
Structural Engineering and Mechanics, Vol. 70, No. 1 (2019) 55-66 

DOI: https://doi.org/10.12989/sem.2019.70.1.055                                                                  55 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

Classical plate theory CPT as the simplest plate theory, 

cannot model thick/moderately thin plates accurately 

because of several assumptions for simplifications used in 

this theory (Lagnese et al. 2015, Farokhi and Ghayesh 

2015). On the other hand, first order plate theory (FSDT) 

with less simplifications with two main unknowns give us 

better results for thick/moderately thin plates although the 

results still have some inaccuracy. Besides, this theory also 

needs shear correction factor. For solving these two 

problems, several higher order shear deformation theories 

(HSDTs) have been developed. The problem with these 

HSDTs is the complexity of them. Some of them have more 

than six main unknowns which cause several long 

equations. In this research, we choose one of the theories 

which has some of the advantages and disadvantages 

mentioned above. This theory, known as refined plate 

theory (RPT), does not need any shear correction factor and 

it is simple (i.e. with only two unknowns) with results more 

accurate than CPT which can be a candidate for engineering 

applications, (see some applications of HSDTs and RPTs in  
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Refs. (Shimpi and Patel 2006, Mehar et al. 2018b, Katariya 

et al. 2017a, Dutta et al. 2017, Sahoo et al. 2017, Singh and 

Panda 2017, Mehar et al. 2017, Mahapatra et al. 2017, 

Mehar and Panda 2017a, Mehar et al. 2018c, Hirwani and 

Panda 2019, Hirwani and Panda 2018, Dash et al. 2018b, 

Mehar et al. 2018a, Hirwani et al. 2018, Mehar and Panda 

2018, Katariya et al. 2018, Katariya et al. 2017b, Dash et 

al. 2018a, Mehar and Panda 2017b, Sayyad and Ghugal 

2018). 

In the past decades, with the development of 

nanotechnology, we need to investigate the nanostructures 

that old models such as CPT, HSDTs and RPTs, etc. cannot 

analyzed the mechanical behavior of such structures 

accurately. Hence, to consider the size-dependent effect, 

nanostructures usually modelled based on the molecular 

dynamics (MD) simulation and non-classical theories. 

Eringen nonlocal model (Eringen 1983) is one of the non-

classical theories in which stress at a reference point are 

assumed to depend not only on the strains at the reference 

point but also on the strains at all other points in the body. 

As an example of the merits of this theory, one can mention 

the non-monotonicity of dispersion between phase velocity 

and wave number predicted by MD simulation. Several 

studies have been done based on this size-dependent model 

(Karami et al. 2018f, Karami et al. 2019b, Shahsavari et al. 

2018a, Shahsavari et al. 2017, Shahsavari and Janghorban 

2017, Apuzzo et al. 2017, Barretta et al. 2018, Romano and 

Barretta 2017, Romano et al. 2017, Shahsavari et al. 2018e, 

Karami et al. 2018l). Free vibration analysis of FG 

nanoplates resting on elastic foundation using a nonlocal 

zeroth-order shear deformation theory were studied by 
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Abstract.  This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic 

nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to 

examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying 

in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave 

frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters 

such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave 

propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is 

concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best 

knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented 

numerical results can serve as benchmarks for future analysis of such structures. 
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(Bounouara et al. 2016). (Ebrahimi and Barati 2016) 

investigated the free vibration analysis of FG nanobeams  

third-order shear deformation plate theory and nonlocal 

elasticity theory. Bending analysis of bi-directional FG 

Euler-Bernoulli nano-beams using Eringen’s non-local 

elasticity theory were presented by (Nejad and Hadi 2016). 

Based on the first-order plate theory in conjunction with 

nonlocal elasticity theory, guided wave propagation 

analysis of fully-clamped porous FG nanoplates were 

studied by (Karami et al. 2018a) for the first time. As can 

be seen, there are numerous applications on the mechanical 

analysis of nanostructures based on Eringen nonlocal model 

(Moradweysi et al. 2018, Ehyaei et al. 2017, Khetir et al. 

