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1. Introduction  
 

The porous material structures are widely used in 

structural design problems. Technology development in 

manufacturing materials with functionally graded (FG) 

properties, especially in aero-spatial and medical industries, 

has increased the demand for the knowledge describing the 

behavior of FG structures such as FG beams, plates and 

shells. It is possible to manufacture FG materials with 

desired porosities. It is also possible for the pores to have 

confined gas or fluid with a desired variable pressure. Many 

natural bodies are in fact functionally graded materials 

(FGMs) such as stones, wood and layers of soil. The 

physical and mechanical properties of a porous FGM, 

namely, electrical conductivity, permeability, tensile 

strength, are dependent upon the amount of porosity and the 

distribution type thereof. Biot (1964) was the pioneer who 

studied poroelasticity, assuming elastically-deformable 

porous medium as a two-phase continuum composed solid 

and fluid phases. He introduced some bulk quantities, 

namely fluid volume change, solid strain components, 

pressure of the fluid confined in pores and stress 

components. Biot theory was improved by the concept of 

partial stresses. Detournay and Cheng (1993) proposed the 

stress-strain relationship of a porous medium in terms of the 

elastic constants of solid and fluid phases. 

The vibrating and buckling behaviors of porous and 

FGM structures under the influence of mechanical and 

thermal loads have been studied and the effects of material  
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properties have been investigated. It is noticeable that each 

term of the equilibrium equations of an FGM plates is 

analogous to that of a porous plate. Static and Dynamic 

Stability of FG Plates and Shells considered by Duc (2014). 

Nonlinear bending and post-buckling of circular FG plates 

subjected to mechanical and thermal loads has been studied 

by Ma and Wang (2003a, 2003b, 2004) on the basis of the 

first and third order shear deformation theories. Cong et al. 

(2018) considered nonlinear thermo-mechanical buckling 

and post-buckling response of porous FGM plates using 

Reddy’s high order shear deformation plate theory (HSDT). 

Nonlinear dynamic response of FGM porous plates on 

elastic foundation subjected to thermal and mechanical 

loads using the first order shear deformation theory (FSDT) 

studied by Duc et al. (2018). In another study Duc et al. 

(2018) considered thermal buckling of FGM sandwich 

truncated conical shells reinforced by FGM stiffeners on 

elastic foundations. They used the FSDT to analyze the 

structure. Nonlinear dynamic analysis and vibration of 

eccentrically stiffened FGM elliptical cylindrical shells 

carried out by Duc et al. (2017). Free and forced nonlinear 

vibrations of an axisymmetric thin circular FG plate have 

been analyzed by Allahverdizadeh et al. (2008) via semi-

analytical approaches entitled Kantorovich time averaging 

technique and assumed-time-mode method. The free 

vibration or the so-called natural frequencies appear 

dependent on initial conditions. Moreover, the response 

characteristics are significantly influenced by the volume 

fraction of the plate. Duc (2016) employed Reddy’s third 

order shear deformation theory (TSDT) to analyze 

nonlinear thermal dynamic behavior of eccentrically 

stiffened sigmoid power law distribution FGM circular 

cylindrical shells surrounded on elastic foundations. 

Nonlinear dynamic response of a doubly curved imperfect 
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FGM shell investigated by Duc (2013). He studied effect of 

different parameters such as imperfection, materials 

distribution and elastic foundation on the results. Thermo-

electro-mechanical dynamic response of shear deformable 

piezoelectric sigmoid FG sandwich circular cylindrical 

shells presented by Duc (2018). He took the nonlinear terms 

into account based on Von-Karman relations and 

considered effect of temperature on the material properties. 

Thin FGM doubly curved shells dynamic behavior studied 

by Duc and Quan (2015). They assumed that the shell is 

located on elastic foundation. Quan et al. (2015) 

investigated cylindrical panels with metal-ceramic-metal 

layers vibration and dynamic analyses. Based on the 

classical plate theory (CPT), a thermoelastic buckling 

analysis of FG circular plates integrated with piezoelectric 

layers has been presented by Khorshidvand et al. (2012). 

Using the FSDT, the solutions for deflections and force and 

moment resultants in axisymmetric bending and stretching 

of FG circular and annular plates have been achieved by 

Reddy et al. (1999). On the basis of FSDT, free vibration of 

circular plates has been studied by Wu et al. (2002) from 

the vantage of the generalized differential quadrature 

(GDQ) method. The relationship between amplitude and 

frequency ratio in the forced nonlinear vibration of circular 

plates subjected to different loads and supports has been 

obtained by Decha-Umphai and Mei (1986) through finite 

element method. In vibration and buckling analysis of 

laminated isotropic annular plates, closed-form solutions for 

the mode shapes have been achieved by Krizhevsky and 

Stavsky (1996) in terms of the transcendental functions, 

namely Bessel, trigonometric and power ones. The effects 

of transverse shear deformation, rotary inertia and boundary 

conditions on the results have been found. Buckling, 

bending and free vibration analyses of thin isotropic plates 

and columns have been given by Civalek (2004) applying 

DQ and harmonic differential quadrature (HDQ) methods. 

