms is based on Darwin’s theory of natural selection 

and survival of the fittest. In a genetic algorithm, a 

population of individuals (i.e., candidate solutions) is 

randomly generated. After that, the population begins to 

evolve towards better solutions through the selection, 

crossover and mutation operators. During the process, the 

individuals with higher fitness (i.e., better solutions) have 

more chances to survive and pass their genes (i.e., 

characteristics) on to the next generation. Thus, an artificial 

system is modelled mathematically by emulating the real 

natural evolution. 

In this paper, the genetic algorithm is adopted to identify 

the parameters of the normalized Bouc-Wen model in terms 

of minimizing the objective function SSE. The fitness 

function is defined as 

exp sim 2

1

exp 2 exp 2

1 1

( )

1 1

( ) ( )

N

i i

i
N N

i i

i i

R R
SSE

fit

R R

=

= =

−

= − = −


 
 

(24) 

where 0≤fit≤1. Consequently, the individuals with lower 

SSE would possess higher fitness value, and thus have more 

chances to survive during the selection operation. In order 

to enhance the efficiency and improve the results of the 

identification process, a real-coded GA with improved 

genetic operators, namely, the improved genetic algorithm 

(IGA) is proposed. The major modifications to the genetic 

algorithm adopted in the identification are as follows. 

(1) Real coding 

The traditional genetic algorithms used binary coding to 

represent information in the solutions. However, the 

parameters of the normalized Bouc-Wen model are real 

numbers. Due to the mechanism of conversion from binary 

codes to real numbers, excessive length of binary coding 

strings may be needed in order to achieve satisfactory 

precision, which may largely increase the complexity and 

therefore affect the efficiency of the algorithm. Instead, real 

coding can be used as a good alternative. Meanwhile, the 

decoding procedure is eliminated when encoding with real 

numbers. Thus, the coding strategy used in this paper is (G1, 

G2, G3, G4, G5), where Gi is a real number representing the 

value of the ith parameter of the normalized Bouc-Wen 

model. 

(2) Adjustable tournament size in the selection operator 

The roulette wheel selection is a traditional and 

commonly used strategy for the selection operator. 

However, a premature convergence is likely to occur when 

using the roulette wheel selection because the probability of 

selection is directly proportionate to the fitness value of 

each individual. A preferable alternative to avoid premature 

convergence caused by the selection operator is to use the 

tournament selection strategy, which runs a “tournament” 

among a few individuals randomly chosen from the 

population and selects the winner with the best fitness value 

for crossover. The number of individuals which take part in 

the tournament is defined as the tournament size k. As a 

result, the probability of selection for each individual is not 

directly proportionate to its fitness value, so that premature 

convergence can be effectively avoided with respect to the 

selection operator. 

Furthermore, the selection pressure can be adjusted 

through the tournament size k (Alcan and Başlıgil 2012). If 

the tournament size is larger, weak individuals have a 

smaller chance to be selected, which may be explained that 

when a weak individual is selected to be in a tournament, 

there is a higher probability that a stronger individual is also 

in that tournament when the tournament size is larger. In the 

early phase of evolution, a smaller tournament size is 

preferable in order to maintain diversity in the population so 

that the solution space can be further explored, while in the 

final phase of evolution, when the difference among the 

fitness values of individuals are getting smaller, a larger 

tournament size is preferable in order to raise the selection 

pressure so that better individuals may stand out more 

easily during selection. Therefore, in this study, the 

tournament size is suggested to be adjustable, i.e., smaller 

in the early phase and larger in the final phase. 

(3) Adaptive crossover and mutation rates in the 

crossover and mutation operators 

Crossover rate pc and mutation rate pm are fixed in the  
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(a) Pc v.s. f 

 
(b) Pm v.s. f ' 

Fig. 7 Adaptive crossover and mutation rates 
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Fig. 8 Flow chart of the improved genetic algorithm (IGA) 
 

 

traditional GA. Srinivas (1994) proposed a theory of 

adaptive rates of crossover and mutation, in which pc and pm 

are not fixed but dependent on the fitness value as follows 

1 max max avg avg

c

2 avg

( ) ( )  ,   if   

 ,   if   

P f f f f f f
P

P f f

− − 
= 

  

(25) 

3 max max avg avg

m

4 avg

( ) ( )  ,   if   

 ,   if   

P f f f f f f
P

P f f

 − − 
= 

   

(26) 

where P1, P2, P3 and P4 are predefined constants between 0 

and 1. fmax is the maximum fitness value of the population,  

 
(a) front view 

 
(b) side view 

 
(c) size of the triangular plate 

Fig. 9 Diagram of the TADAS element 

 

 

while favg is the average fitness value of the population. f is 

the larger of the fitness value of the individuals to be 

crossed, while f ' is the fitness value of the individual to be 

mutated. As a result, pc and pm will be lower for better 

individuals, and higher for weaker individuals. In addition, 

when the differences between individuals tend to diminish, 

i.e., the gap between the maximum and average fitness 

value is narrowed down, the proposed mechanism 

automatically favors higher crossover and mutation rates. 