2017, Chaht et al. 2015, Simsek 2011, Rahmani et al. 2017, 

Mirjavadi et al. 2017, Bellifa et al. 2017, Sobhy 2017). 

Nevertheless, nonlocal elasticity theory cannot always 

predict the manner of materials at nanoscale well, and 

therefore the sufficiency of nonlocal elasticity theory for 

predicting physical behavior is questionable for some 

special cases. Among the examples that can be mentioned 

there are may be some limitations to its capability of 

identifying size-dependent stiffness (Ma et al. 2008, Lim et 

al. 2015). Moreover, still, the problem remains why, in 

some cases, the results of bending of nonlocal nanobeams 

are ineffective at all (Challamel and Wang 2008). Besides, 

it can be seen that the stiffness enhancement effects seen 

from experimental data and the strain gradient model (Lam 

et al. 2003) cannot be included well by adopting the 

Eringen’s nonlocal elasticity theory. It is worth noting that 

in other size-dependent studies, we observe the importance 

of non-classical boundary conditions, but in this theory we 

see that in some cases the same classical boundary 

conditions suffice, which is a question for some researchers 

(Volokh and Hutchinson 2002, Polizzotto 2003). Another 

one is the gradient model of elasticity (Mindlin 1964, 

Aifantis 1992) which considers additional higher-order 

strain gradient terms by adopting the fact that the materials 

should be modelled as atoms with higher-order deformation 

mechanism at nanoscale rather than set of points. A 

modified gradient elasticity theory, which states the strain 

energy density should be considered as a function of both 

the strain tensor conjugated with stress tensor and the 

curvature tensor conjugated with couple stress tensor were 

presented by (Yang et al. 2002). Initial stress affected wave 

propagation behavior of nanoplates were investigated by 

(Nami and Janghorban 2014) using gradient elasticity 

theory. (Karami and Janghorban 2016) investigated the 

wave propagation in rectangular nanoplates via gradient 

elasticity theory and two-variable RPT. 

With regard to the above literature, it is easy to conclude 

that the nonlocal and gradient models of elasticity explain 

two entirely different physical characteristics of materials at 

small scale. More recently, to study the influence of the two 

small scale parameters on the structural responses, (Lim et 

al. 2015) presented the nonlocal strain gradient theory with 

the approach of the thermodynamics framework to consider 

both of the nonlocal and gradient parameters into a single 

theory. Many researches have been carried out on the 

mentioned theory (She et al. 2018c, She et al. 2018a, 

Karami et al. 2018d, Barati 2017, Zhu and Li 2017, Xiao et 

al. 2017, She et al. 2019, She et al. 2017, Shafiei and She 

2018, She et al. 2018b, Karami et al. 2018e, Shahsavari et 

al. 2018d, Karami et al. 2018j, Karami et al. 2018g, Karami 

et al. 2018k, Karami et al. 2018b, Karami et al. 2018i, 

Shahsavari et al. 2018b, Shahsavari et al. 2018c, Karami et 

al. 2019a, Karami et al. 2018c, Ansari et al. 2011, Sahmani 

et al. 2018b, Sahmani et al. 2018a, Karami and Karami 

2019, Nami and Janghorban 2015, Karami and Janghorban 

2019). Li et al. (2016), reported that a good matching of the 

dispersive curve of molecular dynamic simulations can be 

obtained with nonlocal beams and illustrated that the 

stiffness softening effects or the stiffness enhancement 

effects can be obtained depend on the values of the nonlocal 

parameter and the strain gradient length scale parameter. 

Also, in another study a good agreement is achieved for 

wave dispersion curves of graphene and experimental data 

using nonlocal strain gradient second-order plate theory by 

(Karami et al. 2018h). Based on the nonlocal strain gradient 

theory, (Li and Hu 2015) investigated the stability analysis 

of nonlinear nanobeams and showed that the stiffness 

softening effects or the stiffness enhancement effects can be 

obtained depend on the values of the nonlocal parameter 

and the strain gradient length scale parameter. The nonlocal 

strain gradient theory can be considered among other 

theories as one of the most accurate modeling for the study 

of nanostructures with considering both nonlocal and 

gradient effects. 

