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1. Introduction  
 

Recently, rotating flexible beam modelling was 

important due to its practical uses, such as flexible 

manipulator arms, compressor and helicopter rotor blades, 

turbine blades, and so on (Yoo et al. 2006). Many 

researchers have studied the vibrations of these structures 

due to their importance in the industry. If the functions for 

axial forces, cross-section and stiffness of beam with 

variable area are defined, the differential equation of motion 

will be solved in some cases. Ece et al. (2007) provided 

analytical solution, using exponential functions for cross 

section and moment of inertia into the beam. Liu and Yeh 

(1987) used the linear functions for cross section and the 

moment of inertia and obtained natural frequencies of 

rotating beam with variable cross section. Banerjee et al. 

(2006) studied vibration of rotating tapered beams using the 

dynamic stiffness method and Frobenius method. The 

authors showed that the dynamic stiffness method has some 

limitations in some taper ratio while provides a solution to 

these limitations. In another study, the authors examined 

Coriolis effects on vibrations of rotating beams using the 

dynamic stiffness method (Banerjee et al. 2014). 

In particular, solving differential equations of beams 

with variable cross-sectional area is challenging. Rotating 

beam leads to create a variable axial force and in certain 

cases the analytical solution of differential equations would 

be impossible. Then, researcher for accurate modeling used 

numerical methods such as FEM (Rao and Gupta 2001, 

Gunda and Ganguli 2008, Panchore et al. 2018, Panchore et  
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al. 2018). It is shown that finite element and numerical 

methods have an identical specification. In all numerical 

methods, to increase the accuracy of the results, suitable 

numbers of elements or steps are needed. Though, once the 

system size or the number of elements increases, the size of 

the matrices increases, then the computing time increases 

too (Kumar and Sankar 1986).  

Transfer Matrix Method (TMM) is simple and accurate 

enough and it is used to analyze the vibration of beams (Lee 

and Lee 2018, Arici and Granata 2011)  and other 

structures (Chen 2018, Bozdogan and Ozturk 2009). 

Transfer matrix method has also some advantages in 

computer implementation (Feyzollahzadeh and Mahmoodi 

2016, Li et al. 2000, Pestel and Leckie 1963) such as, ease 

of software design, small memory supplies and obtainability 

of ready-made transfer matrix catalogues for different 

elements. On the other hand, in TMM, the accuracy of the 

results achieved by increasing the number of elements and 

the determination of the characteristic matrices are not 

dependent on the number of elements, unlike the numerical 

methods (Feyzollahzadeh et al. 2016). Transfer matrix 

method is an excellent option for modelling a lot of 

different systems, particularly those composed of serial 

connections of elements. A system model can be created by 

a simple multiplying of the transfer matrices of the 

individual elements together, and the number of states is 

added and as a result, using the transfer matrix method can 

decrease the computational process (Krauss and Okasha 

2013). Then it seems that transfer matrix method is 

appropriate for vibration analysis of the beam with variable 

cross section. Boiangiu et al. (2016) considered the 

vibration of Euler-Bernoulli beam and determined Transfer 

matrix for tapered elements by defining a second order 

function for cross section and fourth order function for the 

moment of inertia. Al Rjoub and Hamad (2017) discussed 
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free vibration of Euler-Bernoulli and Timoshenko porous 

beams using transfer matrix method. Although the transfer 

matrix method has many advantages, it also has some 

limitations. For instance, in the high modes, transfer matrix 

method contains numerical difficulties which lead to 

inaccurate natural frequencies (Pestel and Leckie 1963). 

Therefore, transfer matrix method is suitable for systems in 

which low vibration modes are dominant in the design. 

