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1. Introduction  
 

The buckling of the rectangular plate is phenomenon of 

instability which occurs when the plate is subjected to an 

axial compression load. Most commonly applied loads are 

uni-axial and bi-axial loads. Several studies on the buckling 

analysis of the plate/beam were published by Bank and Jin 

(1996), Kang and Leissa (2005), Hwang and Lee (2006), 

Matsunaga (2009), Kim et al. (2009), Bourada et al. (2012), 

Altunsaray and Bayer (2014), Meziane et al. (2014), 

Afsharmanesh e t  a l .  (2014) ,  Swaminathan and 

Naveenkumar (2014), Panda and Katariya (2015), Nguyen 

et al.(2015), Bouguenina et al. (2015), Tebboune et al. 

(2015), Rajanna et al. (2016), Yousefitabar and Matapouri 

(2017), Houari et al. (2016). Musa (2016), Katariya and 

Panda (2016), Arani and Kolahchi (2016), Eltaher et al. 

(2016), Bourada et al. (2016), Bouderba et al. (2016), 

Kolahchi and Bidgoli (2016), Bousahla et al. (2016), 

Kolahchi et al. (2016ab), Bilouei et al. (2016), Kolahchi et 

al. (2017ab), Hajmohammadet al. (2017), Abdelaziz et al. 

(2017), Sekkal et al. (2017a), El-Haina et al. (2017), 

Zamanian et al. (2017), Kolahchi and Cheraghbak (2017),  
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Kolahchi (2017), Yazid et al. (2018), Fakhar and Kolahchi 

(2018), Kadari et al. (2018), Bourada et al. (2018), 

Golabchi et al. (2018), Mokhtar et al. (2018), Shahsavari et 

al. (2018), Shahsavari et al. (2018a, b), Karami et al. 

(2018a, b, c). Generally, the problem of stability of thin 

plates is solved by applying the Love-Kirshoff model 

(classical plate theory) which neglects the transverse shear 

effect. For buckling analysis of thick and moderately thick 

plate, the classical plate theory (CPT) will no longer be 

retained. Hence, a new formulation which describes the 

shear effect through the thickness was required. For this 

purpose Reissner (1945) and Mindlin (1951) proposed a 

first shear deformation plate theory (FSDT), taking into 

account the transverse shear effect with uniform distribution 

through the thickness of the plate. Several works has been 

carried out on the buckling study of the plate based on the 

FSDT, such as Lanhe (2004), Yaghoobi and Torabi (2013), 

Mohammadi et al. (2010), Bouazza et al. (2010), Zarei et 

al. (2017), Madani et al. (2017), Amnieh et al. (2018), 

Youcef et al. (2018), Karami et al. (2018a) and 

Hajmohammad et al. (2018a). Recently, a new first shear 

deformation plate theory based on the model proposed by 

Shimpi (2002) was developed by Meksi et al. (2015) and 

Bellifa et al. (2016).  

In this paper, the buckling analysis of isotropic 

rectangular plate under the action of uni-axial and bi-axial 

compressive stresses using the model of Meksi et al. 

(2015). In this model the transverse shear stresses is 
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considered to be uniform through the thickness of the plate, 

which necessitates the introduction of a shear correction 

factor. The theory of Meksi et al. (2015) has been modified 

in order to have only two variables and two equilibrium 

equations. The equilibrium equations are determined using 

the principle of virtual works. The results obtained are 

compared with those presented by Piscopo (2010) based on 

the model of Shimpi (2002) and the Bryan’s expression for 

simply supported thin rectangular plates.  
 

 

2. Theoretical formulation  
 

The Bryan formula for the Euler buckling stress can be 

written in the form (Piscopo 2010) 
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E, v, m and α are Young modulus, Poisson coefficient, 

the number of half-waves in the direction of compression 

and dimension ratio (α=a/b) respectively. The magnitude of 

the Euler load depends on the dimension ratio α, mode of 

the plate m in to which the plate buckles. The Bryan 

formula Eq. (1) can be rewritten as follow (Piscopo 2010) 
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Where
1K is buckling factor defined as (Piscopo 2010) 
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In the following, a new formula of the Euler buckling 

stress which differs from the Bryan’s formula by 

introduction of a corrective function will be presented. 