FGMs have received a considerable attention in several 

engineering applications due to its wonderful properties in 

different environments. This type of materials is 

characterized by its properties that vary continuously or 

exponentially through a direction like thickness. Generally, 

FG structures are made of isotropic or anisotropic materials 

in which to manufacturing FG anisotropic materials, 

transport phenomena are used to create compositional and 

microstructural gradients during the production of a 

component. 

A few number of studies have been conducted on the 

static and dynamic behavior of shell and plates in 

micro/nano-scale made of different anisotropic materials 

(i.e., anisotropic and FG anisotropic). Vibrational behavior 

of three-dimensional anisotropic layered composite 

nanoplates using modified couple-stress theory were studied 

by (Guo et al. 2017). (Sahmani and Fattahi 2017) 

investigated the nonlocal anisotropic shear deformable plate 

model for uniaxial instability of 3D metallic carbon 

nanosheets. In their study a calibration is presented for 

nonlocal anisotropic shear deformable plate using molecular 

dynamic simulation. The wave propagation analysis of 

anisotropic plate using trigonometric shear deformation 

theory were studied by (Aminipour and Janghorban 2017). 

(Karami et al. 2017) presented three dimensional nonlocal 

strain gradient plate model for wave propagation behavior 

of anisotropic nanoplates under the influences of triaxial 

magnetic field. (Aminipour et al. 2018) investigated the 

wave propagation in FG anisotropic shells based on a new 

model for wave analysis. 

In the current study, due to the lack of any study on the 

mechanics of graded nanoplates made of anisotropic 

materials, we prepared an article to investigate the wave  
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Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation 

 

 

Fig. 1 Geometry of FG anisotropic nanoplate rested on an 

elastic foundation 

 

 

propagation analysis of FG anisotropic nanoplate. Four-

variable RPT without any shear correction factor is used to 

model the plate as a continuum model. For more accurate 

design, the proposed modeling of nanoplates incorporates a 

nonlocal stress field parameter as well as a length scale 

parameter related to strain gradient. Thus, stiffness 

enhancement or reduction observed in nanostructures are 

considered. Governing equations are obtained using 

Hamilton’s principle. By solving the governing equations 

using an analytical method, wave frequencies as well as 

phase velocities of the FG anisotropic nanoplate are 

obtained as a function of wave number. The results show 

that wave characteristics of FG anisotropic nanoplate is 

significantly influenced by the nonlocality, strain gradient 

parameter, material composition, Winkler-Pasternak 

foundation and geometrical parameters. Obtained results 

can be used as benchmark results in the analysis of FG 

anisotropic nanoplates modeled by nonlocal and strain-

gradient theories. 

 

 

2. Theoretical formulation 
 

2.1 The material properties of FG anisotropic elastic 

nanoplates 
 

Rectangular nanosize plate made of FG anisotropic 

materials is considered here (Fig. 1). A Cartesian coordinate 

system (x, y, z) is assumed; a and b are length and width of 

plate and h is the plate thickness. 

The constitutive relation for each material can be written 

as 

C =  (1) 

where   and   respectively, denote stress and strain 

terms and C denotes the elastic constant that is different in 

various structures. For FGMs with exponentially varying 

material properties in the z-direction, the elastic stiffness 

matrix in Eq. (1) can be expressed as (Pan 2003, Karami et 

al. 2018c) 

0( ) exp( )C z C z=  (2) 

where   is the exponential factor defined the material 

gradient's degree in the thickness direction. It is also 

mentioned that the exponential factor   has the dimension   

1/L, in which L defined as the characteristic length of the 

problem. In the current study, to investigate the wave 

propagation of graded nano-size plates, a hexagonal system 

(beryllium crystal) is used. It has an axis of symmetry such 

that a rotation of the crystal through 60° about that axis 

brings the space lattice into coincidence with its original 

configuration (Batra et al. 2004). The elastic constants are, 

0 9
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sym 165 5 0

135 3

. .
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C .

. .

.

 
 
 
 = 
 
 
 
 

 (3) 

and the density of beryllium equals to 
3

kg
1850

m
 = . 