Also, in many cases when a very stiff spring exists between 

two elements or in the presence of joint with high 

flexibility, determination  of natural frequencies using the 

transfer matrix method would be difficult (Pestel and 

Leckie 1963, Uhrig 1966). In this paper, a semi analytical 

model is presented for free vibration analysis of rotating 

beam with variable cross section. For this purpose, the 

rotating beam is discretized using the transfer matrix 

method and expending the Euler-Bernoulli equation. To 

simplify the equations, it is assumed that the axial force is 

constant for each element. With this assumption, differential 

equation of each element can be turned into a differential 

equation with constant coefficients that can be solved by the 

separation of variables methods. In this case, the presented 

model can be used without cross-sections limitation. In 

order to eliminate numerical difficulties in transfer matrix, 

Riccati transfer matrix method (RTMM) is used for high 

rotation speed and high vibration modes. In this case, by 

using the Riccati transformation, the natural frequencies in 

the high modes and high rotation speed are easily 

determined. On the other hand, in the transfer matrix 

method, the simulation time for free vibrations is 

proportional to n2 but it is proportional to n2/2 in the Riccati 

transfer matrix (Horner and Pilkey 1978). Thus, the 

dimensions of the matrices are reduced in Riccati transfer 

matrix. Therefore, the computational cost is reduced 

compared to the traditional transfer matrix method. Finally, 

several case studies will be calculated and also the errors of 

the proposed model will be examined.  

 

 
2. Equations of motion 

 
Fig. 1 shows the rotating beam with constant rotational 

speed. Using Euler-Bernoulli beam theory, the free 

vibration equation of a rotating non-uniform beam can be 

expressed as (Attarnejad and Shahba 2011)  

2 2 2

2 2 2
( ) ( ) ( ) 0

W W W
EI x A x T x

x x t x x


      
+ − =   

      

 (1) 

( )2( ) ( ) du

L

x

T x A u R u=   +  (2) 

where W is lateral deflection, EI(x) is bending stiffness, ρ is 

density, A(x) is cross-sectional area, L is beam length,  is 

rotational speed and R is hub radius.  

With the solution supposed to ( , ) ( )exp(i )W x t w x t= , 

the spatial dimension of Eq. (1) is obtained as follows 

 

 

 

Fig. 1 A view of rotating beam 
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 (3) 

To solve the Eq. (3), it needs to have cross-sectional 

area and moment of inertia functions along the beam. If the 

functions of cross sectional area and moment of inertia are 

determined, the exact solution of Eq. (3) will be obtained in 

some cases. However, Eq. (3) does not have an exact 

solution in general. On the other hand, T(x) in Eq. (3) is an 

integral relationship solution which would be difficult. To 

provide a comprehensive solution for all forms of cross-

section, the transfer matrix method is used in this paper.  

 

 
3. Applying the transfer matrix method 
 

3.1 Modelling 
 

For modelling by the transfer matrix method, the 

rotating beam is discretized into n cylindrical continuous 

beam elements with constant cross-section as shown in Fig. 

2. It is assumed that the length of each element xi is 

negligible. In this case, the axial force, bending stiffness 

and the cross section for each element take into account 

constant and differential equation of motion for each 

element is transformed as the following 

4 2
2

4 2
0i i i

d v d v dv
EI P A

d d d
 

  
− − =  (4) 

where, Pi is determined by the discretization of Eq. (2), EIi 

and Ai can be considered by average of the points i and i-1. 

In this case, solution of Eq. (4) can be expressed as 

1 1 2 1 3 2 4 2( ) cosh sinh cos sinv C s C s C s C s    = + + +  (5) 

in which 

( )

1/2
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i ii
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  
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 

 (6) 

 

3.2 Obtaining the transfer matrix 
 

Concluding from the derivation of dimensional solution, 

the slope θ, shear force V and moment M for each segment  
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Fig. 2 Discretization of rotating beam applying the TMM 
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(7) 

The relations in Eq. (7) can be represented in matrix 

form as 

Z(η) = T(η).C  (8) 

where T(η) is called transfer matrix function, z(η)  is state 

vector and C is vector of constants which are obtainable as 

follows 

1

2

3

4

,

Cv

C

CM

CV



  
  
  = =
  
  

   

Z(η) C
 

(9) 

Fig. 2 shows ith elements. In The point i-1, amount of η 

equal to zero and the state vector is acquired 

i-1Z = T(0).C  (10) 

and vector C is 

-1

i-1C = T(0) .Z  (11) 

by inserting vector C in Eq. (10), the state vector can be 

obtained as follows 

-1

i-1Z(z) = T(η).T(0) .Z  (12) 

In the point i, amount of η equal to l and the state vector 

is 

-1

i i-1 i i-1Z = T(l).T(0) .Z = H .Z  (13) 

herein, H i is transfer matrix between two nodes i and i-1.  