Finally, some applications are presented for the isotropic 

rectangular plate subjected to axial compression load along 

the x and y directions. 

 

2.1 Basic assumptions of FSDT 
 

-The displacements are small in comparison with the 

plate thickness t. 

-The displacement u in x direction and v in y direction 

consists of extension and bending components 
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-The bending component ub and vb are similar to those 

of CPT (Karami et al. 2018b, Shahsavari et al. 2017, 2018) 

and can be given as 
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Fig. 1 Isotropic rectangular plate subjected to in-plane 

loading 

 

 

-The transverse normal stress σz is negligible in 

comparison with in plane stresses σx and σy. 

-The vertical displacement w includes two components 

of bending wb and shear ws. 
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2.2 Kinematics 
 

Based on the assumptions made in the preceding 

section, the displacements field can be obtained using Eqs. 

(4)-(6) 
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(7c) 

The principle of virtual works is used here to derive the 

equilibrium equations, the principle can be declared in the 

analytical form (Bouderba et al. 2013, Tounsi et al. 2013, 

Zidi et al. 2014, Zemri et al. 2015, Boukhari et al. 2016, 

Bounouara et al. 2016, Besseghier et al. 2017, Zidi et al. 

2017, Chikh et al. 2017, Mouffoki et al. 2017, Khetir et al. 

2017, Klouche et al. 2017, Fahsiet al. 2017, Bourada et al. 

2019) 

 =+

v

dzVU 0)(   
(8) 

Where δU, δV, the variation of the strain energy and 

variation of works of the externals forces. The governing 

equations can be obtained in the following form 
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Nx, Ny, Nxy are in-plane distributed forces. Assuming that 

those forces are constant along the plate, with Nxy=0, Ny= 

γNx, such as 0≤λ≤1. Eq. (9) can be written as follows 
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The Navier method is only applied for simply supported 

plate on all four edges, as shown in Fig. 1.  

The following displacements functions wb and ws are 

chosen to automatically satisfy the boundary conditions. 
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Wbmn, Wsmn are arbitrary parameters to be determined. 

Substituting Eq. (12) into Eq. (11), the following system 

is obtained as 
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The Euler buckling stress can be determined by solve 

the system |A|t=0, such as 

 

 

 

Fig. 2 Buckling modes shapes of isotropic rectangular plate: 

(a) several half wave (m≥1) in the direction of compression 

and one half wave in the perpendicular direction (n=1), (b) 

one half wave in the both direction (m=1, n=1)  
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ks is shear correction factor. The Euler buckling stress 

σE, for isotropic plates under uni-axial compression loading 

(γ=0), can be derived considering the plate buckles in such a 

way that can be several half wave (m≥1) in the direction of 

compression, but only one half wave in the perpendicular 

direction (n=1), as shown Fig. 2. 

A new expression of the Euler buckling stress, similar to 

the Bryan formula and differing by the corrective function 

F(ks, t/b, m, n, v, α) is obtained 
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Fig. 3 Buckling factor k1 for thick-plates under uni-axial 

compression (v=0.30; γ=0) 
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Fig. 4 Buckling factor k1 for thick-plates under biaxial 

compression (v=0.30; γ=0.1) 
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Clearly, when the effect of transverse shear deformation 

is neglected. The corrective function becomes equal to one 

F(ks, t/b, m, n, v, α)=1, which gives the classical Bryan’s 

formula for thin plates. 
 

 

3. Results and discussions 
 

In the following, the buckling factor of isotropic 

rectangular plates under uni-axial compression load defined 

in the Eq. (2) will be presented in the form of explicated 

graphs. In Fig. 3, several curves of the buckling factor as a 

function of the geometry ratio (t/b) and dimension ratio α 

are presented. It can be seen that a good agreement between 

the results obtained by the present formula based on the first 

shear order deformation plate theory with ks=5/6 (Mindlin 

1951, Menaa et al. 2012, Bouderba et al. 2016) and those 

obtained by the formula of Piscopo (2010) based on high 

order shear deformation plate theory.  
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Fig. 5 Buckling factor k1 for thick-plates under biaxial 

compression (v=0.30; γ=0.4) 
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Fig. 6 Buckling factor k1 for thick-plates under biaxial 

compression (v=0.30; γ=0.7) 
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Fig. 7 Buckling factor k1 for thick-plates under biaxial 

compression (v=0.30; γ=1.0)  

 

 

It should be noted that for plate under biaxial 

compressive loads with 0<Ny<0.5Nx in Figs. 4 and 5, the 

plate buckle in such a way that several half waves in the 

direction of the application of the greatest compressive 

forces and this number of half waves increase with 

increasing of the dimension ratio α, whereas a single half 

wave in the direction perpendicular to direction of 

applications of the largest compressive forces.  

