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1. Introduction  
 

In traditional optimization procedure, most engineers 

assume that the design variables in the problem are 

deterministic. However, different kinds of uncertainties are 

presented and needed to be accounted for the design 

optimization process. Reliability based design optimization 

(RBDO) is a method that takes into account uncertainty due 

to the presence of random variables during the design 

process. The aim is to obtain a trade-off between a higher 

safety and a lower cost which is normally satisfied by 

setting a maximum allowed probability of failure (Thoft-

Christensen and Murotsu 1986). 

Several attempts have been made in RBDO problems of 

truss structures by considering the displacement constraints 

and the stress limits of the components. Luo and Grandhi 

(1997) proposed a reliability based multidisciplinary 

structural analysis for optimizing truss structures. Mathakari 

and Gardoni (2007) developed a hybrid methodology by 

combining multi-objective genetic algorithms (MOGA) and 

finite element reliability analysis. The weight and reliability 

index of an electrical transmission tower are considered as 

the two objective functions for MOGA. The finite element 

reliability analysis performed by OpenSees software. Togan 

et al. (2011) used the harmony search optimization 

algorithm and double-loop strategy to perform RBDO based  
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on the reliability index and performance measurement 

approaches. Yand and Hsieh (2011) solved the discrete and 

non-smooth RBDO problem by integrating subset 

simulation with a new particle swarm optimization 

algorithm (PSO). Shayanfar et al. (2014) developed a 

double-loop strategy for reliability-based optimization of 

structures by employing genetic algorithm (GA) as an 

optimization approach and OpenSees software for finite 

element reliability analysis. Safaeian Hamzehkolaei et al. 

(2016) proposed a decoupled RBDO method based on a 

safety factor concept, PSO and weighed simulation method. 

A new hybrid method, namely the SORA-ICDE, was 

developed by HoHuu et al. (2016) by integrating the 

sequential optimization and reliability assessment (SORA) 

with an improved constrained differential evolution 

algorithm (ICDE) for solving RBDO of engineering 

problems. Dizangian and Ghasemi (2016) proposed a 

decoupled strategy for the reliable optimum design of 

trusses based on a design amplification factor combined 

with response surface method. Ho-Huu et al. 2018) 

proposed a global single-loop deterministic approach by 

combining a single-loop deterministic method (SLDM) and 

an improved different evolution (IDE), showed its 

capability to solve RBDO problems with both the 

continuous and discrete design variables. 

To solve RBDO of statically determinate truss 

structures, some studies can be found in the literature by 

modeling the structural system as a series system. Dimou 

and Koumousis (2003) proposed a new version of GA, 

namely competitive GA, and showed its application to the 

reliability based optimal design of trusses. In a similar 

study, they utilized PSO algorithm instead of GA (Dimou 
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and Koumousis 2009).  Togan and Daloglu (2006) 

optimized a roof truss system by various optimization 

methods including sequential quadratic programming 

(SQP), evolution strategy (EVOL), and GA. Zhang et al. 

(2017) proposed a novel approach, namely time-dependent 

reliability analysis with response surface (TRARS), to 

estimate the time-dependent reliability for nondeterministic 

structures under stochastic loads. The basic idea is replacing 

the performance function with such as response surface. In 

similar studies, Meng et al. (2018) proposed an adaptive 

directional boundary sampling (ADBS) method (Meng et 

al. 2018) and a novel importance learning method (ILM) 

based on the active learning technique to obtain more 

accurate and efficient reliability analysis for some 

engineering problems (Meng et al. 2018). 

It should be noted that for a statically indeterminate 

truss, the assumption of a series system is inapplicable since 

the structural failure may occur after more than one 

component fail. To overcome this problem, some 

researchers modeled them as series-parallel systems and 

determined the failure of the system based on the failure 

paths concept. Hendawi and Frangopol (1994) developed a 

probabilistic redundancy factor to estimate the first yielding 

of the structure. Natarajan and Santhakumar (1993) utilized 

the branch and bound method and developed a formulation 

for RBDO of a transmission line towers. Thampan and 

Krishnamoorthy (2001) proposed a modified branch-and-

bound (MBB) method to perform the system reliability 

assessment of truss structures. They coupled MBB and GA 

to minimize the total expected cost of the structure. Based 

on some fundamental assumptions, Park et al. (2004) 

proposed an efficient technique to determine the system 

reliability of a complex structure directly from the 

reliabilities of its members. A single-loop method based on 

the matrix-based system reliability (MSR) technique was 

proposed by Nguyen et al. (2010) to solve RBDO of a 6-

member indeterminate truss structure. The MSR determines 

the probabilities of the system events by the matrix 

formulation. Liu et al. (2015) proposed a system reliability 

based design optimization for truss structures by integrating 

GA and Monte Carlo simulation together with the trained 

radial basis function (RBF) neural networks. Okasha (2016) 

considered nonlinear material behavior in RBDO problems 

of indeterminate trusses. The system reliability determined 

by weighted average simulation method (WASM), and the 

optimization process performed by using the firefly 

algorithm. 

As can be found from the previous studies, although 

they proposed some valuable and efficient methods in 

solving different kinds of RBDO problems, some key 

features in the design process of truss structures are ignored. 

On the one hand, most of the previous works are dealt with 

the statically determinate trusses, whereas statically 

indeterminate truss are more practical because the 

distribution of the applied between the structural members 

loads is done better and also some elements can be failed 

without compromising the viability of the structure 

(Macdonald 2001). On the other hand, research on solving 

the system RBDO problems of truss structures is focused on 

describing uncertainty by random distributions that have 

deterministic distribution parameters. However, finding 

precise random distributions require a large amount of 

information. Since in practical applications sufficient 

experimental samples are expensive and difficult to achieve, 

some assumptions should be made when using a probability 

model to perform the reliability analysis. However, several 

studies revealed that even a small deviation of the 

distribution parameters from the real values can result in 

very large errors in the reliability analysis (Ben-Haim and 

Elishakoff 1990). 

In order to overcome this problem, two hybrid uncertain 

models have been proposed by integrating the traditional 

probability approach and the non-probability interval 

analysis. The concept of these models is based on the use of 

variation intervals in the face of insufficient uncertainty 

information. In this way, a more accurate reliability analysis 

can be achieved by eliminating errors from assumptions on 

the probability distributions (Jiang 2011). 

In the first model, random variables with sufficient 

information and ones lacking enough uncertainty 

information are treated as random distributions and 

intervals, respectively. While in the second one, all random 

variables are described by random distributions but some 

key distribution parameters of them which lack information 

are defined by variation intervals. For a good overview 

about hybrid uncertain models, the interested reader is 

referred to the work by Jiang et al. (2018). 

For the first hybrid uncertain model, a number of studies 

have been published. Du et al. (2005) proposed a single-

loop RBDO to deal with the uncertain variables described 

by the mixture of probability distributions and intervals. Du 

(2007) formulated a reliability analysis framework with the 

aim of investigating computational tools to determine the 

effects of random and interval inputs on direct and inverse 

reliability analysis results. By considering both random 

variables and interval variables, a sensitivity analysis 

method was proposed by Guo and Du (2009). They 

introduced six sensitivity indices based on the first-order 

reliability method (FORM) to investigate the sensitivity of 

the average reliability and reliability bounds. Based on the 

probabilistic reliability model and interval arithmetic, Qiu 

and Wang (2010) developed a new model to improve 

interval estimation for reliability of the hybrid structural 

system. Jiang et al. (2012) proposed an equivalent model 

for reliability analysis with random and interval variables. 

By changing the interval variables to corresponding 

uniform distributions, the original problem was converted 

into a conventional reliability analysis problem with only 

random variables. Xie et al. (2015) proposed a new hybrid 

reliability analysis by decomposing the probability analysis 

loop and interval analysis loop into two separate loops. 

Furthermore, a new interval analysis method is formulated 

based on the monotonicity of limit-state function. 

The second hybrid uncertain model was first proposed 

by Elishakoff and Colombi (1993) by formulating an anti-

optimization problem. Non-linear buckling of a column 

with initial imperfection was investigated by Elishakoff et 

al. (1994) based on the probability and non-probability 

approaches. Moreover, they showed that the results from 

both of them were critically contrasted. Qiu et al. (2008) 
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proposed an approach to obtain the interval of the system 

failure probability from the statistical parameter intervals of 

the basic variables. Jiang et al. (2011) proposed a new 

structural reliability analysis by conducting a monotonicity 

analysis for the probability transformation process, and two 

efficient algorithms were formulated based on the reliability 

index and performance measurement approach. In another 

work, they presented a detailed description of the effects of 

interval parameters on the limit state function (Jiang et al. 

2012). Huang et al. (2017) developed a decoupled RBDO 

algorithm by utilizing the reliability analysis presented in 

previous work by Jiang et al. (2012) and an incremental 

shifting vector (ISV) technique. 

In this paper, for the first time, the second hybrid 

uncertain model is considered to system RBDO problems of 

truss structures; and the effect of different types of interval 

distribution parameter on the optimum weight of the 

structure is investigated which can be beneficial to select 

and define a proper variation intervals of the distribution 

parameters in the design process. The reliability analysis we 

use is based on the work by Jiang et al. (2012) and the 

optimization process is performed by using the ICDE 

algorithm. The rest of this paper is organized as follows. 

Section 2 presents the ICDE algorithm. In section 3 a brief 

description of the reliability assessment with and without 

interval distribution parameters, system reliability analysis 

for truss structures as well as reliability based design 

optimization are presented. Numerical and structural 

examples are proposed in section 4. Finally, the conclusion 

is presented in section 5. 