Thus, a trade-off between exploitation of the optimal 

solution and exploration of the solution space is maintained. 

However, according to Eqs. (25) and (26), the crossover 

and mutation rates of the best individuals are close to 0, 

which prevents the good individuals from further 

improvements, and is unfavorable in the early phase of the 

evolution. Therefore, further improvements are made, and 

the crossover and mutation rates in this study are modified 

as follows 

avg

c2 c1 c2 avg

max avgc

c1 avg

( ) cos  ,  if  
2

 ,   if   

f f
P P P f f

f fP

P f f

  −
+ −      −=   




 
(27) 

avg

m2 m1 m2 avg

max avgm

m1 avg

( ) cos  ,  if  
2

 ,   if   

f f
P P P f f

f fP

P f f

   −
+ −      −=   


 

 
(28) 

where Pc1 and Pc2 are the upper and lower bounds of the 

probability of crossover respectively. Pm1 and Pm2 are the 

upper and lower bounds of the probability of mutation 

respectively. By adopting the modified adaptive crossover 
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and mutation rates, Pc and Pm of the best individuals are Pc2 

and Pm2, respectively. The relationship between Pc and f, as 

well as Pm and f ', can be draw in Fig. 7. 

(4) Termination criteria 

The simplest way to terminate the implementation of 

GA is to set a maximum number of iterations. However, it 

is hard to determine the proper number of iterations needed 

to generate a satisfying solution in advance. Alternatively, a 

more reasonable way for termination of GA is to set a 

convergence tolerance ε. When the improvements of the 

best fitness value remain less than ε over a fixed number of 

iterations, the termination order is executed. 

In addition, previous studies have shown that the elitism 

scheme may enhance the performance of GA significantly 

(Deb et al. 2002, Zitzler et al. 2014). Therefore, elitism is 

built into the proposed IGA in this study which copies the 

best individual so far into the next generation in each 

iteration, to ensure survival of the best individual in 

subsequent generations. Furthermore, after the parameters 

of the normalized Bouc-Wen model have been identified, 

the corresponding hysteretic characteristics can be obtained 

by equations provided in Section 3. The flow chart of the 

entire process for parameter identification is shown in Fig. 

8, which is implemented through Matlab code. 

 

 

5. Identification using experimental test data 
 

5.1 Test setup and original data 
 

The TADAS device (Tsai et al. 1993, Saeedi et al. 2016, 

Mohagheghian and Mohammadi 2017) is a typical energy 

dissipation component for structural vibration control 

whose hysteresis behavior can be described by the Bouc-

Wen model. By installing the TADAS device in the 

structure, a large amount of earthquake input energy can be 

dissipated through the uniformly distributed plastic 

deformation on the steel triangular plates of the TADAS 

device. As a result, the dynamic response of the structure 

can be effectively reduced under seismic excitation. 

The TADAS device is composed of multiple pieces of 

TADAS elements in parallel. In order to investigate the 

hysteretic performance and evaluate the hysteretic 

characteristics of the TADAS element, a displacement-

controlled pseudo-static cyclic loading test was carried out 

in the structural engineering laboratory at Southeast 

University, based on which the implementation and 

effectiveness of the proposed identification method can be 

further verified. Details of the TADAS element are shown 

in Fig. 9, which is mainly consisted of a triangular plate for 

energy dissipation, an upper baseplate and a lower baseplate 

for connection with the main structure, and two channel 

plates with slotted holes. The upper end of the triangular 

plate is welded to the upper baseplate, while the lower end 

is welded to a roller bar, which is inserted into the slotted 

holes of the channel plates during assembly, as shown in 

Fig. 10. As a result, the upper boundary condition for the 

triangular plate is fixed, while the lower boundary condition 

is pinned. The triangular plate was made of 12 mm thick 

Q345 steel, whose nominal yield strength is 345 N/mm2. 

The schematic of the test setup is shown in Fig. 11. As  

 
(a) front view 

 
(b) side view 

Fig. 10 Picture of the TADAS element 

 

 

Fig. 11 Schematic diagram of the test setup 

 

 

Fig. 12 Deformed TADAS element 

 

 

shown, the TADAS element was installed between an upper 

block and a lower block in a pinned frame. As the actuator 

pulls/pushes the loading beam horizontal ly, the 

displacement (i.e. the inter-story drift) can be effectively 

imposed on the TADAS element. Similar test setups were 

also adopted in the experimental studies of various steel 

dampers conducted by Deng (2015) and Xu (2016). 