116



 

Buckling behavior of rectangular plates under uniaxial and biaxial compression 

 

 

 

 

Rather, when 0.5Nx<Ny<Nx the plate buckle in such a 

way as a single half wave in both directions x and y (Figs. 6 

and 7). For scaling reasons only the curves of the thick 

plates are presented. It can be noted that the results of the 

present model are almost in line with those obtained by 

Piscopo (2010). 

 

3.1 Numerical applications 
 

In this part, the Euler buckling load (NE=σEt) of isotropic 

rectangular plates subjected to uni-axial and bi-axial 

compression forces is presented to show the feasibility of 

the present formula. A comparison is made between the 

results obtained by the present model and those obtained by  

 

 

 

Piscopo (2010) using the high order shear deformation plate 

theory and the finite element method carried out by 

software ANSYS. 
 

The Tables 1 and 2 below show the Euler buckling force 

per unit of length of an isotropic plate (E=2.06×1011, v=0.3, 

b=1m) under uni-axial compression loading along the x  

axis as a function of the geometry ratio (t/b). The results of 

the present formula with ks=5/6 are in good agreement with 

those obtained by Piscopo’s formula and the finite element 

method. It should be noted that the percentage difference of 

theoretical results increases with the increase of the 

thickness of the plate. 

In Tables 3, 4 and 5, the Euler buckling force NE per 

unit of length of rectangular isotropic plates under bi-axial 

Table 1 The Euler buckling load NE of isotropic rectangular plate (Cas1−α=0.25, γ=0) 

t/b 

Mean 

element 

length 

ANSYS 

Piscopo 

(2010) 

(A) 

CPT 

Piscopo 

(2010) 

(B) 

HSDT 

Piscopo 

(2010) 

(C) 

FSDT 

Present 

(D) 

100*
A

AB −  
100*

A

AC −  
100*

A

AD −

 

--- m KN/m KN/m KN/m KN/m % % % 

0.01 

0.050 3553 

3363 3347 3347 0.87 0.39 0.39 
0.025 3391 

0.010 3343 

0.005 3334 

0.02 

0.050 27924 

26904 26398 26398 2.80 0.87 0.87 
0.025 26623 

0.010 26233 

0.005 26171 

0.03 

0.050 91643 

90800 87046 87045 5.66 1.30 1.30 
0.025 87372 

0.010 86121 

0.005 85932 

Table 2 The Euler buckling load NE of isotropic rectangular plate (Cas2−α=1.00, γ=0)

 

t/b 

Mean 

element 

length 

ANSYS 

Piscopo 

(2010) 

(A) 

CPT 

Piscopo 

(2010) 

(B) 

HSDT 

Piscopo 

(2010) 

(C) 

FSDT 

Present 

(D) 

100*
A

AB −  
100*

A

AC −  
100*

A

AD −

 

--- m KN/m KN/m KN/m KN/m % % % 

0.01 

0.050 747 

745 744 744 0.68 0.54 0.54 
0.025 743 

0.010 741 

0.005 740 

0.02 

0.050 5930 

5958 5945 5945 1.95 1.73 1.73 
0.025 5883 

0.010 5852 

0.005 5844 

0.03 

0.050 19811 

20108 20006 20006 3.14 2.62 2.62 
0.025 19616 

0.010 19513 

0.005 19496 
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compressive loads (γ=1) for the different values of the 

geometry ratio (t/b) are presented. 

It can be seen that the classical plate theory provides the 

larger values of the Euler buckling load NE to those 

obtained by FSDT and HSDT theories. This is due to 

neglect of the transverse shear effect by the CPT. 