 

 

2. The improved (µ + 𝛌)  constraint differential 
evolution (ICDE) algorithm 
 

According to the relatively fast convergence rate, low 

standard deviation from the mean value in different runs of 

algorithm and ease of implementation (Zaeimi and 

Ghoddosian 2018), we used ICDE algorithm for 

optimization process in this study. ICDE is a robust version 

of differential evolution algorithm to solve the constrained 

optimization problem. Two main parts of ICDE are the 

improved (μ + λ) - differential evolution (IDE) and the 

archiving-based adaptive tradeoff model (Jia et al. 2013). 

The next sections briefly introduce the main parts 

algorithm. 

 

2.1 Differential evolution (DE) algorithm 
 

The differential evolution (DE) was first developed by 

Storn and Price (1997). It is one of the most successful and 

widely used metaheuristic algorithms to solve continuous 

optimization problem. DE is a population-based algorithm 

which uses three evolutionary operators, i.e., mutation, 

crossover, and selection operators. Note that the diversity of 

the population is guaranteed by using the mutation and 

crossover operators. The main steps of DE algorithm are 

described below. 

Step 1 - Generating initial population: In this step, an 

initial population containing 𝜇  parents are generated 

randomly in the search space as follows 

𝑿𝑖
𝑡 = 𝑳𝑩 + 𝑟𝑎𝑛𝑑 . (𝑼𝑩 − 𝑳𝑩),   𝑖 = 1,2, … , 𝜇 (1) 

in which 𝑿𝑖
𝑡 is the current individual in the 𝑡-th generation 

(in the initial population t is equal to zero), rand is used to 

create a random number in [0,1] and 𝑳𝑩 and 𝑼𝑩 indicate 

the lower and upper bound of the design variables 

respectively. 

Step 2 - Generating the mutant vectors: In each 

generation, mutant vectors 𝑽𝑖 are generated based on the 

following four strategies (Jia et al. 2013) 

Rand/1: 𝑽𝑖
𝑡 = 𝑿𝑟1

𝑡 + 𝐹 ∙ (𝑿𝑟2
𝑡 − 𝑿𝑟3

𝑡 ) (2) 

Rand/2: 𝑽𝑖
𝑡 = 𝑿𝑟1

𝑡 + 𝐹 ∙ (𝑿𝑟2
𝑡 − 𝑿𝑟3

𝑡 ) + 𝐹 ∙ (𝑿𝑟4
𝑡 −

𝑿𝑟5
𝑡 ) 

(3) 

Current-to-rand/1: 𝑽𝑖
𝑡 = 𝑿𝑖

𝑡 + 𝐹 ∙ (𝑿𝑟1
𝑡 − 𝑿𝑖

𝑡) + 𝐹 ∙

(𝑿𝑟2
𝑡 − 𝑿𝑟3

𝑡 ) 
(4) 

Current-to-best/1: 𝑽𝑖
𝑡 = 𝑿𝑖

𝑡 + 𝐹 ∙ (𝑿𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑖

𝑡) + 𝐹 ∙
(𝑿𝑟1

𝑡 − 𝑿𝑟2
𝑡 ) 

(5) 

where 𝑟1, 𝑟2, 𝑟3, 𝑟4  and 𝑟5  are different integers selected 

from the set {1,2, … , 𝜇}  and satisfy{𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠
𝑟5}, 𝑿𝑏𝑒𝑠𝑡

𝑡  and 𝑿𝑖
𝑡 are respectively the best and the current 

individual in t-th generation and scale factor F, is selected 

randomly between 0 and 1. After generation of mutant 

vectors, they are checked against the boundary constraints 

and the following modification is performed 

𝑉𝑖,𝑗
𝑡 = {

2𝑋𝑗
𝑙 − 𝑉𝑖,𝑗

𝑡 𝑖𝑓 𝑉𝑖,𝑗
𝑡 < 𝑋𝑗

𝑙  

2𝑋𝑗
𝑢 − 𝑉𝑖,𝑗

𝑡 𝑖𝑓 𝑉𝑖,𝑗
𝑡 > 𝑋𝑗

𝑢

𝑉𝑖,𝑗
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

Step 3 - generating trial vectors by crossover operator: 

In this step, by using the binomial crossover, some elements 

of the current vector is replaced by some elements of 

mutant vector to produce the trial vector 𝑼𝑖 

𝑈𝑖,𝑗
𝑡 = {

𝑉𝑖,𝑗
𝑡 𝑖𝑓  𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅   𝑜𝑟   𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑖,𝑗
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

Step 4 - comparing the trial vector and current vector: 

Finally, the trial vector compares with the current vector 

according to their objective function values and the better 

one with better objective value will survive in the next 

generation 

𝑿𝑖
𝑡+1 = {

𝑼𝑖
𝑡 𝑖𝑓  𝑓(𝑼𝑖

𝑡) ≤ 𝑓(𝑿𝑖
𝑡)

𝑿𝑖
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 
2.2 Improved (𝜇 + 𝜆) -differential evolution (IDE) 

algorithm 
 

The ICDE utilizes an improved version of the DE, 

called IDE, which have better population diversity. In IDE, 

the offspring population 𝑄𝑡 is generated from the current 

population 𝑃𝑡 based on the following three steps. At the 

end of these steps, the offspring population will have 𝜆 =
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3𝜇 individuals. 

Step 1: set 𝑄𝑡 = ∅; 

Step 2: generate three offspring for each individual in 

𝑃𝑡: 

- for the first offspring  𝒚1 , use the “rand/1” mutation 

strategy and the binomial crossover; 

- for the second offspring 𝒚2, use the “rand/2” mutation 

strategy and the binomial crossover; 

- for the third offspring  𝒚3 , use the “current-to-best/1” 

strategy and improved breeder genetic algorithm (iBGA) 

(Jia et al. 2013). 

Step 3: update the offspring population, 𝑄𝑡 = 𝑄𝑡 ∪
 𝒚1 ∪  𝒚2 ∪  𝒚3; 

In order to obtain a good balance between the 

population diversity and convergence of the population, two 

different mutation strategies are performed in the “current-

to-rand/best/1” in step 2. In the first one, the “current-to-

rand/1” strategy is used to increase the global search of the 

algorithm, while the second one increases the convergence 

rate of the population toward the global optimum. When the 

generation number is more than a threshold value, the 

second phase begins. 

 

2.3 Archiving-based adaptive tradeoff model (ArATM) 
 

In constraint optimization, three possible situations may 

exist in a combined population,  𝐻𝑡 , resulting from the 

combination of the offspring population 𝑄𝑡 and the parent 

population 𝑃𝑡 . These situations are the infeasible, semi-

feasible and feasible situations and each of them has 

different constraint-handling method in the ArATM. By 

performing the procedure described below, ArATM 

simultaneously satisfies the constraints and optimizes the 

objective function of the problem. 

In the infeasible situation, since all individuals violate 

the constraints, the population should be guided toward the 

feasible region very quickly to maintain the population 

diversity. For this purpose, the original problem 

transformed to a bi-objective optimization problem and a 

good tradeoff between two objectives, the objective 

function and the degree of constraint violation is made. 

Moreover, the individuals that have no chance to survive 

into the next generation will be stored in an archive to 

compete with the individuals of the next combined 

population 𝐻𝑡+1. In this way, the population diversity can 

be increased during the optimization process. 

In the semi-feasible situation, the combined population 

contains both feasible and infeasible individuals. In this 

situation, the algorithm benefits from not only the feasible 

individuals but also some infeasible ones since they may 

have important information to find the global optimum. To 

fulfill this aim, by using an adaptive fitness transformation 

scheme, some feasible individuals with small fitness values 

along with some infeasible individuals with both small 

degree of constraint violation and small fitness values are 

selected to survive into the next generation. 

In the feasible situation, all individuals are feasible and 

the comparison between them is performed only based on 

their fitness values. Therefore, those with better fitness 

value constitute the next population. 

3. Reliability and reliability based design 
optimization 
 

3.1 Reliability analysis 
 

The Failure probability of a limit state function (or 

failure mode) can be calculated using a probabilistic 

reliability analysis 

𝑃𝑓 = 𝑃(𝐺(𝑿) ≤ 0) =  ∫ 𝑓𝑿(𝑿) 𝑑𝑿
𝐺(𝑿)≤0

 (9) 

where 𝑃𝑓  is the failure probability, 𝐺(𝑿)  indicates the 

limit state function which is a function of random 

variables  𝑿 , and 𝑓𝑿(𝑿)  is the joint probability density 

function of 𝑿. The reliability 𝑅 is defined as 

𝑅 = 1 − 𝑃𝑓 (10) 

Because of some difficulties in computing the above 

multi-dimensional integral (Elegbede 2005), one of the 

most commonly used approximation methods called first 

order reliability method (FORM) is used in this study.  

The ease of the computational difficulties is provided 

through the simplifying the integrand 𝑓𝑥(𝒙)  and 

approximating  𝐺(𝑿) . First, the shape of the 𝑓𝑥(𝒙)  is 

simplified by mapping 𝑋  into the independent standard 

normal space (i.e., U-space) (Rosenblatt 1952, Jiang et al. 

2011) 

𝛷(𝑈𝑖) = 𝐹𝑋𝑖
(𝑋𝑖),     𝑈𝑖 = 𝛷−1[𝐹𝑋𝑖

(𝑋𝑖)],    𝑖

= 1,2, … , 𝑛 (11) 

in which 𝐹𝑋𝑖
 and Φ−1  are cumulative distribution 

function (CDF) and inverse standard normal CDF, 

respectively. The limit state function can be written in U-

space as follows 

𝐺(𝑿) = 𝐺(𝑇(𝑼)) = 𝐺(𝑼) (12) 

where 𝑇 indicates a probability transformation and 𝐺(𝑼) 

is the transformed limit sate function in the U-space. Next, 

the limit state function is approximated by the first order 

Taylor expansion at a point with the highest probability 

density on the limit state function in U-space (Ang and 

Tang 2007). Geometrically, it is a point, namely the most 

probable point (MPP), with the shortest distance from the 

origin of U-space to 𝐺(𝑼) = 0. This minimum distance 

determines the reliability index (Hasofer and Lind 1974b) 

{
𝛽 = 𝑚𝑖𝑛

𝑈
‖𝑼‖

𝑠. 𝑡.       𝐺(𝑼) = 0
 (13) 

where 𝛽 is the reliability index. Now, failure probability in 

Eq. (9) can be determined by the following equation 

𝑃𝑓 = 𝛷(−𝛽) (14) 

where Φ is the standard normal CDF. 

