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1. Introduction  
 

The viscoelastic phenomenon is exhibited for a wide 

range of materials, including polymers, ceramics, metals, 

biological materials, geological materials, synthetic 

composites, and cellular solids. Due to the ability of these 

materials to energy loss, they are important in vibrations, 

sound control, dynamic stability, fatigue, and shock 

resistance. Furthermore, the functionally graded materials 

(FGM) which they are the materials with a non -

homogeneous structure whose properties, such as density, 

Poisson's ratio, and Young’s modulus vary continuously in 

one or two directions can be included by viscoelastic 

materials. Accordingly, the behavior investigation of the 

structures made up of viscoelastic functionally graded 

materials (VFGM) seems to be useful with more exact 

models due to development of technologies for producing 

such materials that have simultaneously vibration damping 

properties and continuity changes of the material properties. 

For the sake of difficulty and the high cost of experiments, 

the analytical approaches and simulations are of great 

significance. Consequently, different theoretical methods 

have been utilized by researchers to investigate the dynamic 

(Pawlus 2016), stress (Alipour and Shariyat 2013) and 

thermal (Rad and Shariyat 2016) behaviors of annular  
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plates. Wang and Chen (2002) determined the natural 

frequencies and modal loss factors of a three-layered 

annular plate with two laminated face layers and a 

viscoelastic core using the finite elements method (FEM) 

through the first order shear deformation theory (FSDT). 

Salehi and Aghaei (2005) studied the dynamic large 

deflection of non-axisymmetric circular viscoelastic plates 

by employing the higher-order shear deformation theory 

and the finite difference technique. The standard linear solid 

(SLS) model was used for a viscoelastic material. Ansari et 

al. (2014) developed Mindlin’s microplate model based on 

the modified strain gradient theory to determine the 

axisymmetric buckling, bending, and natural frequencies of 

circular and annular microplates composed of FG using the 

generalized differential quadrature (DQ) method. Liang et 

al. (2014, 2015) introduced a new method for response 

determination of the FGMs structures with the three-

dimensional theory of elasticity. This method is a 

combination of the state space method, DQM, and 

numerical inverse Laplace transform. They investigated 

some different cases. They analyzed the annular plates with 

the various boundary conditions, the sector plates subjected 

to a transverse load with exponential distribution and 

different circular boundary conditions, a plate subjected to 

the underwater shock loading with considering the effect of 

fluid-solid interaction and the plate problem using the 

Kirchhoff thin plate theory under various boundary 

conditions. Dai et al. (2015) exhibited a transient response 

of a circular sandwich plate with an FG central disk and two 

piezoelectric layers based on the FSDT and geometrical 

nonlinear kinematic. The problem was solved by using the 

finite difference, Newmark’s and iterative methods. 
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Khadem Moshir et al. (2017) declared an analytical 

procedure for free vibrations of annular viscoelastic plates 

based on the perturbation technique and the FSDT. Alavi 

and Eipakchi (2018) studied the asymmetric free vibrations 

behavior of an annular viscoelastic plate analytically by 

considering the FSDT formulation. Malekzadeh et al. 

(2018) used the FSDT and DQM for free vibration analysis 

of FG nanocomposite annular plate reinforces by graphene 

nanoplates.  

According to the aforementioned survey of the 

literature, it seems that there are no studies to determine the 

dynamic response of VFGM annular plates under 

impulsive, step and harmonic transverse loads, different 

boundary conditions, and various load profiles with 

considering the structural damping, and FSDT analytically. 

Most researchers used the numerical methods such as the 

FEM to obtain the transient response of the FG plate. In the 

presented work, we tried to represent an analytical 

procedure to find the response of the annular VFGM plates 

based on the FSDT. In simulation of the viscoelastic 

structures, the most authors do not attend that the behavior 

of a viscoelastic structure is different in bulk (dilatational) 

and shear (deviatoric) and in the variety of viscoelastic 

structures, JUST the shear behavior is “viscoelastic” and it 

means that the shear modulus is time-dependent but they 

usually consider the tensile behavior as viscoelastic or 

Young`s modulus is time-dependent. Also, they usually 

derived the governing equation (which is usually “one” 

discrete equation) as a differential-integral form which it 

has an iterative (or numeric) solution. This research does 

not encounter this problem i.e. the shear and bulk behaviors 

are separated and an analytical solution based on the 

perturbation technique for the governing equations are 

presented which are three-coupled partial differential 

equations (PDE) with variable coefficients. In addition, 

several numerical cases are accomplished to study the 

effects of graded indexes, different transverse loads, aspect 

ratios, boundary conditions, and material properties such as 

the viscosity and elasticity modulus on the response of the 

VFGM plate. The results are compared with the FEM. 

