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1. Introduction  
 

During the past few years, wide spread attention has 

been given to thermoelasticity theories that defines the 

deformation and heat flow in a continuum. When a material 

body is subjected to an external force or loads, it transmits 

mechanical waves. For example, if a sudden heat is applied 

in a solid body, it will create a mechanical wave through 

thermal expansion. The study of interaction between 

mechanical and thermal fields is one of the most extensive 

and productive areas of continuum dynamics. The proposed 

model is helpful for finding the type of interaction between 

mechanical and thermal fields as most of the structural 

elements of heavy industries are frequently related to 

mechanical and thermal stresses at a higher temperature. 

Ailawalia and Narah (2009) had studied the deformation 

of a rotating generalized thermoelastic solid beneath the 

impact of gravity with a superimposing infinite 

thermoelastic fluid due to different forces acting along the 

interface. Ailawalia et al. (2010) had studied a rotating 

generalized thermoelastic medium with two temperatures 

beneath hydrostatic stress and gravity with different types 

of sources using integral transforms. Marin (1997) had 

proved the Cesaro means of the kinetic and strain energies 

of dipolar bodies with finite energy. Sharma and Kaur 

(2010) presented the propagation of Rayleigh waves in a 

generalized thermoelastic half-space with voids. The 

surface chosen is stress-free and thermally insulated. They 

detected the elliptical paths during the Rayleigh wave  
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motion without rotation. Kumar and Devi (2011) considered 

the thermoelastic material in Lord and Shulman theory (L-

S) and coupled theory (CT) of thermoelasticity with one 

relaxation time having voids depending upon modulus of 

elasticity and thermal conductivity. Abd-Alla et al. (2012) 

investigated the Rayleigh waves propagation in a 

homogeneous orthotropic elastic medium with impact of 

rotation, initial stress and gravity field by Lame’s potentials 

and governing equations.  

Singh and Yadav (2012) solved the transversely 

isotropic rotating magnetothermoelastic medium equations 

by cubic velocity equation of three plane waves without 

anisotropy, rotation, and thermal and magnetic effects. 

Banik and Kanoria (2012) studied the thermoelastic 

interaction in an isotropic infinite elastic body with a 

spherical cavity for the three-phase-lag heat equation with 

two-temperature generalized thermoelasticity theory and 

has shown dissimilarities between two models: the two-

temperature Green-Naghdi theory with energy dissipation 

and two-temperature three-phase-lag model and has shown 

the effects of ramping parameters and two-temperature. 

Mahmoud (2012) had considered the influence of rotation, 

magnetic field, relaxation times, initial stress and gravity 

field on attenuation coefficient and Rayleigh waves in an 

elastic half-space of granular medium and obtained the 

analytical solution of Rayleigh waves velocity by using 

Lame’s potential techniques.The reflection of plane 

periodic wave’s occurrence on the surface of generalized 

thermoelastic micropolar transversely isotropic medium had 

been studied by Kumar and Gupta (2012) to calculate 

complex velocities of the four waves i.e., quasi-longitudinal 

displacement (qLD) wave, quasi-transverse displacement 

(qTD) wave, quasi-transverse microrotational (qTM) wave 

and quasi thermal (qT) waves from the complex roots of a 

quartic equation. 

Abouelregal (2013) had investigated the induced 
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displacement, temperature, and stress fields in an infinite 

transversely isotropic boundless medium with cylindrical 

cavity due to a moving heat source and harmonically 

varying heat in reference to the linear theory of generalized 

thermoelasticity with dual phase lag model. Abd-Alla and 

Alshaikh (2015) had discussed the effect of rotation and 

magnetic field on plane waves in transversely isotropic 

thermoelastic medium under the Green-Lindsay theory with 

two relaxation times of generalized thermoelasticity to 

show the presence of three quasi plane waves in the 

medium. Marin et al. (2013) has modelled a micro stretch 

thermoelastic body with two temperatures and eliminated 

divergences among the classical elasticity and research. 

Gupta and Gupta (2014) studied the effect of rotation on the 

propagation of plane waves in a transversely isotropic 

medium in the context of thermoelasticity theory of GN 

theory of types II and III. Gupta and Gupta (2014) studied 

the effect of initial stress in a rotating transversely isotropic 

medium for GN theory of type-II and III on the propagation 

of plane waves and, obtained three waves a quasi-

longitudinal wave, a thermal wave and a quasi-transverse 

and obtained the amplitudes of their reflection coefficients. 

Mahmoud et al. (2015) studied the impact of the initial 

stress and rotation on harmonic waves propagation in a 

human long dry bone (transversely isotropic material). They 

solved the equations of elastodynamic in terms of 

displacements. Sharma et al. (2015) investigated the two 

dimensional deception in a homogeneous, transversely 

isotropic thermoelastic solids with two temperatures in 

Green-Naghdi-II theory with an inclined load (linear 

combination of normal load and tangential load). Shaw and 

Mukhopadhyay (2015) exemplified the generalized theory 

of thermoelasticity including the thermal relaxation time, 

electric displacement current, and the coupling of heat 

transfer and microrotation of the material to study the 

propagation of plane harmonic waves in an infinitely long, 

isotropic, micropolar plate a uniform magnetic field. Two 

potential functions were used to determine the effect of the 

presence of thermal and magnetic fields on the phase 

velocity. 

Kumar et al. (2016) investigated the effects of Hall 

current in a transversely isotropic magnetothermoelastic 

with and without energy dissipation due to normal force. 