 

3.2 Reliability analysis for random variables with 
interval parameters 
 

When interval distribution parameters are involved in 
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the distribution function of random variables X, Eq. (12) 

can be rewritten as follows (Jiang et al. 2011) 

𝐺(𝑿) = 𝐺(𝑇(𝑼, 𝒀)) = 𝐺(𝑼, 𝒀) (15) 

where 𝒀  is an m-dimensional vector containing all the 

interval distribution parameters 

𝒀 ∈ [𝒀𝑳, 𝒀𝑹],   𝑌𝑖 ∈ [𝑌𝑖
𝐿 , 𝑌𝑖

𝑅]     𝑖 = 1,2, … , 𝑚 (16) 

From Eq. (15), it can be found that the limit state 

function is related to not only the random variables 𝑼 but 

also the interval variables 𝒀. Moreover, due to the interval 

variables, the transformed limit state described by 

𝐺(𝑼, 𝒀)  =  0  will not be a single surface, but a strip 

enclosed by two bounding surfaces 𝑆𝐿 and 𝑆𝑅 

𝑆𝐿 ∶  𝑚𝑖𝑛
𝑌

𝐺(𝑈, 𝑌) = 0  ,     𝑆𝑅 ∶  𝑚𝑎𝑥
𝑌

𝐺(𝑈, 𝑌) = 0 (17) 

As shown in Fig. 1, 𝑆𝐿  and 𝑆𝑅  are respectively the 

lower and upper bounding surfaces of 𝐺(𝑼, 𝒀)  as 𝒀 

changes. Jiang et al. (2011, 2012) proposed that for 

different classes of interval distribution parameters, there 

are two typical forms for the above bounding surfaces. For 

each bounding surface, we can obtain reliability indexes 

through FORM and define a hybrid reliability index 𝛽ℎ 

(Jiang et al. 2011) 

𝜷𝒉 ∈ [𝜷𝑳, 𝜷𝑹] (18) 

where 𝛽𝐿  and 𝛽𝑅  indicate the reliability index of the 

lower and upper bounding surfaces, respectively. 𝛽ℎ is not 

a deterministic value but a possible variation range of the 

reliability index formed by interval parameters 𝒀 . 

Moreover, the failure probability of the structure will 

belong to an interval 

𝑷𝒇 ∈ [𝑷𝒇
𝑳, 𝑷𝒇

𝑹] = [𝝓(−𝜷𝑳), 𝝓(−𝜷𝑹)] (19) 

Since a strict reliability requirement can be satisfied 

only by focusing on the worst case, our most concern in this 

study is practically the upper bound of this interval. 

Therefore, according to Eqs. (18)-(19), only 𝛽𝐿  or 𝑃𝑓
𝑅 

should be determined to show the reliability degree of a 

structure. By using Eqs. (13), (15) and (17), the following 

optimization problem can be solved to compute 𝛽𝐿 

{
𝛽𝐿 = min

𝑼
‖𝑼‖                                         

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶  𝑆𝐿 =  min
𝒀

𝐺(𝑼, 𝒀) = 0
 (20) 

This problem can be decomposed into the following 

two-layer nesting optimization: 

Outer layer 

{
𝛽𝐿 = min

𝑼
‖𝑼‖                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐺(𝑼, 𝒀∗) = 0
 (21) 

Inner layer 

{
𝐺(𝑼, 𝒀∗) = min

𝒀
𝐺(𝑼, 𝒀)                             

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑌𝑖
𝐿 ≤ 𝑌𝑖 ≤ 𝑌𝑖

𝑅 , 𝑖 = 1,2, … , 𝑚
 (22) 

The inner-layer optimization is used to find the extreme 

values of the limit-state function in terms of Y, and 𝒀∗ 

indicates the corresponding optimum values for interval  

 
(a) continuous and smooth bounds 

 
(b) non-continuous but smooth bounds 

Fig. 1 limit-state strip by considering the interval 

parameters 

 

 

variables. For practical engineering problems, solving the 

above nesting optimization leads to an extreme 

computational cost. Jiang et al. (2011) carried out a 

monotonicity analysis and reported that if CDF of a random 

variable X is a monotonic function with respect to its own 

interval distribution parameter Y, the optimum values of the 

limit state function will be related to the bound 

combinations of all the interval parameters. 

By investigating some widely used distribution 

functions, they classified all the distribution parameters into 

two main classes. For the first class, the monotonicity of the 

CDF with respect to this class of parameters remains 

unchanged; while for the second class, the monotonically 

increasing or decreasing of CDF is dependent on the value 

of the random variable X, and there is an inflection point of 

X. Note that, parameters in the first and second class are 

respectively called “translation distribution parameter” and 

“rotation distribution parameter” (Jiang et al. 2012). 

For example, in normal distribution function, 𝜇 is a 

translation distribution parameter, while another parameter, 

𝜎, is a rotation one. Note that, since we assume that all 

random variables follow normal distributions in this work, 

only normal distribution parameters are mentioned. For a 

detailed classification of all the parameters in other 

distribution functions, the interested reader is referred to 

Jiang et al. (2011). 

Considering a limit state function in standard normal 

space (𝐺(𝑼, 𝒀) = 0) with only a single interval variable Y 

in CDF of 𝑋𝑗. As shown in Fig. 2, two situations can be 

considered as follows (Jiang et al. 2012): 

(i) Y is an interval translation parameter: in this 

situation, the values of Y on each bound surfaces will  
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Fig. 2 transformation of the limit state function with interval 

distribution parameters 

 

 

remain constant. For any fixed 𝑈𝑖 the values of 𝑈𝑗 will 

decrease with increasing of Y, if the CDF is a monotonically 

decreasing function with respect to Y. On the other hand, if 

the CDF is monotonically increasing, for any fixed 𝑈𝑖 the 

values of 𝑈𝑗 will decrease with increasing of Y. Thus, in 

this situation, the limit state strip has two continuous and 

smooth bounding surfaces (𝐴 and 𝐴′ in Fig. 2). 

(ii) Y is an interval rotation parameter: in contrast to 

the previous situation, the values of Y will be changed on 

each bound. On one side of the inflection point where the 

CDF is monotonically decreasing with respect to Y, 𝑈𝑗 

decreases as the interval parameter Y increases for any 

fixed 𝑈𝑖 , while on the opposite side 𝑈𝑗  becomes larger 

with increasing Y. With this behavior,  𝐺(𝑈, 𝑌) = 0 will 

rotate around a hyper-plane (or an axis in a two-

dimensional plane) as Y changes (𝐴 and 𝐴′′ in Fig. 2, and 

thus the limit state strip will have continues but non-smooth 

bounding surfaces. 

For problems where random variables have normal 

distributions with interval parameters, reliability analysis is 

performed in the following steps (Jiang et al. 2012): 

Step1: Divide all interval parameters into two classes, 

the interval translation parameters 𝑌𝑡𝑖  ,   𝑖 = 1,2, … 𝑛1 and 

interval rotation parameters 𝑌𝑟𝑗 , 𝑗 = 1,2, … 𝑛2  where 

𝑛1 + 𝑛2 is equal to the total number of interval parameters. 

Step2: For interval translation parameters 𝑌𝑡𝑖 , based 

on the gradient 
𝜕𝐺

𝜕𝑈𝑗
|

𝑼=0

, select appropriate values for 

𝑌𝑡𝑖  (i.e., from lower or upper bound of  𝑌𝑡𝑖) which are on 

the lower bounding surface ( 𝑆𝐿 ). For each   𝑌𝑡𝑖 , if  
𝜕𝐺

𝜕𝑈𝑘
|

𝑼=0
> 0, use lower bound of 𝑌𝑡𝑖, otherwise use upper 

bound of 𝑌𝑡𝑖. Then, collect all these selected value to form 

vector {𝑌𝑡}. Note that, 𝑈𝑘  is a standard normal variable 

which is defined by the interval translation parameter 𝑌𝑡𝑖. 

Step3: Generate all possible combinations of the bounds 

of the interval rotation parameters 𝑌𝑟𝑗 then collect them to 

form  𝒀𝑟
𝑖 ,    𝑖 = 1,2, … , 2𝑛2, where 2𝑛2  is the total number 

of the combinatiton. 

Step4: Calculate the reliability index for all limit state 

functions in the following equation using FORM and 

determine 𝛽𝐿 (i.e., minimum value of calculated reliability 

indexes) 

𝐺(𝑈, {𝑌𝑡}, 𝒀𝑟
𝑖  ) = 0, 𝑖 = 1,2, … , 2𝑛2 (23) 

Step5: Compute the maximum probability of failure for 

𝛽𝐿 through Eq. (14). 