 

 

2. Basic formulation 
 

2.1 Mechanical and geometrical characteristics 
 

FGMs are often made up of a combination of two 

different materials, e.g., one metal and another ceramic in 

such a way that the properties of the resulting composition 

change as a continuous function of the spatial coordinates. 

In many applications, the importance of analyzing the 

dynamic behavior of structures made of FGM seems to be 

necessary. Therefore, the transient response characteristics 

are considered for FGM annular plates. For this purpose, an 

axisymmetric cylindrical coordinate system (r, z) with the 

origin at the center of the midplane (z=0) has been 

considered. In this system, r and z denote the radial and 

through-to-thickness directions, respectively. The plate has 

the outer radius ro, inner radius ri and thickness h. It is 

subjected to a transverse distributed pressure Q(r,t) on the  

 

Fig. 1 Geometry of FG annular plate 

 

 

upper surface and t denotes the time. The geometric of the 

plate has been shown in Fig. 1. The material density and 

Young’s modulus has been assumed to vary through the 

power law in the thickness direction. According to this rule, 

the mechanical characteristics of the VFGM plate such as, 

Young’s modulus E(z) and the mass density ρ(z) has been 

supposed to vary as a function of the volume fractions that 

may be expressed in the following form (Srividhya et al. 

2018) 

( ) ( ) ( )

( ) ( ) ( )

c m f m

c m f m

E z E E V z E

z V z   

= − +

= − +
 (1a) 

where Ec and Em denote Young’s modulus of the top and 

bottom materials, respectively; ρm and ρc indicate the mass 

density of materials at the bottom and top, respectively; Vf 

is the volume fraction of the material and it can be defined 

as follows (Srividhya et al. 2018) 

( ) ( / 0.5)n

fV z z h= +  (1b) 

n is the power-law index which takes positive values in 

this research and indicates the volume fraction gradation. 

Due to achieve a better describing of Eqs. (1), Young’s 

modulus variation in the thickness direction z, for Al/Al2O3 

annular plate with different values of grade index n, has 

been shown in Fig. 2. Based on Fig. 2, it is revealed that FG 

plate rapidly approaches to ceramic’s one as n<1. Also, 

when n>1, the mixture of the metal phase is more than the 

ceramic one. It should be mentioned that, for n = 0 and n = 
 , the plate is totally ceramic and metal, respectively 

(which is not shown here). 

  

2.2 Governing equations 
 

Based on the FSDT, for an axisymmetric case, the radial  
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and transverse displacement components u(r,z,t) and w(r,z,t) 

for a point in the annular FG plate are written as follows 

0 1

0

( , , ) ( , ) ( , )

( , , ) ( , )

u r z t u r t zu r t

w r z t w r t

= +

=
 (2) 

in which, u0, w0 denote the radial and transverse 

displacements of the mid-plane and u1 is an unknown 

dimensionless function. The strain-displacement relations 

for axisymmetric small deformations can be written as the 

following (Sadd 2009) 

( )

0 1

0 1

0
1

z ; 0

1 1
;

r z

rz

u uu w

r r r z
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u zu
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

 
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


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= + = +
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(3) 

The stress-strain relations, according to the Hooke law 

can be represented as (Sadd 2009) 

2
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( )( ) 2
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(4) 

where K, G are the bulk and shear modulus. The kinetic 

energy T and the strain energy U of an elastic plate may be 

expressed as 

2 2
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/2

/2

/2
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( )
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(5a) 

 

 

The external work due to the transverse distributed 

pressure Q which is applied on the upper surface of the 

plate (z=h/2) can be defined as follows 

0

2

( , ) ( , / 2, )
o

Q
i

r

r
W r Q r t w r h t drd


=    (5b) 

By using Hamilton’s principle, the governing equations 

and the boundary conditions are derived (Sadd 2009). 