Kumar et al. (2016) studied the conflicts caused by 

thermomechanical sources in a homogeneous transversely 

isotropic thermoelastic rotating medium with magnetic 

effect and two temperature and applied this to the 

thermoelasticity Green-Naghdi theories with and without 

energy dissipation using thermomechanical sources. 

Bijarnia and Singh (2016) studied the propagation of plane 

waves using Lord and Shulman theory of generalized 

thermoelasticity in a transversely isotropic thermoelastic 

solid half-space with voids and rotation and solved to 

illustrate the existence of four plane waves and its reflection 

from thermally insulated stress free surface. Kumar et al. 

(2016) illustrated the effect of Hall current and magnetic 

field due to thermomechanical sources on GN-II and GN-III 

theories in a rotating transversely isotropic homogeneous 

thermoelastic medium with two temperatures. Lata et al. 

(2016) studied two temperature and rotation aspect for GN-

II and GN-III theory of thermoelasticity in a homogeneous 

transversely isotropic magnetothermoelastic medium for the 

case of the plane wave propagation and reflection. Mona 

and SE (2017) compared the theory of thermoelasticity with 

two relaxation times and without energy dissipation. Kumar 

et al. (2017) considered a thick circular plate with 

axisymmetric heat supply with traction free lower and upper 

surfaces of the plate. Ezzat et al. (2017) proposed a 

mathematical model of electro-thermoelasticity for heat 

conduction with memory-dependent derivative. Kumar et 

al. (2017) analyzed the Rayleigh waves in a homogeneous 

transversely isotropic magnetothermoelastic medium with 

two temperature, with Hall current and rotation. Marin et.al. 

(2017) studied the GN-thermoelastic theory for a dipolar 

body using mixed initial BVP and proved a result of 

Hölder’s-type stability. Parveen Lata (2018) studied the 

effect of energy dissipation on plane waves in sandwiched 

layered thermoelastic medium of uniform thickness, with 

combined effects of two temperature, rotation and Hall 

current in the context of GN Type-II and Type-III theory of 

thermoelasticityEzzat and El-Bary (2017) gave 

mathematical model of phase-lag G-N magneto-

thermoelasticty theories for perfectly conducting media 

based on fractional derivative heat transfer in the presence 

of a constant magnetic field. Ezzat and El-Bary (2017) had 

applied the magneto-thermoelasticity model to a one-

dimensional thermal shock problem of functionally graded 

half-space of based on memory-dependent derivative. 

Inspite of these, not much work has been carried out in 

magneto-thermoelastic transversely isotropic solid with the 

combined effects of rotation and two temperatures in 

generalized thermoelasticity without energy dissipation. 

Keeping these considerations in mind, analytic expressions 

for the displacements, stresses and temperature distribution 

in two-dimensional homogeneous, transversely isotropic 

magneto-thermoelastic solids with two temperatures and 

rotation because inclined load have been obtained. 

 

 

2. Basic equations 
 

The constitutive relations for a transversely isotropic 

thermoelastic medium are given by 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇. (1) 

Equation of motion for a transversely isotropic 

thermoelastic medium rotating uniformly with an angular 

velocity Ω =  Ω𝑛, where n is a unit vector representing the 

direction of axis of rotation and taking into account Lorentz 

force  

𝑡𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌{𝑢̈𝑖 + (Ω × (Ω × u))
𝑖
+

(2Ω × 𝑢)̇
𝑖 
},                                                                       

(2) 

where  𝐹𝑖 = 𝜇0(𝑗̇ × 𝐻⃗⃗ 0)  are the components of Lorentz 

force, 𝐻⃗⃗ 0 is the external applied magnetic field intensity 

vector, 𝑗  is the current density vector, 𝑢⃗  is the 

displacement vector, 𝜇0  and  𝜀0  are the magnetic and 

electric permeabilities respectively.  

The heat conduction equation without energy dissipation 

using Lord-Shulman model is 
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𝐾𝑖𝑗𝑇,𝑖𝑗 + 𝜌(𝑄 + 𝜏0𝑄̇)

=  𝛽𝑖𝑗𝑇0( 𝑒̇𝑖𝑗 + 𝜏0ё𝑖𝑗)

+ 𝜌𝐶𝐸(𝑇̇ + 𝜏0𝑇̈), 
(3) 

where 

𝛽
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙

𝛼𝑖𝑗, (4) 

  𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 𝑖, 𝑗 = 1,2,3. (5) 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,  i is not summed. 

Here 𝐶𝑖𝑗𝑘𝑙(𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘)  are elastic 

parameters, 𝛽𝑖𝑗 is the thermal elastic coupling tensor, 𝑇 is 

the absolute temperature, 𝑇0 is the reference temperature, 

𝜑 is the conductive temperature, 𝑡𝑖𝑗 are the components of 

stress tensor, 𝑒𝑖𝑗 are the components of strain tensor, 𝑢𝑖 

are the displacement components, 𝜌 is the density, 𝐶𝐸 is 

the specific heat, 𝐾𝑖𝑗  is the materialistic constant,  𝑎𝑖𝑗 are 

the two temperature parameters, 𝛼𝑖𝑗 is the coefficient of 

linear thermal expansion, 𝜏0 is the relaxation time, which 

is the time required to maintain steady state heat conduction 

in an element of volume of an elastic body when sudden 

temperature gradient is imposed on that volume element , 

𝛿𝑖𝑗 is the Kronecker delta and Ω is the angular velocity of 

the solid. 