 

2.2 Nonlocal strain gradient elasticity 
 

The total nonlocal strain gradient stress tensor can be 

expressed as below (Lim et al. 2015), 

(0) (1)

ij ij ij  = −  (4) 

in which 
(0)

ij ,
(1)

ij  in order are related to strain ij  and 

strain gradient ij  and are defined as 

(0)

0 0

0

( , , ) ( )

L

ij ijkl klC x x e a x dx     =   (5) 

(1) 2

1 1

0

( , , ) ( )

L

ij ijkl kll C x x e a x dx     =   (6) 

where Cijkl are the elastic constants and e0a and e1a consider 

the influence of nonlocal stress field and l is the strain 

gradient small scale parameter which defines the effects of 

higher order strain gradient stress field. As the conditions 

by Eringen are satisfied by the nonlocal functions 

0 0( , , )x x e a   and 
0 1( , , )x x e a  , the constitutive equation of 

nonlocal strain gradient theory can be written in following 

format 

2 2 2 2

1 0

2 2 2 2 2 2

1 0

1 ( ) 1 ( )

1 ( ) 1 ( )

ij

ijkl kl ijkl kl

e a e a

C e a C l e a



 

   −  −    

   = −  − −     

 (7) 

in which 2  is represents Laplacian operator in Cartesian 

coordinates. Supposing 
1 0e e e= =  and discarding terms of 

order 2( )O  , the general constitutive relation in Eq. (7) can 

be rewritten as (Lim et al. 2015) 

2 2 2 21 ( ) 1ij ijkl klea C l    −  = −      (8) 

The equivalent form of Eq. (8) is presented as 

ij ijkl kllC =L L  (9) 

in which the linear operators are defined as 

2 2 2 2(1 ), (1 )l l = −  = − L L  (10) 

where ea = . 
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Behrouz Karami, Maziar Janghorban and Abdelouahed Tounsi 

 

2.3 Refined plate theory (RPT) 
 

According to the plate theories, the refined model 

initially proposed by (Shimpi 2002) is widely used as a 

reliable theory in which no shear correction factor is 

required. İn Shimpi’s theory, the displacement field, for 

 2; 2z h h − , is defined as 

0( , , , ) ( , , ) ( )b sw w
u x y z t u x y t z f z

x x

 
= − −

 
 (11) 

0( , , , ) ( , , ) ( )b sw w
v x y z t v x y t z f z

y y

 
= − −

 
 (12) 

( , , , ) ( , , ) ( , , )b sw x y z t w x y t w x y t= +  (13) 

where u0, v0, wb and ws reperesent, respectivly, in-plane 

displacments andthe bending and shear transverse 

displacements. The shape function of transverse shear 

deformation is considered as 

3

2

5
( )

4 3

z z
f z

h
= − +  (14) 

Nonzero strains according to the four-variable RPT can 

be written as 
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 (16) 

Also, the extended Hamilton principle introduces as 

0
( ) 0

t

U T V dt − + =  (17) 

where U is strain energy, T is kinetic energy and V is work 

of external (applied) forces. With substituting the 

corresponding terms, the first variation of strain energy can 

be written as 

0 0 0

0

0

0 0

x x y y yz yz xz xz xy xy

V

L

b b b b

x x y y xy xy x x y y

b b s s s s s s s

xy xy x x y y xy xy yz yz

s

xz xz

U dV

N N N M k M k

M k M k M k M k Q

Q dx
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    

    



 = + + + + 
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+ =



  (18) 

where N, M, and Q are the stress resultants which are 

defined as 

 

 

 

   

   
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0
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0

0

s
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s s
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





                =        
                 

       
=    

      

 (19) 

in which  

2
2 2

2

( , , , , , ) (1, , , , , )

h

s s s

ij

h

A B B D D H C z f z zf f dz

−

=   (20) 

and 

2
2

44 55 44 55

2

( , ) ( , )

h

s s

h

A A C C g dz

−

=   (21) 

The first variation of work done by applied forces can 

be stated as 

2

2

( ) ( )
( ) (

( ) ( )

h
b s b s

W b s P
h A

b s b s

w w w w
V k w w k

x x

w w w w
dAdz

y y


 