Deformation of the TADAS element during the cyclic 

loading is shown in Fig. 12. Displacement and force were  
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Fig. 13 Hysteresis curves of the TADAS element by test 

data 

 

 

measured during the cyclic loading process, from which the 

experimental hysteresis curves can be draw, as shown in 

Fig. 13.  

 

5.2 Implementation of identification 
 

The identification was implemented according to the 

procedures shown in Fig. 9 with the following 

configurations: population size Npop=40; initial tournament 

size k0=2 in the first 80 generations, with an increment of 1 

in each subsequent 40 generations; upper and lower bounds 

of the crossover rates Pc1=0.9 and Pc2=0.6; upper and lower 

bounds of the mutation rates Pm1=0.5 and Pm2=0.05. The 

convergence tolerance was set as ε=0.001. The iteration was 

terminated if the improvements of the best fitness value 

remains less than ε over 30 consecutive iterations. 

Additionally, in order to verify the stability of the 

algorithm, another three trials of identification were 

implemented by varying the tournament size, crossover rate 

and mutation rate.  

Comparison of the original hysteresis curves by 

experimental data and the reconstructed hysteresis curves 

by model simulation is presented in Fig. 14, in which the 

model simulation data is based on the identified results of 

the best trial with the highest fitness. Satisfactory agreement 

is reached between the original hysteresis curves and the 

reconstructed hysteresis curves. The iteration curves and 

identification results of the four consecutive trials of 

identification are shown in Fig. 15 and Table 1, 

respectively. The value of the fitness function remained 

almost unchanged over the four trials, which validates the 

stability of the algorithm. In addition, key hysteretic 

characteristics of the TADAS element can be obtained 

according to Eqs. (8), (12), (15), (17) given in Section 3, 

which leads to Ke=0.66 kN/mm, Kp=0.068 kN/mm, 

uy=15.63 mm, Ry=10.38kN. Thus, the identification and 

evaluation for the tested sample of TADAS element are 

completed. Furthermore, standard genetic algorithm(SGA) 

including elitism scheme, with roulette wheel selection, 

fixed Pc and Pm, is also used to implement the identification 

for comparison, which yields a result of ku=0.076, kw=8.87, 

λ=0.0726, ξ=0.680, n=4.06. The corresponding fitness value  

 

Fig. 14 Original and reconstructed hysteresis curves 

 

 

Fig. 15 Iteration curves of identification process 

 

Table 1 Parameter identification results 

Trial No. 

Parameters of normalized Bouc-Wen model 
Fitness 

function 

ku 

(kN/mm) 

kw 

(kN) 

λ 

(mm-1) 
ξ n fit 

1st 0.067 9.26 0.064 0.752 2.64 0.942 

2nd 0.068 9.32 0.064 0.771 2.32 0.943 

3rd 0.070 9.15 0.065 0.785 2.47 0.942 

4th 0.068 9.38 0.063 0.843 1.86 0.941 

Average 0.068 9.28 0.064 0.789 2.44 0.941 

Max relative 

deviation* 
4.40% 2.48% 3.13% 11.55% 33.58% 0.21% 

*Max relative deviation is defined as the ratio of the 

difference between the maximum value and the minimum 

value to the average value, i.e., (Max-Min)/Average. 

 

 

is fit=0.920, notably less than the results obtained by IGA. 

Therefore, the SGA may easily get trapped in local minima, 

while the IGA shows better robustness and effectiveness in 

the identification. 

 

 

6. Simplified identification based on parameter 
sensitivity 
 

It is noticed from Table 1 that the identification results  
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(a) SSE as sensitivity index 

 
(b) fit as sensitivity index 

Fig. 16 Spider diagram of parameter sensitivity 

 

 

of ku, kw, and λ are stable over the four trials, whose max 

relative deviations are all within 5%, while the 

identification results of ξ and n vary from each trial, whose 

max relative deviations go beyond 10% and 30% 

respectively. However, the values of the fitness function are 

almost the same over the four trials. A possible reason may 

be explained that the objective function and the fitness 

function are more sensitive to the variance of ku, kw, and λ, 

while less sensitive to the variance of ξ and n. In order to 

verify the supposition, a parameter sensitivity study need to 

be conducted. 

 

6.1 Parameter sensitivity 
 

Typical methods for parameter sensitivity analysis can 

be categorized into either “local sensitivity analysis” or 

“global sensitivity analysis” (Hamby 1994). The local 

sensitivity analysis is implemented by repeatedly varying 

one parameter at a time while holding the others fixed at 

chosen nominal base values, which is the simplest and most 

commonly used way to conduct parameter sensitivity 

analysis. It is also referred to as the one-factor-at-a-time 

method (Ma et al. 2004). 