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic 

magnetothermoelastic medium, permeated by an initial 

magnetic field 𝐻⃗⃗ 0 = (0, 𝐻0, 0) acting along 𝑦-axis. The 

rectangular Cartesian co-ordinate system (𝑥, 𝑦, 𝑧) having 

origin on the surface (𝑧 = 0) with 𝑧 -axis pointing 

vertically into the medium is introduced. The surface of the 

half-space is subjected to an inclined load acting at 𝑧 = 0. 

We also assume that 

𝛀 = (0, Ω, 0). 

In From the generalized Ohm’s law 

𝐽2 = 0 . 
The current density components 𝐽1and 𝐽3 are given as 

𝐽1 = −𝜀0𝜇0𝐻0
𝜕2𝑤

𝜕𝑡2 , (6) 

𝐽3  = 𝜀0𝜇0𝐻0
𝜕2𝑢

𝜕𝑡2 . (7) 

Following Slaughter (2002), using appropriate 

transformations, on the set of Eqs. (1) and (2), we derive the 

basic equations for transversely isotropic thermoelastic 

solid. The components of displacement vector 

(𝑢⃗ , 𝑣 , 𝑤⃗⃗  ) and conductive temperature 𝜑 for the two 

dimensional problem have the form 

𝑢⃗ = 𝑢(𝑥, 𝑧, 𝑡), 𝑣 = 0, 𝑤⃗⃗ = 𝑤(𝑥, 𝑧, 𝑡)𝑎𝑛𝑑 𝜑
= 𝜑(𝑥, 𝑧, 𝑡). (8) 

Eqs. (1)-(3) with the aid of (8), yield 

𝐶11

𝜕2𝑢

𝜕𝑥2
+ 𝐶13

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶44 (

𝜕2𝑢

𝜕𝑧2
+ 

𝜕2𝑤

𝜕𝑥𝜕𝑧
)

− 𝛽1 

𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)}

− 𝜇0𝐽3𝐻0

= 𝜌(
𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 + 2Ω

𝜕𝑤

𝜕𝑡
), 

(9) 

(𝐶13 + 𝐶44 )
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶44

𝜕2𝑤

𝜕𝑥2 + 𝐶33 
𝜕2𝑤

𝜕𝑧2 − 𝛽3 
𝜕

𝜕𝑧
{𝜑 −

(𝑎1
𝜕2𝜑

𝜕𝑥2 + 𝑎3
𝜕2𝜑

𝜕𝑧2)} − 𝜇0𝐽1𝐻0 = 𝜌 (
𝜕2𝑤

𝜕𝑡2 − Ω2𝑤 −

2Ω
𝜕𝑢

𝜕𝑡
), 

(10) 

𝐾1

𝜕2𝜑

𝜕𝑥2
+ 𝐾3

𝜕2𝜑

𝜕𝑧2
+ 𝜌(𝑄 + 𝜏0𝑄̇)

=  𝜌𝐶𝐸(𝑇̇ + 𝜏0𝑇̈)

+ 𝑇0

𝜕

𝜕𝑡
{𝛽1 (1 + 𝜏0

𝜕

𝜕𝑡
)
𝜕𝑢

𝜕𝑥

+ 𝛽3 (1 + 𝜏0

𝜕

𝜕𝑡
)
𝜕𝑤

𝜕𝑧
}, 

(11) 

and 

𝑡11 = 𝐶11𝑒11  +  𝐶13𝑒13 − 𝛽1 𝑇,  (12) 

𝑡33 = 𝐶13𝑒11  +  𝐶33𝑒33 − 𝛽3 𝑇, (13) 

𝑡13 = 2𝐶44𝑒13, (14) 

where 

𝑇 =  𝜑 − (𝑎1
𝜕2𝜑

𝜕𝑥2 +𝑎3
𝜕2𝜑

𝜕𝑧2), 

𝛽1 = (𝐶11 + 𝐶12)𝛼1 + 𝐶13𝛼3, 

𝛽3 = 2𝐶13𝛼1 + 𝐶33. 

We assume that medium is initially at rest. The 

undisturbed state is maintained at reference temperature. 

Then we have the initial and regularity conditions as given 

by 

𝑢(𝑥, 𝑧, 0) = 0 = 𝑢̇(𝑥, 𝑧, 0),  
𝑤(𝑥, 𝑧, 0) = 0 = 𝑤̇(𝑥, 𝑧, 0), 𝜑(𝑥, 𝑧, 0) = 0

= 𝜑̇(𝑥, 𝑧, 0) 𝑓𝑜𝑟 𝑧 ≥ 0,−∞ < 𝑥 < ∞, 
𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜑(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑧

→ ∞. 
To facilitate the solution, following dimensionless 

quantities are introduced 

𝑥′ = 
𝑥

𝐿
, 𝑧′ = 

𝑧

𝐿
,   𝑡′ = 

𝑐1
𝐿

𝑡,   𝑢′ = 
𝜌𝑐1

2

𝐿𝛽1𝑇0

𝑢,   𝑤′

= 
𝜌𝑐1

2

𝐿𝛽1𝑇0

𝑤, 𝑇′ = 
𝑇

𝑇0

, 𝑡11
′

= 
𝑡11

𝛽1𝑇0

, 𝑡33
′ = 

𝑡33

𝛽1𝑇0

, 𝑡31
′ = 

𝑡31

𝛽1𝑇0

,

𝜑′ = 
𝜑

𝑇0

, 𝑎1
′ = 

𝑎1

𝐿2
, 𝑎3

′ = 
𝑎3

𝐿2
, ℎ′

=
ℎ

𝐻0

, Ω′ =
L

𝐶1

Ω . 