For a few number of the plate shapes and boundary 

conditions, it was shown that the results of HDQ will be 

more accurate than those of DQ method, if the number of 

the grid points is held the same. Nonlinear bending of thin 

rectangular orthotropic plates undergoing large elastic 

deflections with immovable edges has been analyzed by 

Bert et al. (1989) via the differential quadrature method 

(DQM). The results have been compared with analytical 

and experimental ones. Nonlinear vibration of a shear 

deformable FG plate was presented by Chen (2005) when 

the material properties were considered to change 

continuously through thickness. The governing nonlinear 

partial differential equations (PDEs) were transformed into 

ordinary differential equations by means of the Galerkin 

method. The linear and nonlinear natural frequencies were 

obtained by applying the Runge-Kutta methods. In 

accordance with the three-dimensional elasticity theory, the 

free vibration of FGM axisymmetric circular plates has 

been studied by Wang et al. (2009). The material properties 

were considered to vary across thickness according to a 

given exponential function. Imperfect shells and circular 

plates with free edges have been taken into consideration by 

Camier et al. (2009) for nonlinear vibration analyses. The 

motion equations were derived by using the dynamic analog  

 

Fig. 1 The scheme of circular FG plate made of saturated 

porous materials resting on visco-Pasternak elastic 

foundation 

 

 

of the von-Karman equations for an initially-perfect thin 

plate. This way sounds to be accurate enough to analyze 

shallow shells assumed as an imperfect plate. The natural 

frequencies of a ferro-magnetic beam with a circular cross 

section have been computed by Wang (2008) utilizing 

Zhou-Zheng’s energy method. He has also presented a 

dynamical model for predicting the behavior of the beam 

subjected to a transverse magnetic field. Stability analysis 

of imperfect three-phase sandwich laminated panels in 

thermal environments presented by Thu and Duc (2016). 

They used Von-Karman nonlinear terms for their analysis 

and used analytical approach to obtain the results. Also 

bending analysis of thin composite simply supported edges 

plate under steady temperature field considered by Duc and 

Ha (2011). They used the Navier’s solution method to 

obtain the results. Effect of multi physical fields on 

vibration of double-bonded sandwich microplates studied 

by Mohammadimehr et al. (2017). Ghorbanpour Arani et 

al. (2017a, 2017b) in two researches investigated 

vibrational behavior of FG nanocomposite plates which was 

moving in two directions.  

By reviewing the literature, it is found that there is not 

any researches about vibration of a saturated porous 

functionally graded (SPFG) plate located on visco-elastic 

foundation based on various shear deformation plates 

theories. So, in the present paper, the motion equations of a 

circular porous FG plate have been obtained using the 

Hamilton’s principle. Although the effects of shear 

deformability of the plate have been neglected according to 

the CPT, but it is taken into account using FSD and TSD 

theories. The mechanical properties of the porous plate are 

assumed to change through thickness. The plate motion 

equations were numerically solved through GDQ method 

for clamped and simply supported boundary conditions, to 

find the effect of radius, thickness, pore compressibility, 

porosity parameter and distributions and also visco-

Pasternak foundation constants on the natural frequencies 

and mode shapes of the plate. The results of the current 

research will help to improve the structures mechanical 

behaviors and design them such a way to achieve the 

desired results. 

 

 

2. Plate properties 
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Fig. 1 shows a perfect uniform circular plate made of a 

saturated porous material with radius a and thickness h 

which is rested on visco-Pasternak elastic foundation. The 

origin and two axes of the illustrated cylindrical coordinate 

reference frame (r,θ,z) are located in the middle plane of the 

plate. 

The porous material properties are assumed to vary 

through thickness. The shear modulus of elasticity and the 

density of the plate have been considered functions of 

porosity parameter e1 and mass density coefficient em, and 

vary through the thickness of the plate in accordance with 

functions represented by either Eq. (1) for non-symmetric, 

Eq. (2) for symmetric or Eq. (3) for monotonous porosity 

distribution (Magnucka-Blandzi 2008) 
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At the upper and lower layers of the plate, the shear 

moduli of elasticity are denoted by G0 and G1, and the 

densities are denoted by ρ0 and ρ1, respectively. According 

to Ref. (Khorshidvand et al. 2014), G1 is equal or less than 

G0.   
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For the symmetric porosity distribution, the shear 

moduli of elasticity at the upper and lower layers, as well as 

the densities, are the same (G1=G0 and ρ1=ρ0).   
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(4) 

The plate’s porosity parameter, i.e., e1, represents the 

void to bulk volume ratio. It is defined by Eq. (5) and is 

greater than zero and smaller than one.  
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1
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= 1 = 1
G E

e
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− −

 
(5) 

The mass density coefficient is presented by em which is 

related to porosity coefficient using the following relation 

(Amir et al. 2018a) 

11 1me e= − −
 (6) 

The mentioned coefficient can also be defined using the 

densities of the upper and lower layers as 

1

0

1me



= −

 
(7) 

It is well-know that the modulus of elasticity E is equal 

to 2G(1+ν) where G is the shear modulus and ν is the 

Poisson’s ratio. Despite G and E, the Poisson’s ratio is 

assumed constant with respect to z. 