2

1

0; Q

t

t
Ldt L T U W = = − +  (6) 

On the basis of Eqs. (5), (6), three equations of motion 

in terms of the stress resultants are determined as the 

following 

0

0 0

2 1

0

,

,
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where the superscript dot denotes the partial derivative with 

respect to time. The stress resultants and the inertia terms 

are defined as follows 
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 (7b) 

Ks denotes the shear correction factor. It is well-known 

that the first-order shear deformation plate theory requires 

an appropriate shear correction factor to compute the 

transverse shear force. This quantity depends on some 

factors e.g., the shape of the cross-section, Poisson’s ratio, 

and aspect ratio. Some researchers presented the formulas 

 

Fig. 2 Variation of Young modulus for various value of grade index through the dimensionless thickness 
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to calculate this parameter (Faghidian 2017, Romano et al. 

2015). The presented formula in different papers usually 

relates to the homogenous structures. In the current 

investigation, the structure has the time-dependent and FG 

properties simultaneously and here, an average value 

Ks=5/6 is accepted (Shariyat and Alipour 2013). The 

boundary conditions corresponding to Eq. (7a) for an 

annular plate is 

0 1 0[ ] 0; [ ] 0; [ ] 0o o o

i i i

r r r

r r r r r rrN u rM u rQ w  = = =  (7c) 

In order to derive the governing equations, it is 

necessary to choose a rheological model. These models 

contain different combinations of spring and dashpot 

elements. Three custom models are Maxwell, Kelvin, and 

SLS models (Fig. 3). The investigation of their constitutive 

equations shows that the Maxwell model cannot predict the 

creep behavior of a viscoelastic material and the Kevin 

model is not appropriate to model the relaxation behavior 

but the SLS model is successful to describe both the 

relaxation and creep behaviors. (Brinson and Brinso 2008). 

So, in the presented study, the SLS model is used for the 

formulation of the problem. Also, it is assumed that the 

viscoelastic material obeys the SLS model in shear and 

elastic in bulk i.e., K=K0 where K0 is a constant (elastic 

bulk modulus). The general state of the stress at a point can 

be separated into two parts, one relates to a change of shape 

(deviatoric) and the other return to the change of volume 

(dilatational). For the deviatoric part, one can write 

P1τij=Q1γij. P1, Q1 are differential operators and include the 

modulus and viscosity of each spring and damper in the 

mechanical models. In the elastic case, the shear stress-

strain relation is τij=2Gεij, so G=Q1/2P1. The viscoelastic 

operators are expressed as the following (Brinson and 

Brinson 2008) 

1 1

1 2 1

1

2 1 2 1

* *
0

1 1
2(1 ); ( )

;
1 1

; ( );

Q D P D
G G G

D
K

G K G
G t G G G







= + = + +

=


= = + =


 
(8) 

where τ is the relaxation time and D is the time derivative 

operator. By substituting G into Eq. (7a) and applying the 

time derivative operator on the equations, the governing 

differential equations of motion for a VFGM plate are 

derived in the general following form 

0 0 1 ( , )[ , , , , , / , ] 0

0..2, 0..3, 1..3

n m n m

i Q r tL u w u r t t r

m n i

+   =

= = =
 (9) 

Li are differential operators and Eqs. (9) contain three 

coupled partial differential equations with varying 

coefficients. 

 

 

3. Analytical solution 
 

For generality and convenience, the motion equations 

are converted to non-dimensional forms at first and the 

perturbation technique is utilized to solve them. The non- 

 

 

 

Fig. 3 Rheological models (Brinson and Brinson 2008) 

 

 

dimensional terms are introduced as follows 

* * * * *0 0
0 1 1 0

0 0

; ; ; ;
u wr t

r t u u u w
r t h h

= = = = =  (10a) 

where (..)* stands of the non-dimensional form of the 

quantity (..). By applying Eqs. (10a) into governing 

equations Eqs. (9), the following non-dimensional terms 

appear as the coefficients of some terms 

2

0 0 0 0

2

0
0

0

; ; ;
/

h h
e

K t t r

r
t

K

 
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
= = = =  (10b) 

ε is a small parameter which is taken as the perturbation 

parameter. Also, a new space variable X=(r*-1)/ε is defined. 