(15) 
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Making use of (15) in Eqs. (9)-(11), after suppressing 

the primes, yield 
𝜕2𝑢

𝜕𝑥2 + 𝛿4
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2 (

𝜕2𝑢

𝜕𝑧2 + 
𝜕2𝑤

𝜕𝑥𝜕𝑧
) −

𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2 +

𝑎3
𝜕2𝜑

𝜕𝑧2)} = (
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1)

𝜕2𝑢

𝜕𝑡2 − Ω2𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
 , 

(16) 

𝛿1
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑤

𝜕𝑥2 + 𝛿3
𝜕2𝑤

𝜕𝑧2 −
𝛽3

𝛽1

𝜕

𝜕𝑧
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2 +

𝑎3
𝜕2𝜑

𝜕𝑧2)} = (
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1)

𝜕2𝑤

𝜕𝑡2 − Ω2𝑤 + 2Ω
𝜕𝑢

𝜕𝑡
 , 

(17) 

𝜕2𝜑

𝜕𝑥2
+

𝐾3

𝐾1

𝜕2𝜑

𝜕𝑧2
+  𝜌 (1 + 𝜏0

𝑐1
𝐿

𝜕

𝜕𝑡
)𝑄

= 𝛿5

𝜕

𝜕𝑡
(1 + 𝜏0

𝑐1
𝐿

𝜕

𝜕𝑡
) [𝜑 − 𝑎1

𝜕2𝜑

𝜕𝑥2

− 𝑎3

𝜕2𝜑

𝜕𝑧2
]

+ 𝛿6

𝜕

𝜕𝑡
(1 + 𝜏0

𝑐1
𝐿

𝜕

𝜕𝑡
) [𝛽1

𝜕𝑢

𝜕𝑥

+ 𝛽3

𝜕𝑤

𝜕𝑧
], 

(18) 

where 

𝛿1 = 
𝑐13 + 𝑐44

𝑐11

, 𝛿2 = 
𝑐44

𝑐11

, 𝛿3 = 
𝑐33

𝑐11

, 𝛿4 = 
𝑐13

𝑐11

,

𝛿5 = 
𝜌𝐶𝐸𝐶1𝐿

𝐾1

, 𝛿6 = 
𝑇0𝛽1𝐿

𝜌𝐶1𝐾1

. 

Apply Laplace and Fourier transforms defined by 

𝑓(𝑥, 𝑧, 𝑠) =  ∫ 𝑓(𝑥, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

, (19) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑥, 𝑧, 𝑠)𝑒𝑖𝜉𝑥

∞

−∞

𝑑𝑥. (20) 

On Eqs. (16)-(18), we obtain a system of equations 

[−𝜉2 + 𝛿2𝐷
2 − 𝛿7𝑠

2 + Ω2]𝑢̂(𝜉, 𝑧, 𝑠)
+ [𝛿4𝐷𝑖𝜉 + 𝛿2𝐷𝑖𝜉 − 2Ω𝑠]𝑤̂(𝜉, 𝑧, 𝑠)
+ (−iξ)[1 + 𝑎1𝜉

2 − 𝑎3𝐷
2]𝜑̂(𝜉, 𝑧, 𝑠)

= 0, 
(21) 

[𝛿1𝐷𝑖𝜉 + 2Ω𝑠]𝑢̂(𝜉, 𝑧, 𝑠)
+ [−𝛿2𝜉

2 + 𝛿3𝐷
2 − 𝛿7𝑠

2

+ Ω2]𝑤̂(𝜉, 𝑧, 𝑠)

−
𝛽3

𝛽1

𝐷[1 + 𝑎1𝜉
2 − 𝑎3𝐷

2]𝜑̂(𝜉, 𝑧, 𝑠)

= 0, 

(22) 

[𝛿6𝑠𝛿8𝛽1𝑖𝜉]𝑢̂(𝜉, 𝑧, 𝑠) + [𝛿6𝑠𝛿8𝛽3𝐷]𝑤̂(𝜉, 𝑧, 𝑠)

+ [𝜉2 −
𝐾3

𝐾1

𝐷2

+ 𝛿5𝛿8𝑠(1 + 𝑎1𝜉
2

− 𝑎3𝐷
2)] 𝜑̂(𝜉, 𝑧, 𝑠) = 𝜌𝛿8𝑄̂(𝜉, 𝑧, 𝑠), 

(23) 

where 𝛿7 =
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1, 𝛿8 = 1 + 𝜏0

𝐶1

𝐿
𝑠. 

Without considering internal heat source and 

setting  𝑄̂(𝜉, 𝑧, 𝑠) = 0  we yield a set of homogeneous 

equations which will have a non trivial solution if 

determinant of coefficient (𝑢̂, 𝑤̂, 𝜑̂)  vanishes and we 

obtain the following characteristic equation 

 𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 =0                  (24) 

where 

A = δ2δ3ζ7 − ζ5δ2
𝛽3

𝛽1
𝑎3, 

 

B = δ3ζ1ζ7 − 𝑎3ζ1ζ5
𝛽3

𝛽1
+ δ2δ3ζ6 + δ2ζ7ζ3 − ζ5ζ9𝛿2 −

ζ8𝛿1𝑖𝜉ζ7 + ζ8ζ4
𝛽3

𝛽1
𝑎3 − 𝑎3𝜉

2ζ5δ1 − 𝑎3δ3ζ4𝑖𝜉, 

 

C = δ3ζ1ζ6 + ζ1ζ3ζ7 − ζ1ζ5ζ9 + δ2ζ6ζ3 + ζ4ζ8ζ9 −
ζ8𝛿1𝑖𝜉ζ6 + 4Ω2𝑠2ζ7 + ζ2𝛿1𝑖𝜉ζ5 − ζ2ζ4𝛿3 − 𝑎3ζ4𝑖𝜉ζ3, 