 

3.3 Applying boundary conditions 
 

Using a recursive relationship in Eq. (13), the state 

vector between the first point at the support and the end 

point can be described as follows 

n n n-1 n-2 2 1 1 t 1
Z = H H H ...H H Z = H Z  (14) 

where Zn is state vector at the end, Z1 is state vector at the 

support and Ht is total transfer matrix. At the end of the 

beam, value of Vn and Mn are equal to zero. If assume that 

fulcrum is clamped, slope and displacement are equal to 

zero at the support. In this case the, the relationship between 

the point 1and point n can be obtained as 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 1

0

0

0

0
n

a a a av

a a a a

a a a a M

a a a a V


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    
    =
    
    

    

 (15) 

for non-zero answer should be zero determinant of the 

following matrix  

33 34

43 44

det( )
a a

a a


 
 =  

 

 (16) 

If assume that fulcrum is hinge joint, the moment and 

displacement are equal to zero at the base. In this case, the 

relationship between the point 1 and point n can be obtained 

as 

11 12 13 14
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0

0 0

0
n
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a a a a
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 
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    

 
(17) 

In a same manner to the previous, Δω can be obtained as 

follows  

32 34

42 44

det ( )
a a

a a


 
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(18) 
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Δω is a function of the natural frequency that by resolve 

and determination of its roots can be obtained natural 

frequency of rotating beam.  

 

 

4. Riccati transfer matrix 
 
4.1 Riccati transformation 

 

To use Riccati transformation, the state vector is divided 

into two parts  

 
T

iZ = F E  (19) 

where F is n/2 state variables that are known on the first 

point and E contains n/2 state variables that are unknown on 

the first point. Therefore, Eq. (13) converts as follows 

11 2

21 22 1i i−

      
= +      

      

1 f

f

U U FF F

U U EE E
 (20) 

that Ff and Ef represent the external forces in the ith 

element. The Riccati transformation is defined as  

i i i iF = S E + P  (21) 

By inserting Eq. (21) in Eq. (20), Ei can be obtained as 

follows 

( )i 21 i-1 22 i-1 21 i-1 fE = U S + U E + U P + E  (22) 

By rewriting the Eq. (22), Ei-1 is obtained as follows 

( ) ( ) ( )
-1 -1

i-1 21 i-1 22 i 21 i-1 22 21 i-1 fE = U S + U E - U S + U U P + E  (23) 

T and Q are defined as follows (Yu and Hao 2012)  

( )

( )

-1

i 21 i-1 22

i 21 i-1 f

T = U S + U

Q = - U P + E

 (24) 

Therefore, Eq. (21) is represented as follows 

i-1 i i i iE = TE + TQ  (25) 

By inserting Eq. (21) and Eq. (25) in Eq. (20), Fi can be 

obtained as follows 

( ) ( )  i 11 i-1 i i i i-1 12 i i i fF = U S TE +Q + P + U TE +Q + F  (26) 

By placing Eq. (21) in Eq. (26), the Riccati transfer 

formulation can be expressed as 

( )i 11 i-1 12 i

i 11 i-1 i i f

S = U S + U T

P = U P + S Q + F
 (27) 

Eq. (27) is the overall recursive relation for 

determination of S and P at each section. 

 

4.2 Applying boundary conditions 
 

To apply the Riccati method, F and E must be specified. 

If the support to be considered as a hinge joint, in this case 

the bending moment and displacement are equal to zero at 

the base. In this case, F and E are selected as follows 

,
v

M V

   
   
   

F = E =  (28) 

On the other hand, if support is clamped, F and E are 

selected as follows 

,
v M

V

   
   
   

F = E =  (29) 

Hence, the first point was selected a homogeneous for F. 

Thus, the boundary conditions at the first point are obtained 

as follows  

 0F = 0  (30) 

In the free vibrations, value of P and Q are equal to zero 

for all elements. Therefore, from Eq. (21) can be obtained 

as 

 
2 20S = 0  (31) 

Now, the boundary conditions were applied at the end 

point. At the free end of the beam, value of En
 is equal to 

zero. Therefore, Eq. (21) for the end point is obtained as 

follows 

 n nF = S 0  (32) 

Fn is non-zero, therefore, value of Sn must be zero. Thus 

 can be determined as 

( ) -1

n= det S  (33) 

 

 

5. Results and discussion  
 

5.1 Beam with constant cross section 
 

In order to examine the accuracy of the proposed 

method, natural frequency of rotating beam is evaluated 

using the TMM and the results are compared with the 

results of previous study (Liu and Yeh 1987). In order to 

make a dimensionless natural frequency, the following 

equation was used: 2 4A L EI  = . Also, to make 

dimensionless rotating, this equation was applied:
 