The method of multiple scales in perturbation technique is 

used for the solution. The used timescales are T0=t*, T1=ε t* 

(Nayfe 1993). Using the chain rule implies 

2 2 2

* *2 2

0 1 0 0 1

3 3 3

*3 3 2

0 0 1

; 2

3

t T T t T T T

t T T T

 



     
= + = +

      

  
= +

   

 (11) 
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By substituting Eqs. (10), (11) into Eq. (9), the non-

dimensional forms of motion equations are obtained as 

follows 

1

* * * *
10 0 1 11 0 1

2 * *
12 0 1

:

,

[ , ] [ , ]

[ , ] 0

Eq L

R

L u u u u

u u



 +

+

=
 (12a) 

* * * * * *
2 20 0 1 0 21 0 1 0

2 * * *
22 0 1 0 ,

: [ , , ] [ , , ]

[ , , ] 0

L L

R

Eq u u w u u w

u u w


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+

=
 (12b) 
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3 30 1 0 31 1 0

2 * *

32 1 0

: [ , , ] [ , , ]

[ , , ] 0

L Q L Q

R

Eq u w u w

u w


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+

+ =
 (12c) 

L and R are differential operators. The explicit 

dimensionless forms of operators are given in the appendix. 

It should be noted that Eq. (12c) is a none-homogeneous 

equation. Here, an analytical approach based on the 

perturbation method for the response of the presented 

VFGM plate is applied. We seek a straightforward 

expansion for the solution as the following 

* * * *

0 00 0 1 01 0 1

* * * *

1 10 0 1 11 0 1

* * * *

0 00 0 1 01 0 1

( , ; ) ( , , ) ( , , )
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 

 

 

= +

= +

= +

 (13) 

The equations for different orders of ε can be specified 

as follows 

1

0

* * * * *

10 00 10 2 20 00 10 00

* * *

3 30 10 00
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: [ , , ] 0

Eq L

L Q

O

L u u Eq u u w

Eq u w

 )

= =

=

 (14a) 
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+ =

+ =

 (14b) 

Eqs. (14) are non-homogeneous systems of coupled 

partial differential equations with constant coefficients. 

According to Eq. (7c), the boundary conditions for special 

cases are defined as the following 

Clamped:  
0 1 0

0; 0; 0u u w= = =  (14c) 

Simply supported:  
0 0

0; 0; 0r u wrM = = =  (14d) 

Free:  0; 0; 0r r rrN rM rQ= = =  (14e) 

 

3.1 Order-zero 

The solution of Eqs. (14a) in agreement with the 

generalized Fourier series method may be represented as 

0 1 1m 0 1
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 (15) 

where L=Xo-Xi and φim (i=1..3) are the mode shapes 

(eigenfunctions) of the system which are extracted by 

solving the homogenous form of Eq. (14a) employing the 

perturbation technique (Khadem et al. 2017, Alavi and 

Eipakchi 2018). By substituting Eqs. (15) into Eq. (14a), it 

results that 

1m 1m 1 2 2m 2
1 1

3m 3m 3
1

( ) ; ( )

( )

m
m m
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P X F

 
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 (16) 

Because there are different equations for each value of 

the graded index, we present the formulas just for n=1 

2
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2 5 1
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P1m, P2m, and P3m are calculated from the orthogonality 

property as follows 

jm

jm

jm jm

( , ( ))

( ( ), ( ))



 
=

jF X
P

X X
 (18a) 

where (p,q) is the inner product of the functions and it is 

defined as follows 

( ( ), ( )) ( ). ( )= 
o

i

X

X

p X q X p X q X dX  (18b) 

Eqs. (17) are three coupled ordinary differential 

equations which their general solutions can be considered as 
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αj (j=1..9) are eigenvalues of Eqs. (17). aj(T1), bj(T1) and 

cj(T1) are unknown coefficients that will be determined 

later. 