 

3.3 System reliability analysis for truss structures 
 

For a truss structure, a member fails when the internal 

force exceeds the strength of the member. It can be written 

as follows 

𝐺𝑖 = 𝑅𝑖𝐴𝑖 − 𝑆𝑖 (24) 

where 𝑅𝑖  is the allowable stress, 𝐴𝑖  and 𝑆𝑖  are 

respectively the cross sectional areas and the internal force 

of the i-th member. By using the FORM, failure probability 

of member 𝑖 can be evaluated as follows 

𝑃𝑖 = 𝑃(𝐺𝑖 ≤ 0) = Φ(−𝛽𝑖) (25) 

where 𝛽𝑖  is the reliability index for 𝑖 -th member. The 

internal force vector can be formulated as (Thoft-

Christensen and Murotsu 1986) 

𝑆𝑖 = ∑ 𝑏𝑖𝑗𝐿𝑗

3𝑙

𝑗=1

 (26) 

where 𝐿𝑗 is the external load applied to the structure, 𝑙 is 

the number of nodes and 𝑏𝑖𝑗  is the load coefficient of 

member 𝑖 with respect to 𝐿𝑗. For a statically determinate 

truss, 𝑏𝑖𝑗  are constant while those of a statically 

indeterminate truss become functions of 𝐴𝑖. According to 

the nature of the structure, system failure occurs in parallel, 

series or a combination of both. For parallel failure, the 

system failure takes place when all failure modes in that 

system fail. While for series system, system failure results 

from the failure in any failure mode. 

In case of a statically determinate truss, failure of the 

structure happens when any member fails. Therefore, the 

structural failure probability is estimated by modeling the 

structural system as a series system. However, in case of a 

statically indeterminate truss, estimating of the structural 

failure is very complex because failure of a member will not 

always result in failure of the whole system. In this case, we 

deal with a system composed of combinations of series and 

parallel subsystems. When failure of a member occurs, 

redistribution of loads takes place and thus the external 

loads are sustained by the members in survival. By 

repeating this process, system failure of the structure results 

when a specified number of members are failed and 

structure is turned into a mechanism. Failure of the structure 

is defined by investigating the singularity of the total 

structure stiffness matrix formed by the remaining 

members. After failure in 𝑝 members, by using the matrix 

method, stress analysis is carried out and the internal forces 

of the remaining members are determined as follows 

(Thoft-Christensen and Murotsu 1986) 

𝑆𝑖 (𝑒1, 𝑒2,…,𝑒𝑝) = ∑ 𝑏𝑖𝑗𝐿𝑗 − 𝑎𝑖𝑒1
𝑟𝑒1

− ⋯ − 𝑎𝑖𝑒𝑝
𝑟𝑒𝑝

3𝑙

𝑗=1

 (27) 
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where suffix (𝑒1,  𝑒2, … , 𝑒𝑝)  shows a failure path 

including a set of failed members and their sequential order 

of failure, 𝑎𝑖𝑗  are the coefficients of influence and 𝑟𝑗 

indicated the residual strength of the 𝑗-th failed member. It 

should be noted that, the residual strength for a member of a 

brittle material is zero, while for a member of a ductile 

material is equal to yield strength (in tension) or buckling 

strength (in compression).  

In this study, we utilize one of the most popular 

approaches called branch and bound method, to find system 

failure probability of statically indeterminate trusses. It is 

based on the failure paths which result in a failure mode. In 

this method, lower and upper bounds of the structural 

failure probability are determined by selecting dominant 

failure paths and discarding the failure paths that have 

negligible occurrence probability.  

Note that the system failure probability is evaluated 

based on the Cornell’s upper bound in this study. For 

statically determinate truss, it is equal to the sum of the 

failure probability of the members; while for statically 

indeterminate truss, it is equal to the sum of the upper 

bound of each failure path. 

 

3.4 Reliability based design optimization 
 

RBDO formulations can be classified into component 

and system reliability. In the first one, only one single 

structural member with a single failure mode is 

investigated. However, in a real structure, more than one 

member can fail because of the existence of a large number 

of possible failure modes. In order to obtain the second one, 

it is required to know the component reliability and the 

relationship between the system and its components. 

Optimization problem under the component reliability 

constraints can be stated as (Tsompanakis et al. 2008, 

Kharmanda et al. 2013) 

{
𝑚𝑖𝑛    𝑊 = ∑ 𝜌𝐿𝑖𝐴𝑖

𝑚

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         𝑃𝑖 ≤ 𝑃𝑖
𝑡

 (28) 

where 𝑊 is the weight of the structure, 𝜌 is the density of 

the material, 𝐿𝑖, 𝐴𝑖 are the length and cross-section area of 

member 𝑖 , respectively;  𝑃𝑖  and 𝑃𝑖
𝑡  are respectively the 

failure probability and the target failure probability of 

member 𝑖. For system reliability based optimization, the 

above formulation can be expressed as follows 

{
𝑚𝑖𝑛    𝑊 = ∑ 𝜌𝐿𝑖𝐴𝑖      

𝑚

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑃𝑠𝑦𝑠 ≤ 𝑃𝑠𝑦𝑠
𝑡

 (29) 

In which 𝑃𝑠𝑦𝑠 and 𝑃𝑠𝑦𝑠
𝑡  are the failure probability and 

the target failure probability of the system.  RBDO is 

based on three parts, including structural analysis, 

optimization procedure and reliability analysis. The first 

one is needed to obtain the response of the structure; the 

second one is used to find the design variables with 

minimum objective function; and the last one is performed 

to compute the reliability constraints of the RBDO. There 

are different strategies in the literature to link these parts 

together, e.g., single-loop, double-loop and decoupled, each 

having its own advantages and disadvantages. 

Single-loop and decoupled strategies, despite the 

acceptable computational efficiency, have some 

disadvantages that limit their usage. Both of them avoid the 

reliability analysis by defining equivalent optimality 

conditions. In single-loop strategies, the most probable 

point is approximated based on approximation methods 

such as lower-order polynomial functions or derivatives of 

the performance functions. Since they are approximation 

methods, there is no guarantee to obtain accurate results 

(Yang and Hsieh 2011). 

Decoupled strategies break the reliability analysis and 

the optimization procedure into sequential cycles. In these 

methods, the original problem is transformed to a 

deterministic optimization with constraints that are changed 

based on the reliability analysis cycle. They begin with a 

deterministic optimum and then try to find a close feasible 

solution satisfying the reliability constraint. When there 

exists multiple local optima and the reliable solution is not 

close to the deterministic optimum, they cannot provide 

satisfactory performance (Yang and Hsieh 2011).  

Although it suffers from the computational effort 

compared to other strategies, we use the double-loop 

strategy based on the reliability index approach (RIA) 

because of its simplicity and accuracy (Kuschel and 

Rackwitz 1997, Cheng et al. 2006, Togan and Daloglu 

2006).  

As shown in Fig. 3, the double-loop strategy is a nested 

optimization problem where the inner loop deals with 

reliability assessment and structural analysis, while the 

outer loop deals with the minimization of the objective 

function. In this work, we utilize ICDE optimization 

algorithm in the outer loop of the RBDO. According to Fig. 

3, the process of solving RBDO problems is briefly 

described with the following steps: 

1. Generate an initial parent population (𝑃𝑡 ) with 𝜇 

individuals, which are selected uniformly and randomly 

from the search space.  

2. Perform the system reliability analysis for each 

individual as follows: 

(i) Generate the limit state function for each member of 

the truss structure using Eqs. (24) and (27). 

(ii) Calculate the reliability indec (or probability of 

failure) for each limit state functions defined before. If there 

are no interval distribution parameters, use Eq. (13); 

otherwise, carry out the monotonicity analysis for 

translation rotation distribution parameters based on the five 

steps which are proposed in the last part of the section 3.2. 

(iii) Calculate the failure probability of the system using 

Cornell’s upper bound. 

3. Compute the objective function (i.e., weight of each 

individual or the truss structure), constraint violation (i.e., 

the difference between the maximum allowable of structural 

system failure probability and the failure probability of the 

system) for each individual.  

4. Generate the offspring population (  𝑄𝑡 ) with 𝜆 

offspring by performing IDE on all the individuals in 𝑃𝑡 

(see section 2.2). 
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5. Execute step 2 for each individual in  𝑄𝑡 . 

6. Combine 𝑃𝑡  with  𝑄𝑡  to obtain a combined 

population ( 𝐻𝑡). 

7. Select 𝜇 potential individuals from 𝐻𝑡  to form the 

next population by ArATM strategy (see Section 2.3). 

8. Check the termination criterion. If it is not satisfied 

go to Step 4; otherwise, stop and output the best individual 

in 𝑃𝑡. 

 

 

4. Numerical results 
 

In this section, several mathematical and engineering 

design benchmarks taken from the literature are 

investigated. The computing machine used for this work 

consists of an Intel Xeon at 2.9 GHz with 40 cores and 40 

GB RAM. The ICDE algorithm is coded in MATLAB 

programming software and the parameters are set as 

follows: 𝜇 = 20, 𝐶𝑅 = 0.8, 𝐹 = 0.9 and 𝛿 = 0.0001. The 

optimization process will be terminated when there is no 

improvement of the solutions after 150 iterations. Note that, 

for all considered truss structure examples, failure of the 

members is assumed to occur under tension or compression. 

However, the allowable tension and compression stresses 

are taken to be the same.  

 

4.1 System reliability analysis of mathematical 
examples without interval distribution parameters 

 

Table 1 Limit state functions with independent standard 

normal distribution  

Limit state function description 

Parallel system Series system 

 
 

  

 

 
 

 

In this example, six limit state functions with 

independent standard normal random variables are 

considered. As shown in Table 1, they contain a set of 

equations that describe a parallel or a series system. The 

optimum reliability index and the corresponding probability 

of failure obtained by different algorithms are proposed in 

Table 2. 