Based on the linear poroelasticity theory of Biot (Biot 

1964), increase of pressure of the fluid confined by the 

pores, causes dilatation or positive volumetric strain in the 

pores, and compression of the pores increases the pressure 

of the fluid. As a result, the stress-strain relationship for 

poroelastic FG materials is given by Eq. (8) within which σij 

and εij are the stress and strain components, respectively 

(Detournay and Cheng 1993). δij is the Kronecker delta, ε is 

the volumetric strain, P is the pressure of fluid confined by 

the pores and νu is the undrained Poisson’s ratio. It should 

be noted that νu is greater than ν and less than 0.5.  

2 ( )
= 2 ( )

1 2

u
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u

G z
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+ −

−  
(8) 

Pressure of the fluid confined by the pores is given by 

Eq. (9) where M is the Biot’s modulus, ξ is the fluid volume 

change and α is the Biot’s coefficient of effective or 

volumetric strain.  

= ( )P M  −  (9) 

It should be noted that α is greater than zero and less 

than one. In undrained state, the effects of porosity and 

generated pore stress on the solid phase of a poroelastic 

material are indicated by Biot coefficient.   

Biot’s modulus is given by Eq. (10)  

2
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=

(1 2 )(1 2 )
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−

− −  
(10) 

Undrained Poisson’s ratio is given by Eq. (11) where B 

is the Skempton number 

(1 2 ) / 3
=

1 (1 2 ) / 3
u

B

B

  


 

+ −

− −  
(11) 

In undrained status, the effect of pressure of the pore 

fluid on the behavior of a poroelastic material, is taken into 

consideration by this dimensionless number. Skempton 

number is defined by Eq. (14) as the rate of change of fluid 

pressure with respect to the trace of the stress tensor.   

As a matter of fact, Poisson’s ratio is defined as the 

magnitude of strain ratio of lateral to axial strains. Because 

the deformations of a poroelastic material are different in 

drained and undrained conditions, the drained and 

undrained Poisson’s ratios have been defined by Eqs. (12) 

and (13), respectively 
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Skempton number is an important dimensionless 

parameter to describe the effect of the fluid in the pores on 

the behavior of porous material in undrained state (ξ=0) and 

is described as the ratio of the pores pressure to total body 

volumetric stress 

1
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In Eq. (14) the drained and undrained bulk moduli, are 

represented by K and Ku, respectively. Bulk modulus 

indicates the compressibility of a material. Bulk moduli of a 

poroelastic material in drained and undrained conditions are 

given by the well-known Eqs. (15)-(16), respectively. Cp 

and Cs represent the compressibility of fluid and solid 

phases of a poroelastic material. According to Eq. (14) 

Skempton number indicates how fluid compressibility 

influences on the elastic modulus and compressibility of a 

poroelastic material.   
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The two dimensional stress-strain law, for plane stress 

undrained status, is given by Eq. (17) in cylindrical 

coordinate reference frame (Jabbari et al. 2014) 
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3. Kinematic relations 
 

In this study, three different plate’s theories namely 

CPT, FSDT and TSDT are investigated to describe the 

displacement components.  

 

3.1 CPT 
 

According to the CPT and the Love-Kirchhoff 

hypothesis (Reddy 2004), the displacement components are 

described using the following expressions (Arefi and 

Zenkour 2017) 
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( ) ( )0, , , , ,w r z t w r t =
 

where u, v and w are displacement of each point of the plate 

in r, θ and z directions and u0, v0 and w0 are those of related 

to middle plane of the plate.  

 

3.2 FSDT 
 

The displacements are described according to FSDT as 

below (Amir et al. 2018b, Ozdemir 2018) 
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in which φr and φθ are the rotations of the mid-surface about 

θ and r axes, respectively. 

 

3.3 TSDT 
 

TSDT is one of the most popular HSDTs which also 

called as Reddy’s theory. Generally, higher order theories 

present the kinematics better and lead to more accurate 

results without using any shear correction factor 

(Ghorbanpour Arani et al. 2016, El-Haina et al. 2017). But 

the equations and computational are more difficult than the 

lower order theories. Since the difference between the 

results of TSD and higher than third order theories are 

negligible and due to avoiding complicated equations and 

more CPU time usage, TSDT is employed to obtain the 

results with high accuracy. Based on TSDT the 

displacement components of the considering plate are 

described as (Ghorbanpour Arani et al. 2017c) 
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1 2

4

3
c

h
=

 
(23) 

 

3.4 Strain-displacement relations 
 

The general relations between the non-zero strain and 

displacement components in cylindrical coordinate system 

on the basis of Sanders assumptions (Brush et al., 1975) and 

regarding the Von-Karman relations, are presented as 

follows 

2

2
,

1
rr

u w

r r


  
= +  
    

(24) 

2

,
1 1 1

2

v u w

r r r


 

  
= + +  

    

1 1
,r

u v v w w

r r r r r


 

     
= − + +   

       

,rz

u w w w

z r z r


     
= + +   
       

1 1
z

v w w w

z r r z


 

     
= + +   
       

Noted that by substituting the CPT, FSDT and TSDT 

displacement fields into the strains of Eq. (24), the strain-

displacement relations for each theory can be obtained.  