 

3.2 Order-one 
 

The solutions of Eq. (14b) are considered as the 

following 
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By using Eqs. (20), (15), (14b) it results that 
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where 
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=  (22) 

On the basis of Eq. (22), it is known that Eqs. (14b) 

have secular terms and before determination its particular 

solution, it requires to eliminate its secularity. For this 

object, the solvability condition is employed (Nayfeh 1993). 

The particular solutions of Eq. (22) for secular terms can be 

written 
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By substituting Eqs. (23) into Eqs. (22), and picking out  

Table 1 Geometrical and material properties 

Outer radius (m) 

Viscoelastic modulus (MPa) 

Viscosity coefficient (Pa.s) 

Ceramic density (Al2O3) (Kg/m3) 

Metal density (Al) (Kg/m3) 

Ceramic modulus (GPa) 

Metal modulus (GPa) 

Poisson’s ratio 

a=ro=0.15 

G1=0.55, G2=9.5 

η=7.6E4 

ρc= 3800 

ρm=2070 

Ec = 380 

Em = 70 

ν=0.3 

 

Table 2 Equations of different load distribution 

Profile Equation:  Q(X)=Q0.f(X) 

Constant f(X)=1

 

- 

Linear f(X)= a1X + b1 
a1=6.473×10-5, 

b1=4.531×10-4 

Parabolic f(X)= a1X2 + b1X 
a1= -2.774×10-5,  

b1= -1.942×10-4 

Sine 
f(X)= a1sin(πX/L);  

L=Xout - Xin 
a1= -3.559×10-4 

 

 

the terms with coefficients exp (iαjT0) (j=1..9), a set of first 

order ordinary differential equations to assess αj (T1), bj (T1) 

and cj (T1) is detected. The constants composed in solving 

differential equations can be computed by employing the 

zero initial conditions. 

 

 

4. Numerical analysis 
 

Before exhibiting the results, the efficiency of the 

proposed solution technique should be examined. Abaqus 

FE package has been utilized for numerical analysis. 

CAX8R element has been used in this study which is 

a quadratic axisymmetric element with eight nodes and two 

translation degrees of freedom in each node. The 

viscoelastic shear modulus is defined using the Prony series 

as the following 

00
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(24a) 

In this research for the SLS model, values N=1, G00=G1 

were adopted. After modeling the viscoelastic behavior, the 

user-defined field (USDFLD) technique was used to apply 

the material properties changes through the thickness 

direction based on the power law distribution (Abaqus User 

Manual 2013). Also a sensitivity analysis has been 

performed for determining the mesh size and time step. The 

characteristics of the structure have been listed in Table 1. 

The results obtained for the viscoelastic plate can be 

obtained by substituting τ→0 to an elastic plate. For this 

case, Fig. 3 is converted to two parallel springs which have 

the equivalent value Gs as the following 

1 2

1 2

s

G G
G for

G G
= = 

+
 (24b) 
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For high damping (η→∞) the equivalent shear modulus 

is Gs= G1. For the values η≠0, the equivalent shear modulus 

has been defined as Gs=G1 in this research. The bulk  

 

 

 

 

modulus K0, is as the following 

0

2 1

3 1 2
sK G





+
=

−
 (24c) 

 

Fig. 4 Analytical and numerical transverse response 

 

Fig. 5(a) Effect of viscoelasticity on dynamic response of FG and VFGM plate (S-S) 

 

Fig. 5(b) Effect of viscoelasticity on dynamic response of FG and VFGM plate (C-C) 
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K0 is used in Eqs. (10) and it is just to report the results 

as dimensionless quantities. 

 

 

 

 

 
 
5. Results and discussion 
 

A mathematical program was developed to find the 

dynamic response of a VFGM plate based on the presented  

 

Fig. 5(c) Effect of viscoelasticity on dynamic response of FG and VFGM plate (S-C) 

 

Fig. 5(d) Effect of viscoelasticity on dynamic response of FG and VFGM plate (C-S) 

 

Fig. 5(e) Effect of viscoelasticity on dynamic response of FG and VFGM plate (S-F) 
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Fig. 6 Transverse deflection for different boundary conditions t = 0.5 s 

 

Fig. 7 Transverse response for different viscoelastic coefficients (η-Pa.s) 

 