It can be seen that all metaheuristic methods converge to 

the almost same results with those obtained by ARBIS 

(adaptive radial-based importance sampling), which is more 

efficient than the Monet-Carlo simulation (MSC)  

 

Fig. 3 Flowchart of RBDO using ICDE algorithm 
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Table 2 Comparison of reliability index and failure 

probability obtained by different methods  

  ICDE 

DPSO 

(Kaveh 

and Ilchi 

Ghazaan 

2015) 

DPSO 

(Kaveh 

and Ilchi 

Ghazaan 

2015) 

CBO 

(Kaveh 

and Ilchi 

Ghazaan 

2015) 

ECBO 

(Kaveh 

and Ilchi 

Ghazaan 

2015) 

iBA 

(Chakri, 

Khelif et 

al. 2016) 

ARBIS 

(Grooteman 

2008) 

HL-RF 

(Chakri, 

Khelif et 

al. 2016) 

G1 

Pf 0.003587 0.003529 0.003442 0.003439 0.003363 NA 0.000211 NC 

β 2.68862 2.69400 2.70230 2.70260 2.71000 2.73224 2.73800 NC 

G2 

Pf 0.001350 0.001350 0.001350 0.001350 0.001350 NA 0.002570 NA 

β 2.99990 2.99990 2.99990 2.99990 2.99990 NA 2.95300 NA 

G3 

Pf 0.000365 0.000365 0.000364 0.000365 0.000364 NA 0.000123 NA 

β 3.37801 3.37800 3.37810 3.37800 3.37820 NA 3.43400 NA 

G4 

Pf 0.001350 0.001350 0.001350 0.001350 0.001350 NA 0.003540 NA 

β 2.99990 2.99990 2.99990 2.99990 2.99990 3.00355 2.92500 3.00000 

G5 

Pf 0.000647 0.000647 0.000647 0.000647 0.000647 NA 0.000250 NC* 

β 3.21716 3.21710 3.21720 3.21710 3.21720 3.21749 3.21900 NC 

G6 

Pf 0.001350 0.001350 0.001350 0.001350 0.001350 NA 0.002180 NC 

β 2.99990 2.99990 2.99990 2.99990 2.99990 3.00150 2.92500 NC 

G7 

Pf 0.012624 NA NA NA NA NA NA NA 

β 2.23758 NA NA NA NA NA NA NA 

*NC: not converged, NA: not available 
 

Table 3 Random variables for statically determinate 13-

member truss structure 

Variable Description Distribution µ 
Coefficient of 

variation 

L1 Load (KN) Normal 66.72 0.16 

L2 Load (KN) Normal 66.72 0.16 

L3 Load (KN) Normal 66.72 0.16 

σ𝑦𝑖𝑒𝑙𝑑 
Yield stress 

(KN cm2⁄ ) 
Normal 25.31 0.12 

 

Table 4 Results for statically determinate 13-member truss 

structure 

Cross section 

(cm2) ICDE 

Interior penalty function  

(Nakib and Frangopol 

1990) 

Feasible direction  

(Nakib and Frangopol 

1990) 

A1 = A12 7.521 7.594 7.458 

A2 = A13 11.703 11.903 12.187 

A3 = A11 7.41 7.348 7.529 

A4 = A8 7.594 7.594 7.452 

A5 = A9 2.356 2.316 2.271 

A6 = A10 8.403 8.432 8.4 

A7 5 5.142 5.219 

Weight (kg) 
362.304

8 
364.79 367.05 

 

 

(Grooteman 2008). From Table 2, HL-RF is not converged 

for G5 and G6, and thus showing the weakest performance 

among the considered methods.  
 

4.2 System reliability based design optimization 
without interval distribution parameters 
 

4.2.1 Statically determinate 13-member truss 
structure 

 

Fig. 4 statically determinate 13-member truss structure 

(Nakib and Frangopol 1990) 

 

 

Fig. 5 statically determinate 29-member truss structure 

(Togan and Daloglu 2006) 
 

 

A well-known 13-bar truss (Nakib and Frangopol 1990) 

is considered, as shown in Fig. 4. It is a statically 

determinate structure which shows a series system; hence 

the failure of any element leads to the failure of the whole 

system. The Young’s Modulus E of the truss is 

206.84 GPa  and the density 𝜌  is 7850 kg m3⁄ . It is 

optimized for weight and cross-sectional areas are 

continuous design variables in which   𝐴𝑖 ∈ [0, 20] , 𝑖 =
1, 2, … , 13.  

The maximum allowable of structural system failure 

probability (𝑃𝑠𝑦𝑠
𝑡  ) is equal to 1 × 10−5. As shown in Table 

3, the yield stress and the applied loads are considered as 

statically independent norm l random variables, and other 

variables are deterministic quantities. The structure includes 

13 members, which are divided into seven groups as 

follows: (1) 𝐴1 = 𝐴12 , (2) 𝐴2 = 𝐴13 , (3) 𝐴3 = 𝐴11, (4) 

𝐴4 = 𝐴8 , (5) 𝐴5 = 𝐴9 , (6) 𝐴6 = 𝐴10 , (7) 𝐴7. 

The optimum results obtained by different methods are 

listed in Table 4; it can be observed that the ICDE 

converges to better optimum weight than the other methods. 
 

4.2.2 Statically determinate 29-member truss 
structure 

In this example, the size optimization of the roof truss, 

shown in Fig. 5, is performed. The collapse of the structure 

is considered based on a series system model. It is assumed 

that the yield stress of the members and the applied loads 

are statically independent normal random variables, while 

the cross-sectional areas of the members and the geometry 

of the truss are deterministic. The cross-sectional areas are 

continuous variables with values in the interval [0, 15] and 

the distribution parameters of random variables are given in 

Table 5. The material density is 7850 kg m3⁄  and the 

modulus of elasticity is 206.84 GPa. 
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Table 5 Random variables for statically determinate 29-

member truss structure 

Variable Description Distribution µ 
Coefficient of 

variation 

L1 Load (KN) Normal 0.29 0.2 

L2 Load (KN) Normal 0.69 0.2 

L3 Load (KN) Normal 1.08 0.2 

L4 Load (KN) Normal 1.37 0.2 

L5 Load (KN) Normal 19.6 0.2 

L6 Load (KN) Normal 9.8 0.2 

σ𝑦𝑖𝑒𝑙𝑑 
Yield stress 

(KN cm2⁄ ) 
Normal 27.60 0.05 

 

Table 6 Results for statically determinate 29-member truss 

structure 

 Method Cross section (cm2) Weight (Kg) 

Optimally allocated 

design 

ICDE 

(0.92, 2.74, 0.04, 0.94, 0.04, 

2.72, 0.06, 0.92, 0.06, 2.7, 0.12, 

0.9, 2.66, 0.1, 2.1, 1.86, 2.28, 

2.42, 1.44, 2.86, 1.84, 3.2, 0.8, 

3.88, 1.52, 3.94, 0.04, 3.88, 

4.66) 

17.044642 

Indirect method  

(Thoft-Christensen and 

Murotsu 1986) 

(0.57, 2.96, 0.02, 0.57, 0.02, 

2.95, 0.07, 0.56, 0.05, 2.92, 

0.12, 0.53, 2.88, 0.1, 2.3, 1.6, 

2.53, 2.58, 1.59, 2.65, 2.07, 

3.28, 0.91, 3.88, 1.74, 3.98, 

0.02, 3.88, 4.7) 

17.4176 

Equally allocated 

design 

ICDE 

(0.98, 2.72, 0.04, 0.91, 0.04, 

2.8, 0.08, 0.98, 0.06, 2.72, 0.12, 

0.96, 2.74, 0.1, 2.16, 1.81, 2.36, 

2.38, 1.46, 2.96, 1.882, 3.3, 

0.84, 3.79, 1.58, 4.08, 0.04, 

4.02, 4.8) 

17.4127 

SQP  

(Togan and Daloglu 

2006) 

(0.85, 2.82, 1.049, 0.876, 

0.1068, 2.807, 0.065, 0.863, 

0.0562, 2.785, 0.1169, 0.88, 

2.745, 0.095, 2.21, 1.799, 

2.418, 2.5, 1.499, 2.82, 1.9127, 

3.34, 0.846, 3.895, 1.6067, 

4.13, 0.0838, 3.92, 4.91) 

17.7089 

EVOL 

(Togan and Daloglu 

2006) 

(0.848, 2.823, 0.022, 0.848, 

0.0236, 2.808, 0.0597, 0.858, 

0.053, 2.783, 0.11, 0.876, 

2.745, 0.095, 2.19, 1.78, 2.385, 

2.49, 1.486, 2.818, 1.903, 3.34, 

0.82, 3.88, 1.585, 4.13, 0.022, 

3.88, 4.91) 

17.4183 

GA  

(Togan and Daloglu 

2006) 

(1.61, 3.18, 1.61, 1.61, 1.61, 

3.18, 1.61, 1.61, 1.61, 2.79, 

1.61, 1.61, 2.79, 1.61, 2.79, 

2.06, 2.79, 2.79, 1.61, 3.18, 

2.06, 4.12, 1.61, 4.12, 1.61, 

4.31, 1.61, 4.12, 5.15) 

23.8495 

 

 

The system is optimized for 𝑃𝑠𝑦𝑠
𝑡 = 1 × 10−5 and the 

results are compared by those obtained from different 

algorithms in the literature, including sequential quadratic 

programming (SQP), evolution strategy (EVOL), and GA. 

The optimization procedure is performed for two cases: 

equally allocated and optimum allocated design. In contrast 

to the last one, the probabilities of failure are equally 

allocated to the members of truss. As shown in Table 6, 

ICDE converges to the better results in both cases. 