 

 

4. Motion equations and boundary conditions 
 

The governing motion equations and boundary 

conditions are derived by applying the Hamilton’s principle 

given by Eq. (25) within which U and T are respectively the 

elastic strain and kinetic energies of the plate and W is the 

work of the non-conservative loads which is due to 

viscoelastic foundation in the present study (Bennoun et al. 

2016, Zenkour 2018) 
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(25) 

The elastic strain energy of a saturated porous FG 

circular plate is given by Eq. (26) as follows (Arshid and 

Khorshidvand 2017, Yahiaoui et al. 2018, Kolahdouzan et 

al. 2018) 
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And the kinetic energy thereof is given by Eq. (27) 

(Loghman and Cheraghbak 2018)  
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The external work due to visco-Pasternak foundation 

can be expressed as (Duc et al. 2017, Belmahi et al. 2018) 
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where F is the force of viscoelastic foundation and is as 

follow (Amir 2016, Ghorbanpour Arani and Kiani 2018) 
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Here, KW, KG and Cd are the Winkler, shear layer and 

damping constants, respectively. 
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Substituting Eqs. (26)-(28) into Eq. (25), performing by-

part integrations and mathematical simplification, the 

linearized motion Equations and boundary conditions in 

axisymmetric condition which makes them simpler are 

achieved based on CP, FSD and TSD theories as follows: 

 

4.1 Equations based on CPT 
 

The governing equations according to CPT are obtained 

as follows 
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Also, the boundary conditions corresponding to clamped 

support of a circular plate at outer edge, i.e. at r=a, are 

given by Eqs. (33) 

0
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w
u w

r


= = =

  
(33) 

At outer edge, i.e. at r=a, the boundary conditions 

corresponding to simple support thereof are given by Eqs. 

(34) 

0 00, 0, 0rru w M= = =
 (34) 

Independent of Hamilton’s principle, the continuity 

conditions at the center of the circular plate is given by Eqs. 

(35) 
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1
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(35) 

Due to the fact that the equations are singular at the 

plate center, i.e., at r=0, a non-zero small value is assigned 

for r in numerical computations of the current research. 
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4.2 Equations based on FSDT 
 

Employing FSDT displacement field, leads to achieve 

the following governing equations 
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where κf is the shear correction factor and for the circular 

plate is equal to π2/12. 

And for a clamped edge circular plate, the boundary 

condition is 

0 00, 0, 0ru w = = =
 (39) 

Also, for simple supports edge, they can be written as 
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And the continuity conditions at the center of the plate 

are as 
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4.3 Equations based on TSDT 
 

Using the TSDT, the following governing equations are 

obtained as 
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Unlike the CPT and FSDT, TSDT needs four conditions 

for each clamped or simple supports edge circular plate. 

The boundary conditions of a clamped edge circular plate 

are as 

0 0

0

0, 0,

0, 0r

u w

w

r


= =


= =



 
(45) 

And simple supports edge plate conditions can be 

written 

0 00, 0,u w= =
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The center of the plate continuity condition are 

expressed as 

0
0 0, 0, 0,r

w
u

r



= = =
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(47) 

where the used coefficients in Eqs. (31)-(47) are defined as 

1 1( )  d , 0,1, 2,...,6k

k

z
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(48) 
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k

z
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(49) 
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k

z

G G z z z k= =
 

(50) 

( )  d , 0,1, 2,...,6k

k

z

I z z z k= =
 

(51) 

 

 

5. Dimensionless equations 
 

Before solving the governing equations, they are non-

dimensionalized. The dimensionless parameters are 

considered as shown by Eqs. (52)  
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(52) 

The dimensionless motion equations are obtained based 

on CPT as shown by Eqs. (53)-(54) 
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and those of FSDT are given as shown by Eqs. (55)-(57) 
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and those corresponding to TSDT thereof are given as 

shown by Eqs. (58)-(60) 
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6. Solution procedure 
 

6.1 GDQM 
 

For numerical approximation of the solution of the 

dimensionless governing differential motion Eqs. (53)-(60), 

they must be converted into difference equations. In the 

current manuscript the equations are discretized by the 

application of GDQ method. According to GDQ method 

presented by Ref.s (Hosseini-Hashemi and Khorami 2011, 

Zong et al. 2009), the m-th order derivative of a function at 

a grid point, namely F(m)(xi) or dmF(xi)/dx(m), is 

approximated by a linear combination of the function values 

in whole grid points as shown by Eq. (61) within which the 

weighting coefficients ( )m

ijC are calculated using Lagrange’s 

interpolating polynomials (Liew et al. 1996) 

( ) ( ) ( )
=1

= , 1 , , <
m N

m

i in nm
n

d F
x c F x i n N m N

dx
   

(61) 

The number of the entire grid points, namely N, is so 

chosen that the GDQ method is guaranteed against 

instability. 