 

𝐸 = ζ3ζ1ζ6 + 4Ω2𝑠2ζ6 − ζ2ζ4𝜁3, 

 

ζ1 = 𝜉2 − δ7𝑠
2 + Ω2, ζ2 = −𝑖𝜉(1 + 𝑎1𝜉

2), ζ3 = −𝛿2ξ
2 −

δ7𝑠
2 + Ω2,ζ4 = 𝛿6𝛿8𝑠𝛽1𝑖𝜉, 

ζ5 = 𝛿6𝛿8𝑠𝛽3, ζ6 = 𝜉2 + 𝛿5𝛿8𝑠(1 + 𝑎1𝜉
2), ζ7 = −

𝐾3

𝐾1
−

𝑎3𝛿5𝛿8𝑠,ζ8 = 𝛿1𝑖𝜉, ζ9 = −(1 + 𝑎1𝜉
2)

β3

β1
. 

The roots of the Eq. (24) are ±λi, (i = 1, 2, 3), the 

solution of the Eq. (24) satisfying the radiation condition 

that 𝑢̃, 𝑣̃, 𝑤̃ can be written as 

𝑢̅(𝜉, 𝑧, 𝑠) =  ∑ 𝐴𝑖𝑒
−𝜆𝑖𝑧3

𝑖=1 , (25) 

𝑤̅(𝜉, 𝑧, 𝑠) =  ∑ 𝑑𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧3

𝑖=1 , (26) 

𝜑̅(𝜉, 𝑧, 𝑠) =  ∑ 𝑙𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧3

𝑖=1 , (27) 

where 𝐴𝑖, 𝑖 = 1, 2, 3 being undetermined constants and 𝑑𝑖 

and 𝑙𝑖 are given by 

𝑑𝑖 =
𝛿2𝜁7𝜆𝑖

4 + (𝜁7𝜁1 − 𝑎3ζ4𝑖𝜉 + 𝛿2𝜁6)𝜆𝑖
2 + 𝜁1𝜁6 − 𝜁4𝜁2

(𝛿3ζ7 −
β3

β1
𝑎3ζ5) 𝜆𝑖

4 + (𝛿3𝜁6 + 𝜁3𝜁7 − 𝜁5𝜁9)𝜆𝑖
2+𝜁3𝜁6

 

𝑙𝑖 =
𝛿2𝛿3𝜆𝑖

4 + (𝛿2𝜁3 + 𝜁1𝛿3 − 𝛿1𝜁8𝑖𝜉)𝜆𝑖
2 + 4Ω2𝑠2+𝜁3𝜁1

(𝛿3ζ7 −
β3

β1
𝑎3ζ5) 𝜆𝑖

4 + (𝛿3𝜁6 + 𝜁3𝜁7 − 𝜁5𝜁9)𝜆𝑖
2+𝜁3𝜁6

. 

  

 

4. Boundary conditions 
 

We consider a normal line load F1 per unit length acting 

in the positive z-axis on the plane boundary z=0 along the 

y-axis and a tangential load F2per unit length, acting at the 

origin in the positive x axis. The appropriate boundary 

conditions are 

i 𝑡33(𝑥, 𝑧, 𝑡) =  −𝐹1𝜓1(𝑥)𝐻(𝑡), (28) 
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ii 𝑡31(𝑥, 𝑧, 𝑡) =  −𝐹2𝜓2(𝑥)𝐻(𝑡), (29) 

iii 
𝜕𝜑

𝜕𝑧
(𝑥, 𝑧, 𝑡) = 0. (30) 

where F1 and F2 are the magnitude of the forces applied, 

𝜓1(𝑥) 𝑎𝑛𝑑 𝜓2(𝑥) specify the vertical and horizontal load 

distribution function along x-axis, and 𝐻(𝑡) is the 

Heaviside unit step function and is given by 

𝐻(𝑡) = {
1  𝑡 > 0
0  𝑡 < 0

. 

Applying the Laplace and Fourier transform defined by 

(19) and (20) on the boundary conditions (28)-(30), (13)-

(14) and with the help of Eqs. (25)-(27), we obtain the 

components of displacement, normal stress, tangential 

stress, and conductive temperature as 

𝑢̂ =
𝐹1𝜓̂1(𝜉)

sΛ
[∑Λ1𝑖𝑒

−𝜆𝑖𝑧

3

𝑖=1

] +
𝐹2𝜓̂2(𝜉)

sΛ
[∑Λ2𝑖𝑒

−𝜆𝑖𝑧

3

𝑖=1

] (31) 

𝑤̂ =
𝐹1𝜓̂1(𝜉)

sΛ
[∑ 𝑑𝑖Λ1𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ] +

𝐹2𝜓̂2(𝜉)

sΛ
[∑ 𝑑𝑖Λ2𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ], 

(32) 

𝜑̂ =
𝐹1𝜓̂1(𝜉)

sΛ
[∑ 𝑙𝑖Λ1𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ] +

𝐹2𝜓̂2(𝜉)

sΛ
[∑ 𝑙𝑖Λ2𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ], 

(33) 

𝑡11̂ =
𝐹1𝜓̂1(𝜉))

sΛ
[∑ 𝑆𝑖Λ1𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ] +

𝐹2𝜓̂2(𝜉)

sΛ
[∑ 𝑆𝑖Λ2𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ], 

(34) 

𝑡13̂ =
𝐹1𝜓̂1(𝜉)

sΛ
[∑ 𝑁𝑖Λ1𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ] +

𝐹2𝜓̂2(𝜉)

sΛ
[∑ 𝑁𝑖Λ2𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ],= 

(35) 