2 4A L EI =  . To determine natural frequencies, a 

program is prepared in the MATLAB software and results 

shows in Fig. 3 for λ=2, 6 and 10. Using the above diagram 

can be calculated the natural frequency from the jumping 

points. Using Fig. 3, first to third natural frequencies of 

rotating uniform beam are shown in Table 1. To check the 

sensitivity of the transfer matrix method related to the 

number of elements, natural frequencies in 2, 5 and 10 

element is determined. By examining the values in Table 1, 

it can be seen that in all the vibration modes, increasing the 

rotational speed lead to reduced accuracy of the results. On 

the other hand, sensitivity of the number of elements in high 

value of rotational speed is more important. For example, 

for the case λ = 0 that beam has not rotation, natural 

frequency values are the same for all three models. This is 

due to the influence of axial force. The axial force is  
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Table 1 Comparison of the TMM results with the previous 

results for the first to third natural frequencies  

Liu and 

Yeh (1987) 

Present study (TMM) 
λ 

n=10 n=5 n=2 

3.5160 3.5160 3.5160 3.5160 0 

First natural 

frequency 

4.1373 4.1366 4.1344 4.1118 2 

5.5851 5.5826 5.5751 5.5159 4 

7.3608 7.3558 7.3410 7.2145 6 

9.2580 9.2497 9.2263 9.0145 8 

11.2051 11.1928 11.1596 10.8497 10 

22.0345 22.0345 22.0345 22.0345 0 

Second 

natural 

frequency 

22.6150 22.6169 22.6229 22.6967 2 

24.2737 24.2810 24.3037 24.5649 4 

26.8109 26.8256 26.8726 27.3621 6 

30.0004 30.0233 30.0986 30.7953 8 

33.6513 33.6817 33.7871 34.6369 10 

61.6972 61.6972 61.6972 61.6972 0 

Third natural 

frequency 

62.2732 62.2757 62.2835 62.3461 2 

63.9674 63.9767 64.0078 64.2537 4 

66.6868 66.7065 66.7751 67.3121 6 

70.3013 70.3334 70.4527 71.3681 8 

74.6673 74.7129 74.8948 76.2520 10 

 

 

Fig. 3 Logarithm of the Δω for λ=2, 6 and 10 

 

 

Fig. 4 First natural frequency changes 
 

 

Fig. 5 Second natural frequency changes 

 

 

Fig. 6 Third natural frequency changes 

 

 

negligible at low value of rotational speed. Therefore, the 

low number of elements leads to high accuracy in the 

results. On the other hand, increasing the rotation speed 

leads to increase of the axial force and in this case, using 

the low number of elements leads to decrease accuracy in 

the results. 

In Figs. 4 to 6, the effect of rotational speed variations 

on the natural frequencies in a number of elements is 

investigated. For this purpose, in Fig. 4 the first natural 

frequency, in Fig. 5 the second natural frequency and in Fig. 

6, the third natural frequency is presented. By examining 

the above figures, it can be seen that increase of rotation 

speed lead to increase the natural frequency in all vibration 

modes. 

For closer look at the effect of the number of elements 

in the results, error plotting in terms of the number of 

elements can be useful. This diagram is plotted in Figs. 7-9 

for the first to third natural frequencies. By examining the 

above figures, it can be seen that by increasing the number 

of the elements, the slope of error for all frequencies has 

decreased. Then, by increasing the number of elements, the 

slope is nearly constant. In this case, another error creates in 

addition error of beam with constant cross-section. In the 

beam with constant cross section, the only error is error of 

assuming constant axial force in elements. In beam with  
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Fig. 7 The relative error in terms of the number of elements 

for the first natural frequency 

 

 

Fig. 8 The relative error in terms of the number of elements 

for the second natural frequency 

 

 

variable cross section, addition to this error, the bending 

stiffness modeling error and bending stiffness modeling  

 

 

Fig. 9 The relative error in terms of the number of elements 

for the second natural frequency 
 

 

Fig. 10 Magnified section of Fig. 7 
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E1: error of bending stiffness modeling (λ=0, n=5)

E2: error of axial force modeling (λ=2, n=5)

E3: error of axial force modeling (λ=10, n=5)

E1

E2

E3

Table 2 Comparison of the TMM results with the previous results for the first to third natural frequencies             