Eqs. (62)-(63) show the well-known interpolation of 

function F(x) with Lagrange’s interpolating polynomials, 

and its m-th order derivative.   
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where 
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( )

( ) ( ) ( )

( ) ( )

1

=1

= ,

=

n

n n

N

n
n

L x
L x

x x L x

L x x x

−

−

 
(64) 

The first derivatives of L(x), i.e. Eq. (65), in the i-th grid 

point is given by Eq. (53) 

( ) ( ) ( )1

=1
=

N

i i n
n

n i

L x x x



−

 

(65) 

By mathematical simplification, the GDQM weighting 

coefficients are achieved as shown by Eqs. (66)-(69) can be 

found (Liew et al. 1996) 
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(69) 

The distribution of the grid points in the dimensionless 

domain of the differential equations has a considerable 

influence upon the stability of the GDQM for solving the 

discrete singular equations. Shu and Richards (1992) has 

proposed a method for selecting the entire grid points. The 

set of the dimensionless grid points with uniform and with 

Chebyshev-Gauss-Lobatto distributions are respectively 

generated by Eqs. (70)-(71). Bert and Malik (1996) have 

prescribed Chebyshev-Gauss-Lobatto grid points for 

computational structural mechanics.   

1
= , 1

1
n

n
R n N

N

−
 

−  
(70) 

( ) ( ) = 1 cos 1 1 2 , 1nR n N n N− − −      
(71) 

Since the current manuscript deals with singular 

differential equations, the GDQM numerical performance 

caused by Chebyshev-Gauss-Lobatto distribution has 

appeared much better than that caused by uniform one.  

 

6.2 Assembling 
 

The motion, continuity and boundary equations 

construct the set of ordinary homogeneous differential 

equations as shown by Eq. (72) 

2 = 0
dd db dd db dd db

bd bb bd bb bd bb

K K C C M M d
i

K K C C M M b
 

        
+ −       

       

 
(72) 

where d and b denote the displacements of the inner and 

boundary points, respectively. Solving the above eigenvalue 

problem, leads to obtain the natural frequencies of the plate. 

 

 

7. Numerical results and discussion 
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(a) 

 
(b) 

Fig. 2 Convergence of the results for a) first dimensionless 

frequency based on CP, FSD and TSD theories; b) first four 

frequencies based on FSDT. (Symmetric dist.) 

 

 

In this section, the results for the free vibration analysis 

of the considering plate are presented. Firstly, the 

convergence of the GDQ method is investigated, then by 

comparing the present study results with previous ones, the 

reliability of them is examined and after that the results of 

the current research are expressed. 

 

7.1 Convergence 
  

As stated in the previous section, choosing the right 

number of grid points plays an important role in stability 

and convergence of the obtained results via GDQM. So, 

Fig. 2 shows the effect of grid points number on the results. 

Fig. 2(a) indicates the mentioned effect for the first natural 

frequency obtained by CPT, FSDT and TSDT. It is seen 

that the FSDT results are converged to a specific value with 

fewer number of grid points in comparison those of CPT 

and TSDT. Also, it can be found that by choosing 20 grid 

points, the results for three mentioned theories are 

converged to their final values. Fig. 2(b) considers the 

convergence of FSDT results for first four frequencies. It is 

seen that the first frequency is converged sooner than the  

Table 1 Comparing the results of first four dimensionless 

frequencies with previous studies 

B.C Ref. Ω1 Ω2 Ω3 Ω4 

C 

Azimi (1998) 10.216 39.771 89.103 - 

Wu et al. (2002) 10.216 39.771 89.104 158.184 

Lal and Ahlawat (2015) 10.2158 39.7711 89.1041 - 

Wang et al. (2001) 10.197 39.418 - - 

Leissa (1969) 10.2158 39.771 89.104 158.1842 

Present 

CPT 10.30963 40.13858 89.93241 159.6635 

FSDT 10.27701 39.71432 87.99016 153.9437 

TSDT 10.01009 39.24168 87.28626 153.2252 

S 

Azimi, 1998 4.935 29.720 74.156 - 

Wu et al. (2002) 4.935 29.720 74.156 138.318 

Lal and Ahlawat (2015) 4.9351 29.7200 74.1561 - 

Leissa (1969) 4.977 29.76 74.20 138.34 

Present 

CPT 4.981802 30.05704 74.99636 139.8847 

FSDT 4.97552 29.81088 73.71986 135.7879 

TSDT 4.70749 29.26333 72.98983 134.8865 

 

 

higher modes frequencies. So, the rapid convergence which 

is one of the highlight features of the GDQM is examined 

and it is seen that with few number of points the results are 

converged. 