𝑡33̂ =
𝐹1𝜓̂1(𝜉)

sΛ
[∑ 𝑀𝑖Λ1𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ] +

𝐹2𝜓̂2(𝜉)

sΛ
[∑ 𝑀𝑖Λ2𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 ], 

(36) 

where 

Λ11 = −𝑁2𝑅3 + 𝑅2𝑁3, 

Λ12 = 𝑁1𝑅3 − 𝑅1𝑁3, 

Λ13 = −𝑁1𝑅2 + 𝑅1𝑁2, 

Λ21 = 𝑀2𝑅3 − 𝑅2𝑀3, 

Λ22 = −𝑀1𝑅3 + 𝑅1𝑀3, 

Λ23 = 𝑀1𝑅2 − 𝑅1𝑀2, 

Λ = −𝑀1Λ11−𝑀2Λ12−𝑀3Λ13, 

𝑁𝑗 =  −𝛿2𝜆𝑗 + 𝑖𝜉𝑑𝑗, 

𝑀𝑗 =  𝑖𝜉 − 𝛿3𝑑𝑗𝜆𝑗 −
β3

β1
𝑙𝑗[(1 + 𝑎1𝜉

2) − 𝑎3𝜆𝑗
2], 

𝑅𝑗 = −𝜆𝑗𝑙𝑗[(1 + 𝑎1𝜉
2) − 𝑎3𝜆𝑗

2], 

𝑆𝑗 =  −𝑖𝜉 − 𝛿4𝑑𝑗𝜆𝑗 − 𝑙𝑗[(1 + 𝑎1𝜉
2) − 𝑎3𝜆𝑗

2]. 

 

 

5. Special cases  
 

5.1 Concentrated force 
 

The solution due to concentrated normal force on the 

half space is obtained by setting  

𝜓1(𝑥) = 𝛿(𝑥), 𝜓2(𝑥) = 𝛿(𝑥), (37) 

 

Fig. 1 Inclined load over a transversely isotropic magneto-

thermoelastic solid 
 

 

where 𝛿(𝑥) is dirac delta function.  

Applying Fourier transform defined by (19)-(20) and 

(37), we obtain 

𝜓̂1(𝜉) = 1, 𝜓̂2(𝜉) = 1. (38) 

Using (38) in (31)-(36), the components of 

displacement, stress and conductive temperature are 

obtained.  

 

5.2 Uniformly distributed force  
 

The solution due to uniformly distributed force applied 

on the half space is obtained by setting 

𝜓1(𝑥), 𝜓2(𝑥) = {
1 if |x|  ≤  m
0 if |x|  >  𝑚

. (39) 

The Fourier transforms of 𝜓1(𝑥)  and 𝜓2(𝑥) with 

respect to the pair (x, ξ) for the case of a uniform strip load 

of non-dimensional width 2m applied at origin of co-

ordinate system x = z = 0 in the dimensionless form after 

suppressing the primes becomes 

𝜓̂1(𝜉) =𝜓̂2(𝜉) = {
2 sin (𝜉𝑚)

𝜉
} , 𝜉 ≠ 0. (40) 

Using (40) in (31)-(36), the components of 

displacement, stress and conductive temperature are 

obtained. 

 

5.3 Linearly distributed force  
 

The solution due to linearly distributed force applied on 

the half space is obtained by setting  

{𝜓1(𝑥), 𝜓2(𝑥)} = {
1 −

|𝑥|

𝑚
 if |x|  ≤  m

0 if |x|  >  𝑚
 (41) 

Here 2 m is the width of the strip load, using (15) and 

applying the transform defined by (20) on (41), we get 

𝜓̂1(𝜉) =𝜓̂2(𝜉) = {
2{1−𝑐𝑜 𝑠(𝜉𝑚))

𝜉2𝑚
} , 𝜉 ≠ 0. (42) 

Using (42) in (31)-(36), the components of 

displacement, stress and conductive temperature are 

obtained. 

F2 

F1 

𝜃 

F0 
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Fig. 2 variations of displacement component u with distance 

x 
 

 

Fig. 3 variations of displacement component w with 

distance x 
 

 

Fig. 4 variations of conductive temperature φ with distance 

x 
 
 
6. Special cases  
 

Suppose an inclined load, F0 per unit length is acting on 

the y-axis and its inclination with z-axis is θ (see Fig. 1), 

have 

𝐹1 = 𝐹0𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝐹2 =  𝐹0𝑠𝑖𝑛𝜃. (43) 

Using Eq. (43) in Eqs. (31)-(36) and with aid of Eqs. 

(37)-(42) we obtain the expressions for displacements, and 

stresses and conductive temperature for concentrated force, 

uniformly distributed force and linearly distributed force on 

the surface of transversely isotropic magneto-thermoelastic 

body without energy dissipation. 

 

 

7. Inversion of the transformation  
 

Using To find the solution of the problem in physical 

domain, we must invert the transforms in Eqs. (31)-(36). 