 

4.2.3 Statically indeterminate 6-member truss 
structure 

In this example, we consider a statically indeterminate 

6-member truss with one degree of redundancy as shown in 

Fig. 6 (Thoft-Christensen and Murotsu 1986). The material 

density and the modulus of elasticity are respectively 

2700 kg m3⁄  and 70.6 GPa. The cross-sectional areas are 

continuous var iables which are taken from the  

 

Fig. 6 statically indeterminate 6-member truss structure 

(Thoft-Christensen and Murotsu 1986) 
 

Table 7 Random variables for statically indeterminate 6-

member truss structure 

Variable Description Distribution µ 
Coefficient of 

variation 

L1 Load (KN) Normal 50 0.2 

L2, L4 Load (KN) Normal 50 0.2 

L3, L5 Load (KN) Normal 50 0.2 

σ𝑦𝑖𝑒𝑙𝑑 
Yield stress 

(KN cm2⁄ ) 
Normal 27.60 0.05 

 

Table 8 Results for statically indeterminate 6-member truss 

structure obtained by ICDE and reference (Thoft-

Christensen and Murotsu 1986) 

Cross section (𝑐𝑚2) ICDE reference ICDE reference ICDE reference ICDE reference 

𝐴1 2.7500 2.91 2.9332 3.14 3.01683 3.33 3.1432 3.66 

𝐴2 0.4566 0.61 0.6011 0.8 0.68705 0.96 0.8141 1.23 

𝐴3 0.8235 0.6 0.9541 0.76 1.11722 0.89 1.4302 1.12 

𝐴4 2.5236 2.42 2.7030 2.68 2.91235 2.9 3.2749 3.27 

𝐴5 2.3620 2.6 2.5452 2.83 2.64864 3.02 2.7737 3.35 

𝐴6 1.9070 1.76 2.1361 2.0 2.38329 2.2 2.8435 2.55 

Weight (kg) 3.61 3.64 3.958 4.07 4.252 4.42 4.750 5.03 

𝑃𝑠𝑦𝑠
𝑡  10−1 10−2 10−3 10−5 

 

 

interval [0, 10]. 
By assuming that the yield stress and applied loads are 

statically independent normal random variables, for 

different values of 𝑃𝑠𝑦𝑠
𝑡 , weight optimization of the 

structure is performed. Table 7 shows the distribution 

parameters of random variables. 

Since it is a statically indeterminate structure, we use 

branch and bound method to determine failure paths and 

their corresponding failure probabilities. As can be 

observed I Table 8, for all values of 𝑃𝑠𝑦𝑠
𝑡 , our results 

converge to better optimum value for weight of the 

structure. 
 

4.3 System reliability analysis of mathematical 
examples with interval distribution parameters 
 

4.3.1 4-member truss structure 
Consider a 4-bar truss shown in Fig. 7. The members 1-

3 have a same cross-sectional area A1 and the member 4 

has an area A2. The vertical displacement at the tip joint 

caused by two vertical forces should be less than an 

allowable value 𝛿𝑎 = 1.7 𝑚𝑚. The limit state function is 

defined as follow (Jiang et al. 2011) 
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Fig. 7 4-bar truss 
 

Table 9 Random variables for 4-member truss 

Distribution parameters Random variables 

𝜎𝐴1
= 70.65 𝜇𝐴1

∈ [635.85, 777.15] 𝐴1 (𝑚𝑚2) 

𝜎𝐴2
∈ [169.56, 207.24] 𝜇𝐴2

= 1256 𝐴2 (𝑚𝑚2) 

 

Table 10 Reliability analysis for 4-member truss 

Distribution parameters Bounds of hybrid reliability index 

𝜇𝐴1
 𝜇𝐴2

 𝜎𝐴1
 𝜎𝐴2

 This work Ref (Jiang et 

al. 2011) 

635.85 1256 70.65 207.24 𝛽𝐿 = 1.477 𝛽𝐿 = 1.62 

777.15 1256 70.65 169.56 𝛽𝑅 = 3.408 𝛽𝑅 = 3.13 

 

 

𝐺(𝑋) = 𝛿𝑎 − 𝛿 = 𝛿𝑎 −
6𝑃𝑙

𝐸
(

3

𝐴1

+
√3

𝐴2

) (30) 

where 𝐴1  and 𝐴2  are independent random variables 

following normal distribution. As shown in Table 9, the 

mean 𝜇𝐴1
 and standard deviation 𝜎𝐴2

 are interval 

parameters, and their uncertainty levels are 10% off from 

their midpoints. 

From the reliability analysis results proposed in Table 

10, our results are almost the same as those reported by 

Jiang et al. (2011). It can be seen that due to the interval 

parameters, the reliability index of the structure will belong 

to an interval. 

In order to propose the effect of the uncertainty levels of 

the interval parameters on the hybrid reliability index, the 

reliability analysis is performed under different uncertainty 

levels. As shown in Table 11, the width of the reliability 

index increase is increased by increasing the uncertainty 

level. It can be seen that the worst case reliability (i.e., 

lower bound of 𝛽ℎ ) will decrease with increasing the 

uncertainty level, and thus the maximum failure probability 

will increase. 

 

4.4 System reliability based design optimization with 

interval distribution parameters 
 

In order to performing system RBDO, the branch and 

bound method is integrated with monotonicity analysis of 

interval distribution parameters, to determine the system 

failure probability of each individual in the ICDE algorithm 

(i.e., each solution candidate). As mentioned before, the 

failure probability of the structural system 𝑃𝑠𝑦𝑠 should be 

less than or equal to the target system failure 

probability 𝑃𝑠𝑦𝑠
𝑡 . 

 

 

Table 11 Effect of the uncertainty levels of the interval 

parameters on the hybrid reliability index for 4-member 

truss 

Jiang et al. (2011) This work Distribution parameters  

Width of 

𝛽ℎ 
𝛽ℎ 

Width of 

𝛽ℎ 
𝛽ℎ 𝜎𝐴2

 𝜇𝐴1
 

Uncertainty 

levels (%) 

0.45 [2.21,2.66] 0.578 
[2.147, 

2.725] 
[182.75,194.05] [685.31,727.70] 3 

0.76 [2.04,2.80] 0.965 [1.95, 2.92] [178.98,197.82] [671.18,741.83] 5 

1.51 [1.62,3.13] 1.931 
[1.477, 

3.408] 
[169.56, 207.24] [635.85, 777.15] 10 

2.01 [1.43,3.44] 2.901 
[1.001, 

3.902] 
[160.14,216.66] [600.53,812.48] 15 

2.91 [0.81,3.72] 3.877 
[0.5264, 

4.4016] 
[150.72,226.08] [565.20,847.80] 20 

 

Table 12 System reliability based design optimization of the 

6-bar truss for case 1 

Uncertainty level (%) 0 5 10 15 25 25 𝑷𝒔𝒚𝒔
𝒕  

Weight (kg) 

3.61 
3.800319 

(5.3%) 

4.010717 

(11.1%) 

4.24577 

(17.6%) 

4.51063 

(24.9%) 

4.811059 

(33.3%) 
10−1 

3.958 
4.165168 

(5.2%) 

4.395546 

(11.1%) 

4.653049 

(17.6%) 

4.943365 

(24.9%) 

5.273079 

(33.2%) 
10−2 

4.252 
4.474441 

(5.2%) 

4.721356 

(11.0%) 

4.997874 

(17.5%) 

5.310326 

(24.9%) 

5.664872 

(33.2%) 
10−3 

 

Table 13 System reliability based design optimization of the 

6-bar truss for case 2 

Uncertainty level (%) 0 5 10 15 25 25 𝑷𝒔𝒚𝒔
𝒕  

Weight (kg) 

3.61 
3.780693 

(4.7%) 

3.950865 

(9.4%) 

4.11953 

(14.1%) 

4.2907405 

(18.9%) 

4.462212 

(23.6%) 
10−1 

3.958 
4.129032 

(4.3%) 

4.298432 

(8.6%) 

4.4686122 

(12.9%) 

4.640522 

(17.24%) 

4.814539 

(21.64%) 
10−2 

4.252 
4.423126 

(4.0%) 

4.593848 

(8.0%) 

4.765213 

(12.1%) 

4.9377768 

(16.1%) 

5.112963 

(20.2%) 
10−3 

 

 

Fig. 8 effect of the uncertainty levels on the optimum 

weight of the 6-bar truss for cases 1 and 2 

 

 

4.4.1 Statically indeterminate 6-member truss 
structure 

In this example, the size optimization of the 6-bar truss 

structure in Fig. 6 is performed under different cases of 

interval distribution parameters. Each case shows which 

distribution parameter of a random variable is considered as 

an interval distribution parameter.  

They are defined as follows: (1) the mean of the yield 

stress (2) the mean of the loads (3) the standard deviation of 

the yield stress (4) the standard deviation of the loads (5) 

the standard deviation of both the yield stress and loads (6) 

the mean of both the yield stress and loads (7) the mean and 

standard deviation of all random variables. According to the 

mean and standard deviation values presented in Table 7,  
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Fig. 9 effect of the uncertainty levels on the optimum 

weight of the 6-bar truss for cases 3 and 4 

 

 

for different uncertainty levels, the intervals are defined as 

follows 

𝜇𝑋 ∈ [𝜇𝑋0
(1 − 𝛼), 𝜇𝑋0

(1 + 𝛼)] 

𝜎𝑋 ∈ [𝜎𝑋0
(1 − 𝛼), 𝜎𝑋0

(1 + 𝛼)] 
(31) 

where X is a random variable with interval distribution 

parameter(s) and 𝑋0 is a random variable without interval 

distribution parameter. In this example, 𝜇𝑋0
and 𝜎𝑋0

are 

equal to the mean and standard deviation described in Table 

7. The results are presented in Tables 12-16 and Figs. 8-10. 

Note that the percentage values in Tables 12-16 indicate the 

percentage increases in optimum weight for different levels 

of uncertainty. 