 

7.2 Validation 
 

By substituting e1 and B with zero, the porosity and 

Skempton’s number are neglected and the mathematical 

model of the porous FG circular plate is reduced into that of 

isotropic one. The lowest four dimensionless natural 

frequencies of such a plate with clamped and simple 

supports boundary conditions have been computed based on 

CP, FSD and TSD theories and compared with literature in 

Table 1 (Azimi 1988, Lal and Ahlawat 2015, Leissa 1969, 

Wang et al. 2001, Wu et al. 2002). The lowest 

dimensionless natural frequency is analytically given by 
2a h D = within which the plate flexural rigidity is 

computed from D=Eh3/12(1-ν2). The plate material is steel 

possessing modulus of elasticity E, Poisson’s ratio and 

density equal to 200 GPa, 0.3 and 7800 kg/m3, respectively. 

It is seen that the results are in excellent agreement with 

previous ones and the little difference is due to different 

theories were used to analyze the structure. So, the 

reliability if the equations and solution method is also 

validated and in the following, the present study with 

considering different material, foundation and aspect ratio 

parameters are investigated. 

 

7.3 Parametric study 
 

Now, effect of different parameters on the natural 

frequencies and mode shapes of the under considerations 

plate are studied. It should be noted that the plate’s radius 

and thickness are considered to be 0.6 m and 0.02 m, 

respectively and it’s Young’s elasticity modulus and density  
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Table 2 Effect of Skempton coefficient, porosity and 

boundary conditions on the first dimensionless frequency 

based on CP, FSD and TSD theories for non-symmetric 

porosity distribution 

   e1 

B B.C  0.0 0.2 0.4 0.6 

0.0 

S 

CPT 4.8559 4.7244 4.5843 4.4359 

FSDT 4.8278 4.6970 4.5578 4.4105 

TSDT 4.6540 4.5264 4.3902 4.2443 

C 

CPT 10.1573 9.8639 9.4933 8.9790 

FSDT 10.1271 9.8343 9.4649 8.9531 

TSDT 9.8732 9.5860 9.2246 8.7267 

0.3 

S 

CPT - 4.7872 4.6959 4.5793 

FSDT - 4.7594 4.6686 4.5530 

TSDT - 4.5846 4.4934 4.3761 

C 

CPT - 9.9587 9.6753 9.2386 

FSDT - 9.9283 9.6455 9.2106 

TSDT - 9.6749 9.3958 8.9706 

0.5 

S 

CPT - 4.8281 4.7672 4.6697 

FSDT - 4.8000 4.7395 4.6427 

TSDT - 4.6228 4.5595 4.4594 

C 

CPT - 10.0203 9.7908 9.3993 

FSDT - 9.9894 9.7599 9.3700 

TSDT - 9.7329 9.5039 9.1212 

 

 

respectively are as 60 GPa and 2700 kg/m3. Also, the value 

of Poisson’s ratio is 0.25. 

The first dimensionless natural frequencies of clamped 

and simply supported circular porous FG plate are 

computed for CP, FSD and TSD theories and are shown in 

Tables 2-4 for the assigned values 0.0, 0.3 and 0.5 for 

Skempton parameter and non-symmetric, symmetric and 

monotonic pore distributions. According to these tables, the 

increase of pore compressibility or Skempton parameter, 

increases the natural frequency due to increasing the 

stiffness of the plate compare to its density. 

Considering Table 2, due to the increase of porosity in a 

circular plate with non-symmetrical pores distribution, the 

first natural frequency decreases in both clamped and 

simple boundary conditions. These behaviors are due to the 

fact that in the plate, both mass and stiffness decrease due to 

porosity increase, but the rate of decrease of stiffness is 

more than that of mass. Since the frequency is proportional 

to the square root of the ratio of stiffness to mass, the 

natural frequency decreases. This is in compliance with 

References (Chen et al. 2016, Leclaire et al. 2001, 

Theodorakopoulos and Beskos 1994). 

Considering Table 3, due to the increase of porosity in a 

circular plate with symmetrical pores distribution, the first 

natural frequency increases unlike the non-symmetric 

distribution. Its reason is due to stiffness to mass ratio 

variations. 

Considering Table 4, it is found that the plate’s natural 

frequency has a similar manner to non-symmetric pores 

distribution for monotonic distribution.  