Wang and Wereley 

(2004) 

Gunda and 

Ganguli 

(2008) 

Present study (TMM) 
λ 

n=200 n=100 n=40 n=20 n=10 n=5 n=2 

5.2738 5.2738 5.2737 5.2734 5.2717 5.2656 5.2414 5.1464 4.5116 0 

First natural frequency 
5.7249 5.7249 5.7202 5.7155 5.7016 5.6782 5.6306 5.5240 5.0284 2 

7.6443 7.6443 7.6235 7.6032 7.5454 7.4592 7.3220 7.1557 6.8716 5 

12.1092 12.1092 12.0608 12.0135 11.8786 11.6773 11.3600 11.0069 10.7939 10 

24.0041 24.0041 24.0035 24.0019 23.9902 23.9491 23.7861 23.1584 20.2111 0 

Second natural 

frequency 

24.4129 24.4130 24.4077 24.4017 24.3787 24.3236 24.1489 23.5380 20.8055 2 

26.4581 26.4581 26.4303 26.4032 26.3252 26.2036 25.9725 25.4362 23.6030 5 

32.7367 32.7369 32.6481 32.5637 32.3358 32.0315 31.6382 31.2524 30.9605 10 

59.9708 59.9702 59.9684 59.9633 59.9273 59.7995 59.2957 57.4092 57.0416 0 

Third natural 

frequency 

60.3676 60.3670 60.3608 60.3517 60.3054 60.1653 59.6509 57.7831 57.5815 2 

62.4078 62.4070 62.3791 62.3495 62.2510 62.0491 61.4812 59.7055 58.3652 5 

69.1875 69.1852 69.0895 68.9961 68.7350 68.3415 67.6093 66.0867 65.3380 10 
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Table 4 Hardware and software specifications of the used 

personal computer 

Value Item 

Microsoft Windows 7 Ultimate OS Name 

HP ProBook 4520s System Model 

Intel(R) Core(TM) i5 CPU M 480 @ 2.67 
GHz 

Processor 

4.00 GB RAM 

6.1.7601 Service Pack 1 Build 76016 Version 

X86-based PC System Type 

Version = “6.1.7601.17514” Hardware 

4.29 GB 
Available Virtual 

Memory 

 

 

Fig. 11 The simulation time for different number of 

elements 

 

Table 5 Comparison of the RTMM results with the previous 

results 

Present study 

(RTMM) 

Rayleigh-Ritz 
(Ganesh and Ganguli 

2013) 

FEM 
(Ganesh and 

Ganguli 2013) 
λ 

14.0010 14.0570 14.0313 12 

51.6010 51.8413 51.8334 50 

100.8237 100.8237 100.8197 100 

 

 

error can also be added in the results. In the discretization of 

a beam with variable cross section assumed that the cross 

sectional area and bending stiffness are constant for each 

element.  To clarify this issue, a part of Fig. 7 has been 

magnified in Fig. 10. It shows that the error rate depends on 

the number of elements and rotational speed. The axial 

force is zero for not rotational beam is (λ = 0) and there is 

only an error due to bending stiffness modeling. When the 

number of elements and the rotational speed are small (λ = 

2, n = 5), the bending stiffness of the beam model is very 

different from the actual value. On the other hand, the 

amount of axial force is small because the rotational speed 

is small. Therefore, in this case, the error rate of bending 

stiffness modeling is greater than the axial force modeling. 

With increasing the rotational speed (λ = 10, n = 5), the 

amount of axial force increases. Hence, the axial force error  

 

Fig. 12 Logarithm of the Δω for λ=12, 50 and 100 

 

 

Fig. 13 Comparison of the TMM with RTMM 

 

 

is greater than the bending stiffness error. Thus, to increase 

the accuracy, high number of elements at high rotational 

speed must be applied. 

In the following, the effect of number of elements on the 

simulation time in different rotational speed value is 

investigated. Table 4 shows the hardware and software 

specifications of personal computer employed for the 

analysis. In Fig. 11, the simulation time for different 

number of elements and different rotational speed is 

displayed. It can be addressed from above figure that the 

simulation time is only dependent on the number of 

elements. On the other hand, the simulation time has a 

linear relationship with the number of elements. This can be 

a useful tool for estimating simulation time for optimization 

algorithms and so on. 