Here the displacement components, normal and tangential 

stresses and conductive temperature are functions of z, the 

parameters of Laplace and Fourier transforms s and ξ 

respectively and hence are of the form f ̂(ξ, z, s). To find the 

function f̃(x, z, t) in the physical domain, we first invert the 

Fourier transform using 

𝑓(𝑥, 𝑧, 𝑠) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥∞

−∞
𝑓(𝜉, 𝑧, 𝑠)𝑑𝜉 =

1

2𝜋
∫ |𝑐𝑜𝑠(𝜉𝑥)𝑓𝑒 − 𝑖𝑠𝑖𝑛(𝜉𝑥)𝑓𝑜|

∞

−∞
𝑑𝜉, 

(43) 

where fe and fo are respectively the odd and even parts of 

𝑓(𝜉, 𝑧, 𝑠). Following Honig and Hirdes (1984), the Laplace 

transform function 𝑓(𝑥, 𝑧, 𝑠)can be inverted to f(x, z, t) by 

𝑓(𝑥, 𝑧, 𝑡) =  
1

2𝜋𝑖
∫ 𝑓(𝑥, 𝑧, 𝑠)𝑒−𝑠𝑡𝑑𝑠

𝑒+𝑖∞

𝑒−𝑖∞

. (44) 

The last step is to calculate the integral in Eq. (43). The 

method for evaluating this integral is described in Press et 

al. (1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 

 

 

8. Numerical results and discussion 
 

In order to illustrate our theoretical results in the 

proceeding section and to show the effect of two 

temperature and rotation, we now present some numerical 

results. Following Dhaliwal and Singh (1980), cobalt 

material has been taken for thermoelastic material as 

𝑐11 = 3.07 × 1011𝑁𝑚−2, 𝑐33 = 3.581 × 1011𝑁𝑚−2, 𝑐13 =
1.027 × 1010𝑁𝑚−2, 𝑐44 = 1.510 × 1011𝑁𝑚−2, 𝛽1 =
7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1,  𝛽3 = 6.90 ×
106𝑁𝑚−2𝑑𝑒𝑔−1, 𝜌 = 8.836 × 103𝐾𝑔𝑚−3, 𝐶𝐸 =
4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1,  𝐾1 = 0.690 ×
102𝑊𝑚−1𝐾𝑑𝑒𝑔−1, 𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, T0  =
298 K, H0  =  1Jm−1nb−1, ε 0 =  8.838 ×
 10−12Fm−1, L = 1.  

Using the above values, the graphical representations of 

displacement component u, normal displacement w,  
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Fig. 5 variations of stress component t11 with distance x 
 

 

Fig. 6 variations of stress component 𝑡13 with distance x 
 

 

Fig. 7 variations of stress component 𝑡33 with distance x 
 

 

conductive temperature 𝜑, stress components 𝑡11, 𝑡13 and 

𝑡33 for transversely isotropic thermoelastic medium have 

been investigated and the effect of inclination and rotation 

has been depicted.  

i. The black solid line with square symbols corresponds  

 

Fig. 8 variations of displacement component u with distance 

x 
 

 

Fig. 9 variations of displacement component w with 

distance x 
 

 

Fig. 10 variations of conductive temperature φ with distance 

x 
 

 

to transversely isotropic magneto-thermoelastic medium 

with Ω = 0 and 𝜃 = 0°and 𝑎1 =0.02, a3 = 0.04. 
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Fig. 11 variations of stress component t11 with distance x 
 

 

Fig. 12 variations of stress component 𝑡13 with distance x 
 

ii. The red solid line with circle symbols corresponds to 

transversely isotropic magneto-thermoelastic medium with 

Ω = 0.5 and 𝜃 = 0°and 𝑎1 =0.02, a3 = 0.04. 

iii. The green solid line with triangle symbols 

corresponds to transversely isotropic magneto-thermoelastic 

medium with Ω = 0.0 and 𝜃 = 45° and 𝑎1 =0.02, a3= 0.04. 

iv. The blue solid line with diamond symbols corresponds 

to transversely isotropic magneto-thermoelastic medium 

with Ω = 0.5 and 𝜃 = 45°and 𝑎1 =0.02, a3= 0.04. 

Case 1: Concentrated force due to inclined load with 

rotation 

Fig. 2 shows the variations of the displacement 

component u for transversely isotropic magneto -

thermoelastic medium with rotation. The values of 

displacement component u, decreases for 𝜃 = 0° 𝑎𝑛𝑑 Ω =
0, 0.5 and increases for 𝜃 = 45° 𝑎𝑛𝑑 Ω = 0 , 0.5 for the 

initial values of distance and follow oscillatory pattern for 

rest of the range of distance. Fig.3 depicts variations of the 

displacement component w for transversely isotropic 

thermoelastic medium with rotation. The values of 

displacement component w, decreases for 𝜃 = 0° 𝑎𝑛𝑑 Ω =
0, 0.5 and increases for 𝜃 = 45° 𝑎𝑛𝑑 Ω = 0 , 0.5 for the 

initial values of distance and follow oscillatory pattern for  

 

Fig. 13 variations of stress component 𝑡33 with distance x 
 

 

Fig. 14 variations of displacement component u with 

distance x 
 

 

Fig. 15 variations of displacement component w with 

distance x 
 

 

rest of the range of distance. Fig. 4 represents the variations 

of the conductive temperature 𝜑 for transversely isotropic  
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Fig. 16 variations of conductive temperature φ with distance 

x 
 

 

Fig. 17 variations of stress component t11 with distance x 
 

 

Fig. 18 variations of stress component 𝑡13 with distance x 
 

 

thermoelastic medium with rotation. The values of 

conductive temperature 𝜑, decreases and follow small 

oscillatory pattern for rest of the range of distance. Fig. 5 

represents the values of stress component𝑡11. Near the 

loading surface, the values of 𝑡11 for 𝜃 = 0° 𝑎𝑛𝑑 Ω = 

 

Fig. 19 variations of stress component 𝑡33 with distance x 
 

 

0, 0.5 remains same and have minor change but for 𝜃 =
45° , 𝑡11 decreases sharply corresponding to the rotation 

Ω = 0  and increase sharply corresponding to the 

rotation Ω = 0.5, and after that oscillate for Ω = 0.0, 0.5. 
Fig. 6 describes the variations of stress component 𝑡13. 