Table 3 Effect of Skempton coefficient, porosity and 

boundary conditions on the first dimensionless frequency 

based on CP, FSD and TSD theories for symmetric porosity 

distribution 

   e1 

B B.C  0.0 0.2 0.4 0.6 

0.0 

S 

CPT 4.8559 4.8430 4.8534 4.9108 

FSDT 4.8278 4.8147 4.8248 4.8814 

TSDT 4.6540 4.6335 4.6319 4.6678 

C 

CPT 10.1573 10.1301 10.1520 10.2720 

FSDT 10.1271 10.0982 10.1177 10.2339 

TSDT 9.8732 9.8330 9.8341 9.9178 

0.3 

S 

CPT - 4.8837 4.9307 5.0204 

FSDT - 4.8552 4.9015 4.9902 

TSDT - 4.6685 4.6984 4.7629 

C 

CPT - 10.1883 10.2624 10.4288 

FSDT - 10.1559 10.2270 10.3890 

TSDT - 9.8870 9.9356 10.0602 

0.5 

S 

CPT - 4.9106 4.9809 5.0908 

FSDT - 4.8818 4.9514 5.0602 

TSDT - 4.6914 4.7421 4.8246 

C 

CPT - 10.2267 10.3345 10.5303 

FSDT - 10.1939 10.2984 10.4895 

TSDT - 9.9225 10.0019 10.1523 

 

Table 4 Effect of Skempton coefficient, porosity and 

boundary conditions on the first dimensionless frequency 

based on CP, FSD and TSD theories for monotonous 

porosity distribution 

   e1 

B B.C  0.0 0.2 0.4 0.6 

0.0 

S 

CPT 4.8559 4.6899 4.4940 4.2500 

FSDT 4.8278 4.6627 4.4680 4.2254 

TSDT 4.6540 4.4948 4.3071 4.0732 

C 

CPT 10.1573 9.8100 9.4003 8.8899 

FSDT 10.1271 9.7808 9.3723 8.8634 

TSDT 9.8732 9.5357 9.1375 8.6413 

0.3 

S 

CPT - 4.7636 4.6368 4.4566 

FSDT - 4.7359 4.6099 4.4306 

TSDT - 4.5646 4.4423 4.2686 

C 

CPT - 9.9152 9.6049 9.1869 

FSDT - 9.8851 9.5752 9.1579 

TSDT - 9.6346 9.3299 8.9205 

0.5 

S 

CPT - 4.8116 4.7280 4.5856 

FSDT - 4.7837 4.7005 4.5589 

TSDT - 4.6101 4.5284 4.3904 

C 

CPT - 9.9842 9.7371 9.3754 

FSDT - 9.9535 9.7062 9.3447 

TSDT - 9.6995 9.4539 9.0972 
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Fig. 3 Variations of stiffness to density ratio respect to 

porosity coefficient 

 

 
(a) 

 
(b) 

Fig. 4 Effect of porosity increasing, different theories and 

porosity distributions on first natural frequency of (a) 

clamped; (b) simple supports circular plate 

 

 

Square root of the ratio of stiffness to mass is plotted 

respect to the porosity variations in Fig. 3 and it confirms  

 
(a) 

 
(b) 

Fig. 5 Effect of dimensionless thickness on the first 

dimensionless frequency of (a) clamped; (b) simple 

supports circular plate based on CP, FSD and TSD theories 

 

 

the previous statements. 

Figs. 4(a)-(b) show the effect of pores distribution, 

porosity coefficient and compare the results of three used 

theories. Fig. 4(a) shows the first dimensionless natural 

frequency variations versus porosity coefficient for clamped 

plate and Fig. 4(b) shows the same thing but for simple 

supports circular plate. These figures confirmed the findings 

of Tables 2-4 and also indicate that by accounting the shear 

deformations effect and also by increasing the order of used 

theory, the results become more accurate. In other words, 

the results of TSDT are the least ones in comparison to CPT 

and FSDT. Since the TSDT accounts the shear 

deformations using a third order function, it is more 

accurate than two other theories. Also, between CPT and 

FSDT, it is seen that the results of CPT are more than 

FSDT. This happens for all of the following results.  

As shown by Figs. 5(a)-(b), increase of dimensionless 

thickness increases the first natural frequency of a circular 

plate for symmetric pores distribution. In clamped boundary 

conditions, the slope of increase of the frequency is greater 

in comparison with the slope in simple boundary 

conditions. As stated before, it is also obvious that TSDT  
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Fig. 6 Effect of spring and shear layer constants on first 

natural frequency of the plate 

 

 

Fig. 7 Effect of damping constant on frequency of the plate 

 

 

has the minimum values of the results than those of CPT 

and FSDT. As the plate’s thickness becomes less, in another 

word for thin plates, the difference between results of three 

mentioned theories are negligible but as the plate becomes 

thicker, the difference becomes more, too. It can be 

concluded due to more complex equations and more CPU 

time usage for solving the TSDT equations, it is 

recommended that for thin plates, CPT be used for 

describing the displacement components, FSDT for 

moderately thick and TSDT for thick plates. 

Figs. 6-8 depict effect of visco-elastic foundation 

constants on the vibration of the plate for symmetric 

porosity distribution. Fig. 6 shows the effect of spring and 

shear layer constants simultaneously. As the mentioned 

constants increase, the stiffness of the structure enhances 

and its vibration reduces, so its natural frequency increases. 