Formerly, TMM numerical difficulties are investigated 

in different rotation speed. For this purpose, three rotation 

speed ranges including: low rotation speed (λ=12), normal 

rotation speed (λ=50) and high rotation speed (λ=100) are 

evaluated (Ganesh and Ganguli 2013). In Fig. 12, logarithm 

of Δω is plotted at high frequencies for three rotation speed. 

By examining Fig. 12 can be obtained that the transfer 

matrix method leads to numerical difficulties in the high 

vibration modes. Creation of numerical difficulty is 

proportional to rotation speed and by increasing the rotation 

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

C
P
U

 T
im

e
 (

se
c)

Number of Elements

λ=0

λ=2

λ=5

λ=10

Numerical difficulty range for λ=100 

Numerical difficulty range 

for λ=50 

  

Numerical difficulty 

range for λ=12 
  

205



 

Mahdi Feyzollahzadeh and Mahdi Bamdad 

 

speed, numerical difficulties is created in lower vibration 

modes. For instance, the transfer matrix method contains 

numerical difficulty after the tenth mode for λ = 12. For λ = 

50, numerical difficulty is created after the sixth mode and 

for λ=100, it is not possible to calculate the natural 

frequency using the transfer matrix method. Therefore, for 

high rotational speed, or high vibration modes, the transfer 

matrix method cannot be a suitable method for determining 

the natural frequencies. In order to solve this problem, the 

Riccati transfer matrix is used in Fig. 13. For this purpose, 

in the above figure, logarithm of Δω for λ=50 is plotted 

using TMM and RTMM. Also, the natural frequency in 

different rotation speeds are determined using the RTMM in 

Table 5 and the results are compared using previous 

research (Ganesh and Ganguli 2013). For this purpose, the 

RTMM results have been compared with the results of the 

finite element method and Rayleigh-Ritz method in 

(Ganesh and Ganguli 2013). As it is clear from the Fig. 13 

and Table 5, the Riccati transfer matrix has been stable in 

high modes. Therefore, Riccati transfer matrix can be used 

to determine the high frequencies in the rotational beams.  

 

 

6. Conclusion  s  

 

In this paper, Riccati transfer matrix method was used to 

free vibration analysis of rotating beam with variable cross 

section. For this purpose, the Euler-Bernoulli’s beam 

differential equation was used and by applying the 

boundary conditions, the required equations were obtained 

for determination of the natural frequencies. The procedure 

achieved by the presented transfer matrix method is applied 

in several case studies that results can be categorized as 

follows: 

• Unlike the analytical methods that are applicable to the 

specific models, the proposed method can be used for 

rotating beam vibration without cross-sectional area 

limitation. 

• In all vibration modes, with increasing rotational speed 

the natural frequencies also increase. 

• The results of the presented model have two sources of 

error, including assuming constant axial force and bending 

stiffness modeling. When the beam is not rotational (λ = 0), 

the axial force is zero and there is only an error due to 

bending stiffness modeling. When the number of elements 

and the rotational speed are small (λ = 2, n = 5), the bending 

stiffness of the beam model is very different from the actual 

value and the amount of axial force is small. Therefore, the 

error rate of bending stiffness modeling is greater than the 

axial force modeling. With increasing the rotational speed 

(λ = 10, n = 5), the amount of axial force increases. 

Therefore, the axial force error is greater than the bending 

stiffness error.  

• Presented model errors are proportional to the 

rotational speed and number of elements. Accuracy in the 

model grows with increasing number of elements. In this 

case, the determinant of the characteristic equation does not 

depend on the number of elements unlike the numerical 

methods such as FEM. Therefore, with increasing elements 

number, the simulation time does not significantly grows. 

On the other hand, by using Riccati transformation, the 

dimensions of the matrices are reduced. Therefore, the 

simulation time is reduced compared to the traditional 

transfer matrix method. As an example for a case study, by 

selecting 50 elements, the simulation time was about 15 

seconds and with the selection of 200 elements, the 

simulation time was about 50 seconds.  

• Riccati transfer matrix has been stable in high 

vibration modes and therefore, it can be used to determine 

the natural frequencies in high rotational speed. As an 

example for a case study, the transfer matrix method 

contains numerical difficulty after the tenth mode for λ = 

12. For λ = 50, numerical difficulty is created after the sixth 

mode and for λ=100, it is not actually possible to calculate 

the natural frequency. As a result, Riccati transfer matrix 

can be employed to determine the natural frequencies 

without rotational speed limitations.   
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