Near the loading surface, the values of 𝑡13 increase sharply 

and then somehow oscillates. Fig. 7 interprets the variations 

of stress component𝑡33.The values increase sharply near the 

loading surface with 𝜃 = 0° 𝑎𝑛𝑑 Ω = 0, 0.5 and decrease 

sharply near the loading surface with 𝜃 = 45° and Ω =
0, 0.5 follow small oscillatory pattern for rest of the range. 

Case ii. Uniformly distributed force due to inclined load 

with rotation 

Fig.  8 shows the variations of the displacement 

component u for uniformly distributed force for 

transversely isotropic magneto-thermoelastic medium with 

rotation. The values of displacement component u, 

decreases for 𝜃 = 0° 𝑎𝑛𝑑 Ω = 0, 0.5  and increases for 

𝜃 = 45° 𝑎𝑛𝑑 Ω = 0 , 0.5 for the initial values of distance 

and follow oscillatory pattern for rest of the range of 

distance. Fig. 9 depicts variations of the displacement 

component w for transversely isotropic thermoelastic 

medium with rotation. The values of displacement 

component w, decreases for 𝜃 = 0° 𝑎𝑛𝑑 Ω = 0, 0.5  and 

increases for 𝜃 = 45° 𝑎𝑛𝑑 Ω = 0 , 0.5 for the initial values 

of distance and follow small oscillatory pattern for rest of 

the range of distance. Fig. 10 represents the variations of the 

conductive temperature 𝜑 for transversely isotropic 

thermoelastic medium with rotation. The values of 

conductive temperature  𝜑 , sharply decreases for 𝜃 =
45° 𝑎𝑛𝑑 Ω = 0 , 0.5 and becomes stable for rest of the 

range of distance and for 𝜃 = 0° 𝑎𝑛𝑑 Ω = 0, 0.5 decrease 

very small and then follows oscillatory pattern. Fig. 11 

represents the values of stress component 𝑡11. Near the 

loading surface, the values of 𝑡11increase sharply for 𝜃 =
45° 𝑎𝑛𝑑 Ω = 0 , 0.5 and then oscillates but for 𝜃 =
0° 𝑎𝑛𝑑 Ω = 0, 0.5 increase very little and then follows 

oscillatory pattern. Fig. 12 describes the variations of stress 

component  𝑡13 . Near the loading surface, the values of 

𝑡13  sharply increases for all the cases and then somehow 

oscillates. Fig. 13 interprets the variations of stress 
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component𝑡33. It sharply decreases sharply decreases for 

𝜃 = 45° 𝑎𝑛𝑑 Ω = 0 , 0.5 and for 𝜃 = 0° 𝑎𝑛𝑑 Ω =
0, 0.5 increases and then follows oscillatory pattern in all 

cases of the range. 

Case iii. Linearly distributed force due to inclined load 

with rotation  

Fig. 14 shows the variations of the displacement 

component u for transversely isotropic magneto-

thermoelastic medium with linearly distributed force with 

rotation. The values of displacement component u, sharply 

increases for all the cases in the initial values of distance 

and follow oscillatory pattern for isotropic magneto-

thermoelastic medium with rotation. The values of 

displacement component w, sharply increases for all the 

cases in the initial values of distance and follow oscillatory 

pattern for rest of the range of distance. Fig. 16 represents 

the variations of the conductive temperature 

𝜑 fortransversely isotropic magneto-thermoelastic medium 

with rotation. The values of conductive temperature  𝜑 , 

sharply decreases for all the cases in the initial values of 

distance and follow small oscillatory pattern for rest of the 

range of distance. Fig. 17 represents the values of stress 

component 𝑡11 . Near the loading surface, the values of 

𝑡11 decrease sharply corresponding to 𝜃 = 45° 𝑎𝑛𝑑 Ω =
0and increasesfor 𝜃 = 45° 𝑎𝑛𝑑 Ω = 0.5and after that these 

oscillate for rest of the range and for  𝜃 = 0° 𝑎𝑛𝑑 Ω =
0.0, .5 remains stable for all range. Fig. 18 describes the 

variations of stress component  𝑡13 . Near the loading 

surface, the values of 𝑡13 decrease sharply and then 

somehow oscillates. Fig. 19 interprets the variations of 

stress component 𝑡33. The values increase sharply near the 

loading surface with all the values of rotationthen small 

oscillatory pattern for rest of the range. 

 

 
9. Conclusions 
 

From above investigation, it is observed that the 

magnetic effect of rotation as well as the angle of 

inclination of the applied load plays a major role in the 

distribution of all the physical quantities. The amplitude of 

all the physical quantities differ (either increase or decrease) 

with increase in rotation as well as the angle of inclined 

load. Presence of rotation confines the quantities to oscillate 

near the point of application of source as well as away from 

the source. In presence of rotation and inclined load, the 

displacement components and stress components show an 

oscillatory nature with increasing amplitude with respect to 

x. The inclined load plays a significant role in the 

distribution of all the physical quantities. The result gives 

an inspiration to study magneto-thermoelastic materials as 

an innovative domain of applicable thermoelastic solids. 

The results of this paper become useful for those 

researchers who works in material science, inventers of new 

materials, in addition to those working on the magneto-

thermoelasticity and in real life as in geophysics, acoustics, 

geomagnetic etc. The proposed methods in this research is 

relevant to a wide range of problems in thermodynamics 

and thermoelasticity. 
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