 

 

4. Conclusions 
 

In this article, a proposal of a new simpler formula of 

the Euler buckling stress of isotropic rectangular plates 

under axial compression loading in one and two orthogonal 

directions. The formula determined is similar to that of  

 

 

 

Bryan’s one. The present formula is determined by applying 

the first shear order deformation plate theory proposed by 

Meksi et al. (2015), which taking into account the 

transverse shear effect in a uniform manner across the 

thickness of the plate, which necessitates the introduction of 

a shear correction factor ks. Some numerical applications 

have been presented and compared with those obtained by 

the finite elements method. Finally, it can be concluded that 

the introduction of a corrective shear function makes it 

possible to obtain the results closer to those of the FEM.  

This work can be considered as a basis for future works 

where high order theories (Yahia et al. 2015, Attia et al. 

2015, Belkorissat et al. 2015, Mahi et al. 2015, Ahouel et 

al. 2016, Beldjelili et al. 2016, Kolahchi et al. 2017b, c,  

Table 3 The Euler buckling load NE of isotropic rectangular plate (Cas1−α=0.25, γ=1.0) 

t/b 

Mean 

element 

length 

ANSYS 

Piscopo 

(2010) 

(A) 

CPT 

Piscopo 

(2010) 

(B) 

HSDT 

Piscopo 

(2010) 

(C) 

FSDT 

Present 

(D) 

100*
A

AB −  
100*

A

AC −  
100*

A

AD −

 

--- m KN/m KN/m KN/m KN/m % % % 

0.01 

0.050 3356 

3165 3150 3150 0.86 0.38 0.38 
0.025 3194 

0.010 3147 

0.005 3138 

0.02 

0.050 26377 

25321 24845 24845 2.80 0.87 0.87 
0.025 25080 

0.010 24693 

0.005 24631 

0.03 

0.050 86563 

85459 81926 81924 5.67 1.30 1.30 
0.025 82304 

0.010 81063 

0.005 80875 

Table 4 The Euler buckling load NE of isotropic rectangular plate (Cas2−α=1.00, γ=1.0) 

t/b 

Mean 

element 

length 

ANSYS 

Piscopo 

(2010) 

(A) 

CPT 

Piscopo 

(2010) 

(B) 

HSDT 

Piscopo 

(2010) 

(C) 

FSDT 

Present 

(D) 

100*
A

AB −
 100*

A

AC −
 100*

A

AD −

 

--- m KN/m KN/m KN/m KN/m % % % 

0.01 

0.050 373 

372 372 372 0.54 0.54 0.54 
0.025 371 

0.010 370 

0.005 370 

0.02 

0.050 2965 

2979 2972 2972 1.95 1.71 1.71 
0.025 2942 

0.010 2926 

0.005 2922 

0.03 

0.050 9906 

10054 10003 10003 3.14 2.62 2.62 
0.025 9809 

0.010 9758 

0.005 9748 
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Menasria et al. 2017, Hachemi et al. 2017, Bellifa et al. 

2017a, b, Benadouda et al. 2017, Hajmohammad et al. 

2018b, c, Hosseini and Kolahchi 2018, Karami et al. 2018d, 

Kaci et al. 2018, Attia et al. 2018, Bakhadda et al. 2018, 

Fourn et al. 2018, Bouadi et al. 2018, Belabed et al. 2018, 

Meksi et al. 2019, She et al. 2019) can be used or other 

types of materials will be considered. In addition, the 

current study gives a good foundation for extension to more 

general computational simulation for more complex 

geometrical configurations such as shells structures (Zine et 

al. 2018, Karami et al. 2018e) and very thick plates 

(Bousahla et al. 2014, Belabed et al. 2014, Hebali et al. 

2014, Bennai et al. 2015, Meradjah et al. 2015, Chaht et al. 

2015, Bourada et al. 2015, Hamidi et al. 2015, Bourada et 

al. 2015, Bennoun et al. 2016, Draiche et al. 2016, Bouafia 

et al. 2017, Karami et al. 2018f, g, Benahmed et al. 2017, 

Sekkal et al. 2017b, Benchohra et al. 2018, Younsi et al. 

2018, Abualnour et al. 2018, Bouhadra et al. 2018, 

Mahmoudi et al. 2019, Zaoui et al. 2019). 
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