Fig. 8 Transverse deflection for different load profiles t = 0.5 s 
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analytical solution on Maple 15 environment. The effects of 

the main parameters such as load type, boundary conditions,  

 

 

 

 

thickness ratio hr=h/a, aspect ratio rr=ri/ro, viscose 

coefficient, elasticity modulus, and grade index on the  

 

Fig. 9(a) Transverse response for different elasticity modulus (G1- Pa) 

 

Fig. 9(b) Transverse response for different elasticity modulus (G2-Pa) 

 

Fig. 10 Transverse response for one and two terms 
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dynamic response behaviors of VFGM annular plates are 

examined. An FE analysis using Abaqus package has been 

employed as a benchmark to demonstrate the correctness of 

the presented method. The optimum element number was 

1800 and the time step was adopted as 0.001 sec by trial 

and error. All the time responses have been reported for the  

 

 

 

 

 

FSDT, at r=(ro+ri)/2 (mid-radius), hr=0.1, rr=0.3, n=1, 

constant load profile and simply supported except that the 

mentioned cases. 

 

5.1 Transient response under step function 

 

Fig. 11 Transverse response for step function loading 

 

Fig. 12(a) Transverse response for different thickness ratio 

 

Fig. 12(b) Transverse deflection for different thickness ratio 
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In the first numerical example, the transient response 

due to a step function load is demonstrated. A distributed  

 

 

 

 

load as the following is considered 

 

Fig. 13 Transverse response for different radius ratio 

 

Fig. 14 Effect of volume fraction (n) on response of VFGM annular plate 

 

Fig. 15 Transverse response of elastic, FG and VFGM annular plates 
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Q(X,T0) = (1-H(T0-t1
*)).Q(X) (25) 

where H(t) is the Heaviside step function and t1
*=t1/t0, t1=1 

sec in this study. The selected spatial parts of the load 

profile (Q(X)) are constant, linear, parabolic, and sine 

distributions. The equations of these profiles have been  

 

 

 

 

 

shown in Table 2. All of the profiles have the same static 

equivalent Q0=270 Pa. 

To demonstrate the accuracy of the current method, 

analytical results are compared with the FE method. The 

FSDT and FE results for transverse response at r=(ro+ri)/2  

 

Fig. 16(a) Radial deformed shape for various boundary conditions at (z=h/2, t = 0.5 s) 

 

Fig. 16(b) Radial response for step load in time domain(z=h/2) 

 

Fig. 17 Dynamic response for different grade index in frequency domain 
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have been displayed in Fig. 4. Close matching of the 

presented results can be recognized from Fig. 4 and 

difference between the FSDT and FE is insignificant. It 

should be noted that the computational time for the FE 

method may be remarkable for a long time but, in the  

 

 

 

 

suggested method, this is not important and it possible to 

find the dynamic response even for a long time 

immediately. The influences of the FG and VFG materials 

on the time history for different boundary conditions are 

given in Figs. 5. The symbols C, S, F stand of Clamped,  

 

Fig. 18 Transverse response for different grade index in time domain 

 

Fig. 19(a) Dynamic response for different thicknesses in frequency domain 

 

Fig. 19(b) Transverse response for different thicknesses in time domain 
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Simple and Free boundary conditions. The boundary 

conditions are designated with two characters: the first letter 

denotes the boundary condition at the inner edge and the 

second shows the outer radius boundary condition e.g., S-F 

means that the inner radius has simply supported condition  

 

 

 
 

and the outer radius is free. Based on Figs. 5, it reveals that 

the dynamic response of the S-F condition is much less in 

comparison with another one. In this case (S-F), the first 

mode of vibrations is rigid body motion, and the reported 

results for this case relates to the first bending mode  

 

Fig. 20 Transverse response for different radius ratio in time domain 

 

Fig. 21(a) Transverse response for various boundary conditions in time domain 

 

Fig. 21(b) Transverse response for various boundary conditions in time domain 
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second mode shape). Also, the average values of the 

transverse deflection for S-S, C-C, S-C, C-S, and S-F 

boundary conditions are -22.5×10-2, -0.5×10-2, -8×10-2, -

9.5×10-2 and -0.3×10-2, respectively. In all cases, the 

viscoelasticity decreases the vibrations amplitude. The 

effect of various boundary conditions on the transverse  

 

 

 

 

deflection for a typical time t = 0.5 s has been shown in Fig. 