−

 +  +
= − + +  

 +  +
+ 

  

 
 (22) 

where kW and kP represent, respectively, the linear and shear 

coefficient of elastic foundation. The variation of kinetic 

energy according to the present theory can be achieved as 

 

( )

2

0 0 0 0
2
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2
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(23) 

In above relation, the differentiation with respect to time 
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Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation 

 

is introduced with the dot-superscript; and 

0 1 1 2 2 2( , , , , , )I I J I J K  are mass inertias as below 

    ( )
2

2 2

0 1 1 2 2 2

2

1

h

h

I , I ,J ,I ,J ,K ,z ,f ,z ,zf ,f z dz
−

=   (24) 

Inserting the expressions for , , andU V K   from Eqs. 

(17), (20), and (23) into Eq. (16) and integrating by parts 

from them, with collecting the coefficients of 

0 0, , ,andb su v w w     equilibrium equations are derived as 

0 0 0 1 1:
xyx b s

NN w w
u I u I J

x y x x

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 (26) 
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2.4 Equations of motion 
 

Based on the nonlocal strain gradient theory, the 

constitutive relations of presented higher order nanoplate 

can be stated as 
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(29) 

in which ( , , , , )x y yz xz xy      and ( , , , , )x y yz xz xy      

denote the stress and strain components, respectively. 

Integrating Eq. (32), the force strain and the moment-strain 

of gradient refined FG plate model can be presented as 
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3. Solution procedure 
 

In order to study wave propagation in FG anisotropic 

nanoplate, displacement along u0, v0, bw  and 
sw  is 

expressed as 
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 (34) 

where 
1 2 3 4, , andA A A A  are wave amplitudes; k1 and k2 are 

wave numbers along x, y directions. 

   ( ) 2 0K M−  =  (35) 

where [K] and [M], respectively, are the stiffness matrix and 

mass matrix; ω is circular frequency. Substituting Eq. (34) 

into Eqs. (30)-(33), the equations of motion are written in 

matrix form as follows 

   2 0K M− =  (36) 

To find the wave eigenfrequencies ω, the determinant of 

above matrix is set to zero. However, phase velocity of 

waves propagating in a structure is an important parameter 

in analysis of wave propagation. Phase velocity depends on 

the obtained wave frequency as well as wave number 

according to the following relation 

c k=  (37) 

in which k1=k2=k. 
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Fig. 2 Comparison of nonlocal strain gradient wave 

dispersion curves for rectangular nanoplate.
( 0.2nm, 1nm)l = =  

 

 
(a) h=1 nm 

 
(b) h=2 nm 

Fig. 3 Influence of exponential factor on the wave 

dispersion curves of FG anisotropic nanoplate. 
( 0.2nm, 1nm)l = =  

 
 

4. Numerical results and discussions 
 

After proposing analytical states for nonlocal strain 

gradient refined model of FG anisotropic nanoplates, 

selected numerical results are presented in this section. 

Firstly, the efficiency of present methodology is 

verified. Because in accordance with the best authors 

knowledge there is no study in the open literature on the  

 
(a) 

 
(b) 

Fig. 4 Nonlocal strain gradient wave dispersion curves of 

FG anisotropic nanoplate. (a) l=0 nm, (b) 0nm =  

 

 

size-dependent wave propagation of FG anisotropic 

nanoplates. Considering the nonlocal strain gradient effects 

the wave propagation of nanoplates made of an isotropic 

material with no associated to boundary conditions (bulk 

waves) are illustrated in Fig. 2 and compared with those 

obtained by Karami et al. (2018h) using second order shear 

deformation theory (SSDT). An excellent agreement is 

found between two types of modeling process which 

confirms the validity of the given preceding numerical 

results. 

 

4.1 Thickness of nanoplates and exponential factor 
 

Fig. 3 displays the nonlocal strain gradient phase 

velocity curves of FG anisotropic nanoplates corresponding 

to various values of wave numbers. Also, varying of 

thicknesses in nanoplates and exponential factor effects are 

shown. It is found that the with increasing exponential 

factor and thickness of nanoplate, the phase velocity of FG 

anisotropic nanoplate will decrease and increase 

respectively. As a consequence, the exponential factor 

effect on the phase velocity of FG anisotropic nanoplate is 

more in the high value of the thickness of nanoplate. 