In this paper, parameter sensitivity analysis is conducted 

through the one-factor-at-a-time method, with the base 

values chosen as {ku, kw, λ, ξ, n}={0.1 kN/mm, 10 kN, 0.1 

mm-1, 0.5, 2}. Each parameter is varied ±10%, ±20%,  

 
(a) Original and reconstructed hysteresis curves 

 
(b) Iteration curve 

Fig. 17 Hysteresis curves and iteration curve by simplified 

identification 

 

 

±30%, ±40% and ±50% from its base value, and the 

objective function SSE defined by Eq. (23) and the fitness 

function fit defined by Eq. (24) are chosen as the sensitivity 

indices. The base values are used to calculate exp

iR , while 

the varied values are used to calculate sim

iR . The hysteresis 

behavior is evaluated for a full cycle using the base and 

varied parameter sets, with the displacement amplitude set 

as ±50 mm, and the total number of sampling points set as 

N=400. 

Spider diagrams are obtained by plotting the sensitivity 

indices against the varied percentages of each parameter as 

shown in Fig. 16. The results show that ξ and n exhibit 

obviously lower sensitivity than kw, ku and λ. Since the 

variance of ξ and n has only a minor influence on SSE and 

fit, and thus has a minor influence on the offset of the 

hysteresis curves, they can be categorized as the low-

sensitivity parameters. 
 

6.2 Simplified identification 
 

Given that the low-sensitivity parameters have relatively 

smaller influence on the value of the objective function and 

the fitness function, the efficiency of the identification 

process can be further enhanced by narrowing down the 

search ranges and relaxing the accuracy requirements of the 

low-sensitivity parameters based on the specific conditions. 

Practically, very sharp transitions are rarely observed in the 

hysteresis curves of metallic energy dissipaters like the 
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TADAS device. Thus, the actual upper limit for n can be set 

as 10. Moreover, minor changes of n wouldn’t cause 

obvious change to the hysteresis curves. Therefore, n can be 

set as an integer number instead of a real number. Hence, 

the search range for n in the parameter identification of 

normalized Bouc-Wen model for the TADAS element may 

be narrowed down to integer numbers between 1 and 10. In 

addition, the shift stiffness Ks is normally very close to the 

elastic stiffness Ke for the TADAS device. Thus, according 

to Eq. (21), the search range for ξ may be narrowed down to 

the neighborhood of 0.5, or even be directly set as 0.5 in the 

simplified identification method. 

Once more the identification was implemented 

according to the aforementioned simplified identification 

method, in which the parameters to be identified are 

reduced to {ku, kw, λ, n} by setting ξ=0.5 in advance, and the 

search range for n is further narrowed down to integers 

within [1, 10]. The hysteresis curves and iteration curves by 

the simplified identification method are shown in Fig. 17. 

Compared with the iteration curves in Fig. 15, it is shown 

that the convergence rate is greatly enhanced. The final 

identified results of the parameters are ku=0.065 kN/mm, 

kw=9.28 kN, λ=0.068 mm-1, ξ=0.5, n=2, and the fitness 

value for the final solution is fit=0.936, which is just 

slightly less than that before simplification. Therefore, the 

balance between the quality of the results and the efficiency 

of the algorithm can be achieved through the simplified 

identification method by reasonably restricting the low-

sensitivity parameters to narrower ranges and properly 

relaxing the accuracy requirements of the low-sensitivity 

parameters. 

 
 
7. Conclusions 
 

This paper reveals the relations between the normalized 

Bouc-Wen model parameters {kw, ku, λ, ξ, n} and the 

corresponding hysteretic characteristics, i.e., the initial 

elastic stiffness Ke, plastic stiffness Kp, yield displacement 

uy, yield force Ry, shift stiffness Ks and smoothness of 

transition from elastic to plastic response. The proposed 

parameter identification method based on the improved 

genetic algorithm (IGA) can effectively identify the 

parameters of the normalized Bouc-Wen model, and the 

simulated curves based on the identification results agree 

well with the hysteresis loops by the experiment. 

Furthermore, it is indicated that the efficiency of the 

identification process can be greatly enhanced without 

noticeably degrading the quality of the solution by 

reasonably restricting the low-sensitivity parameters to 

narrower ranges. The products of the study can provide 

effective reference for the application of the normalized 

Bouc-Wen model. However, it should be noted that the 

normalized Bouc-Wen model in the present study does not 

include pinching, degrading or other additional effects. In 

order to describe and evaluate hysteretic behaviors for a 

broader range of structures and components, more advanced 

forms of the normalized Bouc-Wen model are to be studied 

in the future researches. 
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