6. As can be seen, the deformed shapes for S-S boundary 

conditions is larger than the other cases. The effect of 

various viscosity coefficients on the time response of 

VFGM plate has been demonstrated in Fig. 7. It is found 

that the amplitude and period of dynamic response will  

 

Fig. 22 Radial response for impulse load in time domain (z=h/2) 

 

Fig. 23 Transverse response versus different grade index in frequency domain 

 

Fig. 24 Transverse response versus radius ratio in the frequency domain 
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decrease by enhancing the values of structural damping due 

to the dissipation of system energy. The investigations 

showed that by increasing the viscosity coefficient more 

than a special value (in this work the value of 7.6E5 Pa.s), 

this parameter does not affect on the transverse deflection 

and the oscillations of the system will stop (these figures do 

not display here). Besides, the calculations showed that by 

decreasing the viscosity coefficient less than 2.6×102 the 

system exhibits nearly elastic behavior. Fig. 8 visualizes the 

deformed shapes of the mid-plane under different proposed 

profiles for a typical time t=0.5 s. The results for constant 

and linear loadings cases are close. Also, the results for 

parabolic and sin cases are nearly the same. 

The effects of different elasticity modulus G1 and G2 on 

the lateral response are displayed in Figs. 9. It can be found 

that by enhancing the value of G1 the frequency of the 

response increases and the transverse amplitude reduces 

but, increasing the value of G2 leads to enhancing the 

deflection and period of vibrations. In fact, by increasing 

G2, the effect of the Kelvin element in the SLS model 

decreases and the response of the system depend on the 

value of G1. 

To survey the convergence of Eqs. (13), the transverse 

response for one-term and two-term expansions have been 

illustrated in Fig. 10. It is seen that in the present 

investigation taking into account, one-term is sufficient for 

convergence and terms with order-one can help to remove 

the secularity and finding the dependency of the coefficients 

on “T1” (aj(T1), bj(T1), cj(T1) in Eqs. (19)).  

In the viscoelastic plate, the oscillations gradually 

damped with time, due to the structural damping and the 

system vibrates around its static deflection. The influence of 

damping on the FSDT transverse response has been shown 

in Fig. 11. The plate oscillates around its static deflection, 

and after removing the load, the oscillations of the plate 

continues around zero. The effect of thickness ratio on the 

transverse response has been presented in Fig. 12(a) for the 

FSDT and VFGM plate. By increasing the stiffness due to 

increasing the plate thickness, the vibrations amplitude 

decreases and the oscillations frequency increases. Also, 

the thickness effect on the maximum transverse deflection 

at a selected position of the VFGM annular plate has been  

 

 

plotted in Fig. 12(b). Based on Fig. 12(b) it can be 

concluded that the transverse deflection decreases as the 

plate thickness increases. Fig. 13 demonstrates the effect of 

different radius ratio on the results. It is seen that by 

increasing the radius ratio, the amplitude of vibrations 

decreases and the oscillations frequency increases. It is 

noted that changing the thickness or radius ratios may alter 

both the mass and stiffness of the plate.  

The effect of grade index on the time history of the 

midpoint of the plate has been demonstrated in Fig. 14. 

Increasing the volume fractional exponent increases the 

period and amplitude response. The influence of various 

material properties and viscoelasticity on the plate response 

has been shown in Fig. 15. The results show that the 

maximum transverse deflection in the VFGM plate is less 

than the FG plate but in viewpoint of response amplitude, 

the viscoelastic amplitude is less than the others.  

Figs. 16 demonstrate the radially deformed shape under 

various boundary conditions. As may be observed in Fig. 

16a, deflection for C-C boundary conditions is less than 

another one as expected. Also, the effect of damping has 

been shown in Fig. 16(b). According to these figures, the 

radial deflection is smaller than the transverse one.  