For cases 1 and 2, the RBDO results are shown in 

Tables 12-13 and Fig. 8. It can be found that for all 

considered values of 𝑃𝑠𝑦𝑠
𝑡 , the optimum weight increases 

with increasing the uncertainty level value. This behavior 

can be explained as an effect of the reliability index of the 

structural members. As mentioned in the previous section, 

the lower bound of the hybrid reliability index will decrease 

with increasing the uncertainty level. As a consequence of 

decreasing the reliability of the members, the reliability of 

the structural system can be decreased. Therefore, to have a 

reliable design, the cross-sectional area of the members and 

thus the weight of the structure will increase. 

From Fig. 8, we can see that the interval distribution 

parameters defined in case 1 (mean of the yield stress) lead 

to greater increase in structural weight than those in case 2 

(mean of the loads). 

The optimization results for cases 3 and 4 are proposed 

in Tables 14-15 and Fig. 9. It can be observed that the effect 

of uncertainty levels on the optimum weight of the truss is 

the same as in cases 1 and 2. By comparing Figs. 8-9 for a 

certain class of interval parameters (i.e., 𝜇 or 𝜎), it is clear 

that the slope of the curves in Fig. 9 is less than their 

corresponding ones in Fig. 8. Therefore, in this example, 

the sensitivity of the optimum weight (or system failure 

probability) to interval rotation parameters is less than 

interval translation ones. As noted previously, in normal 

distribution function, 𝜎 is a rotation parameter and 𝜇 is a 

translation one. 

From the percentage values in Tables 12-15, for a 

certain target system failure probability, the mean and 

standard deviation of the yield stresses have respectively the  

Table 14 System reliability based design optimization of the 

6-bar truss for case 3 

Uncertainty level (%) 0 5 10 15 25 25 𝑷𝒔𝒚𝒔
𝒕  

Weight (kg) 

3.61 
3.616058 

(0.2%) 

3.621117 

(0.3%) 

3.626629 

(0.5%) 

3.6326219 

(0.6%) 

3.638508 

(0.8%) 
10−1 

3.958 
3.966111 

(0.2%) 

3.974245 

(0.4%) 

3.983311 

(0.6%) 

3.99238 

(0.9%) 

4.0017993 

(1.1%) 
10−2 

4.252 
4.262807 

(0.3%) 

4.274679 

(0.5%) 

4.286634 

(0.8%) 

4.299827 

(1.1%) 

4.313586 

(1.5%) 
10−3 

 

Table 15 System reliability based design optimization of the 

6-bar truss for case 4 

Uncertainty level (%) 0 0.05 0.10 0.15 0.20 0.25 𝑷𝒔𝒚𝒔
𝒕  

Weight (kg) 

3.61 
3.659517 

(1.4%) 

3.708476 

(2.7%) 

3.756793 

(4.1%) 

3.8057736 

(5.4%) 

3.8548031 

(6.8%) 
10−1 

3.958 
4.022237 

(1.6%) 

4.086791 

(3.3%) 

4.15093 

(4.9%) 

4.215584 

(6.5%) 

4.28048 

(8.2%) 
10−2 

4.252 
4.329052 

(1.8%) 

4.406535 

(3.6%) 

4.484301 

(5.5%) 

4.56195 

(7.3%) 

4.6395682 

(9.1%) 
10−3 

 

 
Fig. 10 effect of the uncertainty levels on the optimum 

weight of the 6-bar truss for cases 5-7 for 𝑃𝑠𝑦𝑠
𝑡 = 0.1 

 

 

most and least impact on the optimum weight when 

described by interval parameters.  

Table 16 and Fig. 10 indicate the RBDO results for 

cases 5-7. In order to investigate the effect of the different 

class of interval parameters on run time of the optimization 

process, for each case, average run time for each generation 

is also listed in Table16. It can be seen that RBDO under 

the interval translation parameters (case 6) has the least 

processing time because of the benefit of using simple 

monotonicity analysis related to these parameters. In 

contrast to the interval rotation parameters, we only perform 

one reliability analysis for all the interval translation 

parameters. While for each combination of the bounds of 

the interval rotation parameters, a reliability analysis should 

be performed. 

By comparing the first and second rows of Table 16, it 

can be observed that the interval rotation parameters need 

more computational time. Also, from the first and third 

rows, there is no change on run time process when interval 

translation parameters are considered in addition to the 

interval rotation ones. For 𝑃𝑠𝑦𝑠
𝑡 = 0.1, effect of the different 

uncertainty levels on the optimum weight is shown in Fig. 

10, which is similar to those of cases 1-4. 

 

4.4.2 Statically determinate 13-member truss 
structure 

The weight optimization of statically determinate 13- 
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Table 16 System reliability based design optimization of the 

6-bar truss for cases 5-7 with 𝑃𝑠𝑦𝑠
𝑡 = 0.1 

Uncertainty level (%) 0 5 10 15 25 25 

Average 

run time 

for each 

generation 

(sec) 

Case # 

Weight (kg) 

3.61 
3.6647159 

(1.5%) 

3.718006 

(3.0%) 

3.771944 

(4.5%) 

3.8256165 

(6.0%) 

3.8795249 

(7.5%) 
25.52 5 

3.61 
3.9866509 

(10.4%) 

4.407838 

(22.1%) 

4.8876867 

(35.4%) 

5.4351523 

(50.6%) 

6.0582078 

(67.8%) 
8.721 6 

3.61 
4.0439586 

(12.0%) 

4.5308193 

(25.5%) 

5.0953232 

(41.1%) 

5.73375 

(58.8%) 

6.461247 

(79.0%) 
25.501 7 

 

 

Fig. 11 effect of the uncertainty levels of mean values on 

the optimum weight of the 13-bar truss considering mean 

values as interval parameters 

 

 

member truss, shown in Fig. 4, is investigated for 𝑃𝑠𝑦𝑠
𝑡 =

1 × 10−5  under different uncertainty levels. Mean and 

standard deviation of the external loads and the yield stress 

of the members are considered separately as interval 

distribution parameters. The interval parameters are defined 

using Eq. (31) and the distribution parameters listed in 

Table 3.  

The results for different uncertainty levels are presented 

in Tables 17-18 and Fig. 11. It can be found that for all 

considered interval parameters the optimum weight of the 

structure behaves an increasing trend as the uncertainty 

level increases. 

Similar to the previous example, for a certain random 

variable (i.e., yield stress of the members or applied loads), 

the optimum weight is more influenced by the translation 

interval parameters than the rotation ones. But in this 

example, as can be observed from Fig. 11 and the 

percentage values in Tables 17-19, the impact of the 

standard deviation of the yield stress on the optimum 

weight is more than the mean of the loads. This can be due 

to the difference between the number of interval random 

variables related to the yield stress (i.e., number of the 

members) and the number of those related to the loads, 

which is much higher in this example. 

 

4.4.3 Statically indeterminate 16-member truss 
structure  

Consider a statically indeterminate 16-member truss 

with three degree of redundancy shown in Fig. 12. The 

Young’s Modulus E, the density 𝜌, and the lengths 𝐿1 and 

𝐿2  are respectively  206 GPa, 2700 kg m3⁄ , 121.9 𝑐𝑚  

Table 17 system reliability based design optimization for 

the 13-bar truss with interval translation parameters for 

Psys
t = 1 × 10−5 

Interval 

parameter 
 Mean of yield stress  Mean of Loads 

Uncertaint

y 

Level (%) 

0 5 10 15 20 25  5 10 15 20 25 

𝐀𝟏 = 𝐀𝟏𝟐 7.521 8.244 8.702 10.109 13.071 17.162  8.384 8.327 8.368 10.086 9.962 

𝐀𝟐 = 𝐀𝟏𝟑 11.703 12.560 15.055 17.245 21.949 25.762  12.095 12.968 12.975 13.943 16.155 

𝐀𝟑 = 𝐀𝟏𝟏 7.410 9.415 10.610 11.529 12.166 16.577  7.331 8.231 9.053 8.380 8.687 

𝐀𝟒 = 𝐀𝟖 7.594 9.354 9.812 11.718 15.809 18.516  8.866 8.626 8.439 8.983 8.708 

𝐀𝟓 = 𝐀𝟗 2.356 2.659 3.147 3.221 3.500 4.768  2.568 3.635 3.008 3.441 3.690 

𝐀𝟔 = 𝐀𝟏𝟎 8.403 9.672 10.336 14.534 15.892 19.966  9.556 8.713 10.973 9.707 9.429 

𝐀𝟕 5.000 6.419 7.809 7.501 10.150 13.085  5.803 5.234 5.474 6.600 5.827 

Weight 

(kg) 

362.30

5 

419.08

0 

(15.7%

) 

474.64

4 

(31.0%

) 

547.39

8 

(51.1%

) 

663.999 

(83.27%

) 

828.545 

(128.7%

) 

 

390.86

2 

(7.9%) 

407.85

8 

(12.6%

) 

422.33

5 

(16.6%

) 

441.77

3 

(21.9%

) 

460.92

5 

(27.2%

) 

 

Table 18 System reliability based design optimization for 

the 13-bar truss with interval rotation parameters for Psys
t =

1 × 10−5 

Interval 

parameter 
Standard deviation of yield stress Standard deviation of Loads 

Uncertainty 

Level (%) 
0 5 10 15 20 25  5 10 15 20 25 

𝐀𝟏 = 𝐀𝟏𝟐 7.521 7.682 8.152 10.615 10.158 11.268  7.974 8.200 7.682 7.276 8.945 

𝐀𝟐 = 𝐀𝟏𝟑 11.703 13.000 13.207 14.159 14.562 16.528  12.254 11.799 12.047 12.928 12.217 

𝐀𝟑 = 𝐀𝟏𝟏 7.410 7.814 8.820 9.666 10.540 10.868  7.433 7.666 8.000 8.017 7.619 

𝐀𝟒 = 𝐀𝟖 7.594 8.815 9.709 10.423 10.695 10.680  7.103 7.407 7.114 7.532 8.749 

𝐀𝟓 = 𝐀𝟗 2.356 2.274 2.488 2.633 3.379 2.921  2.739 2.491 2.690 3.185 2.601 

𝐀𝟔 = 𝐀𝟏𝟎 8.403 10.441 9.189 9.922 11.058 11.802  8.131 8.195 8.590 7.947 8.770 

𝐀𝟕 
5.00

0 
5.724 8.655 7.525 7.212 9.896  4.690 5.977 5.963 4.924 4.956 

Weight (kg) 
362.