Comparing spring and shear layer constants effect, it is seen 

spring constant has more effect on the results. 

Fig. 7 shows the damping constant variations on the 

results. As the damping constants enhances, its viscosity 

increases and effect of dampers, reduces. It will caused a 

reducing in natural frequency and leads to increasing the 

vibrations of the plate. 

 

Fig. 8 Comparison of different types of elastic foundation 

and their effect on natural frequency 

 

 
(a) 

 
(b) 

Fig. 9 Associated to first frequency mode shapes based on 

CP, FSD and TSD theories for (a) clamped; (b) simple 

supports plate 

 

 

Comparing different types of elastic foundation and 

their influence on the vibrational behavior of the plate is  
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Fig. 10 Effect of porosity distributions on deflection of the 

plate along the radius 

 

 

Fig. 11 Effect of porosity increasing on deflection of the 

plate along the radius 

 

 

considered in Fig. 8. It is seen if the elastic foundation will 

be removed from the structure, its frequency decreases and 

by adding different kinds of elastic substrate, it will be 

increased. Also, among the different types of elastic 

foundation, it is concluded that Pasternak and visco-

Winkler have the maximum and minimum values of natural 

frequencies, respectively. As it was found in Fig. 8, 

generally adding the damper, increases the vibration of the 

structure.  

Figs. 9-13 are considered effect of the previous 

parameters on the mode shapes of the vibration first mode 

of the plate. Figs. 9(a)-(b) are plotted the displacement 

components of the plate based on CP, FSD and TSD 

theories along the radius of the plate for non-symmetric 

pores distribution. The physical meaning of boundary 

conditions can be seen in these figures. Fig. 9(a) is for 

clamped plate and Fig. 9(b) is for simple supports one. 

Also, the distribution of grid points according to 

Chebyshev-Gauss-Lobatto is clearly seen in these figures. 

Based on the mentioned points distribution, number of 

points near the boundaries are more than other areas. Noted 

that u displacement is not zero but it is negligible compare  

 

Fig. 12 Effect of Skempton coefficient variations on 

deflection of the plate along the radius 

 

 

Fig. 13 Effect of dimensionless thickness on deflection of 

the plate along the radius 

 

 

to other components. 

Dynamic transverse displacement of the clamped plate 

is plotted in Fig. 10 for different porosity distributions for 

the first mode of vibration based on FSDT. It is seen the 

symmetric and monotonic distributions have the most and 

the least dynamic deflection, respectively. 

Also, effect of porosity increasing on the dynamic 

deflection of the plate along its radius is shown in Fig. 11. 

As the porosity increases, the plates dynamic deflection 

increases and also it vibrates more. 

Fig. 12 illustrates effect of Skempton parameter on the 

dynamic transverse displacement of the structure. It is 

found that enhancing B, leads the deflection to increase. 

Fig. 13 depicts effect of thickness of the plate on w. It is 

seen as the plate becomes thicker, its dynamic displacement 

raises. 

 

 

8. Conclusions 
 

Using GDQM the governing differential equations and 
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boundary conditions of saturated porous circular plate 

which have been derived based on CP, FSD and TSD 

theories, have been converted into discrete algebraic ones. 

The effect of material, foundation and geometric parameters 

on the natural frequencies and mode shapes has been 

analyzed and the following items are concluded: 

• Employing GDQM to solve the governing differential 

equations, caused a rapid convergence and high accurate 

results in comparison to previous studies. 

• By neglecting the porosity and Skempton parameters, 

the mathematical model and results are converted into those 

of an isotropic circular plate. 

• Increase of compressibility of the fluids within the 

pores increases the natural frequency and the dynamic 

deflection of the plate. 

• Increase of porosity from zero makes the natural 

frequency of simply supported and clamped circular plates 

decreases for non-symmetric and monotonous pores 

distributions, but increases for symmetric distribution. This 

is due to stiffness to mass ratio variations for each types of 

porosity distribution. Also, the symmetric distribution has 

the most dynamic deflection and monotonous has the least. 

• Enhancing of dimensionless thickness, increases the first 

natural frequency and dynamic deflection of the circular 

plate. For clamped supports it increases with a greater slope 

than that of the simply supported one. 

• Comparing the results of CPT, FSDT and TSDT it is 

found that the TSDT ones have the least values and CPT 

results have the most. Also, as the plate becomes thicker, 

TSDT is a better choice for its analysis. While CPT and 

FSDT are recommended to analyze the thin and moderately 

thick plates, respectively. 

• Since adding elastic foundation generally increases the 

plate’s stiffness, so the natural frequency of the plate 

increases, too. 

• Although increasing the spring and shear layer 

constants, increases the frequency, but enhancing the 

damping constant, reduces the frequency and vibrates plate 

more. 

• Comparing different kinds of elastic foundation, it is 

found that Pasternak and visco-Winkler foundations have 

the maximum and minimum values of frequency, 

respectively. 
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