 

5.2 Transient response under Impulse excitation 
 

A shock absorption material should have the capacity to 

reduce or eliminate oscillations over a large range of 

frequencies. In the present section, the plate response for an 

impulse load has been analyzed. An impulse excitation 

applied on the upper surface of the plate as the following 

form 

00 0( , ) ( )Q X QT T=  (26) 

Where δ is Dirac function. Figs. 17, 18 display the effect 

of different grade index (n) on the transverse response of 

the VFGM plate in frequency and time domains. It is 

detected that with enhancing the grade index, the frequency 

of the response decreases and the response amplitude 

increases or increasing the volume fractional exponent 

tends to convert the material with more deformation 

 

Fig. 25 Transverse response for harmonic load in time domain 
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capacity one. 

Figs. 19(a), (b) present the transverse response in 

frequency and time domains for different values of 

thickness ratios. Increasing the thickness leads enhancing 

the response frequency and decreasing the response 

amplitude of the plate. The effect of different radius ratios 

on the transverse response in the time domain has been 

shown in Fig. 20. It can be seen that with increasing the 

radius ratio, decreases the amplitude of vibrations. Figs. 21 

present lateral response of a plate subjected to impulse load 

with different boundary conditions. Based on these figures, 

with enhancing the plate stiffness, the amplitude of the 

lateral response decreases. As mentioned before, the first 

mode of S-F boundary conditions is rigid body motion and 

in this research, the second mode (which is the first bending 

mode) has been considered in Eqs. (15). 

The radially time-history response of the VFGM annular 

plate under impulse loading and C-C boundary conditions 

depicted in Fig. 22. The radial response is obtained at z=h/2 

in Eqs. (13). It is evident that the amplitude of the 

vibrations for thicker plates is less the thinner ones.  

 

5.3 Transient response under harmonic load 
 

Now, the plate response subjected to harmonic lateral 

load has been investigated. The equations of motion that 

were in the time domain, transform to the frequency domain 

and then they are solved. The VFGM annular plate includes 

simply supported at both edges. The mathematical 

formulation of this response is as the following 

0
( , ) sin( ); 200ex exQ X Qt t Hz = =  (27) 

The response curve under harmonic load with four grade 

indexes (n = 0.001, 1, 3, 5) has been presented in Fig. 23. 

As can be seen, with increasing the graded index, the 

frequency of the response decreases. In Fig. 24, the 

variation of frequency response for different radius ratio has 

been plotted. Four-value for radius ratio has been 

considered. It is observed that by raising the radius ratio, the 

frequency of vibrations increases in the studied range.  

Fig. 25 shows the response in the time domain for the 

harmonic load. The beating phenomenon is seen in the 

response. 

 

 

6. Conclusions 
 

In this contribution, an analytical approach based on the 

perturbation technique combined with the generalized 

Fourier expansion method has been performed to determine 

the response of the VFGM annular plates under transverse 

excitation with the FSDT. This procedure can convert a 

system with variable coefficients to a system of constant 

coefficients. By providing an appropriate program, it is 

achievable to determine the effect of different geometrical, 

materials and loading parameters on the response rapidly, 

i.e., it is a convenient method for studying the response 

sensitivity to input parameters. The formulation can use for 

different boundary conditions. Some of the points 

mentioned include: 

• A unified dynamic analysis method was introduced for 

the VFGM annular plates. 

• The convergence rate of the presented solution is fast. 

• In spite of the numerical method (e.g., FE) the 

computational time does not depend on the selected time 

duration. 

• The FSDT response is in a good matching with the FE.  

• The presented formulation can be utilized for different 

load profiles in time and space domain. 

• In the impulse response, with increasing the grade 

index, the frequency of the response decreases but the 

response amplitude increases. 

• Increasing the radius ratio decreases the amplitude of 

vibrations and increases the oscillations frequency. 

• By increasing the viscosity coefficient (until to a 

specified value), the response period and amplitude reduce. 

• In among of the boundary conditions C-C, C-S, S-C, 

S-S, the response amplitude for C-C is less the other cases 

but the frequency of the response for C-C is more than the 

other cases. 
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Acronyms 
 

FGM functionally graded materials 

VFGM viscoelastic functionally graded materials 

FEM finite elements method 

FSDT first order shear deformation theory 

SLS standard linear solid 

DQ differential quadrature 

PDE partial differential equations 
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