305 

401.48

5 

(10.8%

) 

428.70

0 

(18.3%

) 

463.53

7 

(27.9%

) 

486.28

1 

(34.2%

) 

528.060 

(45.7%) 
 

368.38

1 

(1.7%) 

373.10

7 

(3.0%) 

377.92

3 

(4.3%) 

382.76

7 

(5.6%) 

388.34

6 

(7.1%) 

 

 

Fig. 12 statically indeterminate 16-member truss structure 
 

 

and 91.44 𝑐𝑚. According to the distribution parameters of 

random variables presented in Table 19, the size 

optimization of the truss structure is performed for 𝑃𝑠𝑦𝑠
𝑡 =

1 × 10−5. The cross-sectional areas are continues design 

variables taken from [0, 15].  

The system RBDO is performed with, and without, 

considering interval distribution parameters for different 

uncertainty levels. The interval parameters are described 

using Eq. (31) and the distribution parameters presented in 

Table 19.  Note that for 𝛼 = 0 in Eq. (31), the distribution 

parameters of the random variables have deterministic  
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Table 19 random variables for statically indeterminate 16-

member truss structure 

Variable Description Distribution µ 
Coefficient of 

variation 

𝐏 Load (KN) Normal 44.45 0.1 

𝛔𝒚𝒊𝒆𝒍𝒅 
Yield stress 

(KN cm2⁄ ) 
Normal 27.60 0.1 

 

 

Fig. 13 effect of the uncertainty levels of mean values on 

the optimum weight of the 16-bar truss considering mean 

values as interval parameters 

 

Table 20 System reliability based design optimization for 

the 16-bar truss with interval translation parameters for 

Psys
t = 1 × 10−5 

Interval 

parameter 
 Mean of yield stress  Mean of Loads 

Uncertainty 

Level (%) 
0 5 10 15 20 25  5 10 15 20 25 

𝑨𝟏 3.525 3.218 4.003 4.252 4.933 6.775  3.273 3.378 3.627 4.087 4.261 

𝑨𝟐 9.461 9.523 10.994 11.992 13.535 14.999  9.366 9.698 10.201 10.897 11.355 

𝑨𝟑 5.606 6.880 6.742 7.604 8.099 8.424  6.361 6.708 6.813 6.652 6.856 

𝑨𝟒 4.305 3.899 4.851 5.168 6.044 8.037  3.996 4.107 4.452 4.974 5.221 

𝑨𝟓 9.983 11.587 12.185 13.621 14.974 14.999  10.911 11.452 11.754 11.937 12.356 

𝑨𝟔  0.979 1.593 1.239 1.526 1.866 2.638  1.424 1.510 1.590 1.252 1.345 

𝑨𝟕  5.273 5.715 6.313 6.996 7.643 8.282  5.460 5.702 5.810 6.102 6.300 

𝑨𝟖  2.280 2.381 2.645 2.895 3.441 4.571  2.335 2.403 2.629 2.725 2.832 

𝑨𝟗 4.700 5.186 5.511 6.098 6.355 6.682  4.920 5.124 5.213 5.426 5.571 

𝑨𝟏𝟎 3.668 3.880 4.225 4.666 5.431 6.503  3.769 3.882 4.124 4.211 4.366 

𝑨𝟏𝟏 0.657 0.757 0.951 1.043 1.116 1.658  0.684 0.796 0.761 0.980 1.047 

𝑨𝟏𝟐 1.797 1.918 2.140 2.316 2.703 3.448  1.842 1.952 2.029 2.200 2.295 

𝑨𝟏𝟑 0.993 1.105 1.159 1.322 1.382 1.271  1.074 1.080 1.094 1.042 1.043 

𝑨𝟏𝟒 2.833 3.014 3.404 3.676 4.251 5.372  2.920 3.082 3.240 3.456 3.637 

𝑨𝟏𝟓 0.653 0.711 0.772 0.866 0.923 0.861  0.697 0.699 0.694 0.673 0.674 

𝑨𝟏𝟔 0.827 0.925 0.961 1.091 1.170 1.092  0.892 0.880 0.907 0.867 0.862 

Weight 

(kg) 
18.108 

19.610 

(8.3%) 

21.400 

(18.2%) 

23.604 

(30.3%) 

26.318 

(45.3%) 

30.259 

(67.2%) 
 

18.866 

(4.2%) 

19.662 

(8.6%) 

20.457 

(13.0%) 

21.246 

(17.3%) 

22.045 

(21.7%) 

 

 

values. For different uncertainty levels, the optimum weight 

and cross sectional areas of the structure are presented in 

Tables 20-21. Also, the change of the optimum weight with 

respect to changes in uncertainty level is shown in Fig.  

13. 

It can be observed that the optimum weight of the truss  

Table 21 System reliability based design optimization for 

the 16-bar truss with interval rotation parameters for Psys
t =

1 × 10−5 

Interval 

parameter 
 Standard deviation of yield stress  Standard deviation of Loads 

Uncertainty 

Level (%) 
0 5 10 15 20 25  5 10 15 20 25 

𝑨𝟏 3.525 3.460 4.081 5.060 5.210 4.597  3.070 3.189 3.152 3.214 3.226 

𝑨𝟐 9.461 9.550 9.771 10.013 11.613 12.224  8.926 9.111 9.095 9.182 9.234 

𝑨𝟑 5.606 6.182 6.481 6.652 5.655 5.578  6.254 6.141 6.269 6.277 6.276 

𝑨𝟒 4.305 4.048 4.269 4.170 5.652 6.455  3.703 3.898 3.812 3.889 3.940 

𝑨𝟓 9.983 10.708 11.006 11.272 11.031 11.940  10.625 10.564 10.726 10.732 10.788 

𝑨𝟔  0.979 1.188 1.814 1.761 0.862 0.408  1.429 1.387 1.412 1.385 1.382 

𝑨𝟕  5.273 5.712 5.113 6.102 5.490 6.331  5.272 5.235 5.341 5.383 5.423 

𝑨𝟖  2.280 2.556 3.109 3.422 2.580 2.954  2.263 2.332 2.292 2.318 2.325 

𝑨𝟗 4.700 4.876 4.161 4.441 5.283 4.867  4.778 4.700 4.831 4.835 4.903 

𝑨𝟏𝟎 3.668 3.556 4.627 4.587 4.605 4.762  3.661 3.740 3.747 3.792 3.813 

𝑨𝟏𝟏 0.657 0.527 0.810 0.769 0.608 0.658  0.683 0.678 0.690 0.705 0.739 

𝑨𝟏𝟐 1.797 1.952 1.837 2.628 2.118 2.732  1.786 1.868 1.814 1.864 1.895 

𝑨𝟏𝟑 0.993 1.281 1.665 1.179 1.294 1.973  1.033 0.992 1.073 1.054 1.065 

𝑨𝟏𝟒 2.833 2.634 2.600 3.057 3.139 2.984  2.837 2.961 2.873 2.957 3.001 

𝑨𝟏𝟓 0.653 0.886 0.765 0.811 2.299 1.699  0.652 0.650 0.690 0.682 0.695 

𝑨𝟏𝟔 0.827 1.012 1.372 0.738 1.597 1.848  0.867 0.818 0.891 0.870 0.880 

Weight 

(kg) 
18.108 

18.904 

(4.4%) 

20.005 

(10.5%) 

20.915 

(15.5%) 

21.609 

(19.3%) 

22.480 

(24.1%) 
 

18.211 

(0.5%) 

18.343 

(1.3%) 

18.480 

(2.1%) 

18.618 

(2.8%) 

18.762 

(3.6%) 

 

 

is increased by increasing the uncertainty level for each 

interval parameter. Furthermore, like the previous example, 

the optimum weight is affected most by interval distribution 

parameters of the yield stresses. As can be seen in Tables 

20-22, when the uncertainty level increase to a large value 

25%, the optimum weight is increased 67.2% and 24.1% for 

mean and standard deviation of the yield stresses, 

respectively. Whereas, for interval distribution parameters 

of the loads, the maximum increase in optimum weight is 

equal to 3.6% and 21.7% for standard deviation and mean 

of the loads, respectively. 

 
 

5. Conclusions 
 

Traditional system reliability based design optimization 

(RBDO) of truss structures is generally focused on 

describing uncertainty by probability approach that requires 

a large amount of information to determine precise 

distributions of random variables. In this study, the second 

hybrid uncertain model is applied to the system RBDO of 

trusses. All random variables are described by random 

distributions but some key distribution parameters of them 

which lack information are defined by variation intervals. 

For all the considered test problems, the effect of the 

uncertainty level and different classes of the interval 

distribution parameter on the optimum weight of the 

structure is investigated. The results show that by increasing 

the uncertainty level, the lower bound of the hybrid 

reliability index for each member of the structure is 

decreased, which causes an increase in the system failure 

probability. As a consequence, to have a reliable design, the 
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cross-sectional area of the members and thus the weight of 

the structure will increase. Moreover, it has shown that for a 

certain random variable, the optimum weight is more 

increased by the translation interval parameters than the 

rotation ones. In our future work, we intend to consider the 

first hybrid uncertain model to system RBDO problems of 

truss structures. 
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