 

4.2 Nonlocal constant and strain gradient length scale 

parameter 
 

Fig. 4 depicts the nonlocal strain gradient phase velocity  
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(a) k=1 1/nm 

 
(b) k=5 1/nm 

 
(c) k=10 1/nm 

Fig. 5 Variation of phase velocities of FG anisotropic 

nanoplate with respect to scale factor and nonlocal 

parameter 
 

 

curves of FG anisotropic nanoplates with different small 

scale parameters. It is seen that the softening-stiffness effect 

of nonlocality causes to reduce the phase velocity, while the 

hardening-stiffness of strain gradient size dependency leads 

to enhance them. In addition, it can be observed that both 

types of size effect have more influence on the phase 

velocity in higher values of wave number. 

Nonlocality effects are shown in Fig. 5 for variations of 

phase velocities in FG anisotropic nanoplate as a function 

of scale factor (S), where 
l

S


= . 

 

Fig. 6 Phase velocity based on Winkler constant and in 

different theory 

 

 

Fig. 7 Phase velocity based on Pasternak constant and in 

different theory 

 

 

As we see in figure, when the scale factor (S) is less than 

unity, the nanoplate provides softer response and the size-

dependent phase velocities are smaller than those from 

classical model. Also, it can be concluded that for values of 

nonlocal parameter ( )  smaller than gradient parameter 

(l), the results achieved from present theory are larger than 

those from the classical model. Besides, more changes can 

be seen in lower value of wave number with the variation of 

the scale factor (S). It is mentioned that by neglecting the 

scale factor (S), the present results are the same as the 

results from Eringen’s nonlocal theory. 

 

4.3 Winkler constant 
 

Fig. 6 demonstrates the effect of Winkler constant of FG 

anisotropic nanoplate on the phase velocity in different 

theories (CPT; Nonlocal Elasticity Theory (NET); Strain 

Gradient Theory (SGT); Nonlocal Strain Gradient Theory 

(NSGT)). Increased Winkler constants leads to increased 

nanoplate rigidity, which in turn leads to increase the phase 

velocity. It can be seen that the phase velocity has the 

highest and lowest values for the strain gradient theory and 

the nonlocal elasticity theory, respectively. It means that 

with increasing the gradient parameter, the rigidity of FG 

anisotropic nanoplate will increase. 
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Table 1 Frequency of rectangular FG anisotropic nanoplate 

k (1/nm) λ μ (nm) l (nm) h= 1 nm     h= 2 nm    

    T1 T2 T3 T4  T1 T2 T3 T4 

1 0 0 0 5.6111 2.3478 2.3478 0.8526  3.7096 2.3478 2.3478 1.2920 

   1.5 13.1592 5.5060 5.5060 1.9995  8.6997 5.5060 5.5060 3.0301 

   3 24.4582 10.2337 10.2337 3.7164  16.1696 10.2337 10.2337 5.6319 

  1 0 3.2396 1.3555 1.3555 0.4922  2.1417 1.3555 1.3555 0.7460 

   1.5 7.5975 3.1789 3.1789 1.1544  5.0228 3.1789 3.1789 1.7494 

   3 14.1210 5.9084 5.9084 2.1457  9.3355 5.9084 5.9084 3.2516 

  2 0 1.8704 0.7826 0.7826 0.2842  1.2365 0.7826 0.7826 0.4307 

   1.5 4.3864 1.8353 1.8353 0.6665  2.8999 1.8353 1.8353 1.0100 

   3 8.1527 3.4112 3.4112 1.2388  5.3899 3.4112 3.4112 1.8773 

 1 0 0 5.6989 2.3893 2.3893 0.8402  4.1868 2.4418 2.4418 1.2161 

   1.5 13.3651 5.6034 5.6034 1.9703  9.8188 5.7264 5.7264 2.8520 

   3 24.8409 10.4147 10.4147 3.6622  18.2496 10.6434 10.6434 5.3008 

  1 0 3.2903 1.37947 1.37947 0.4851  2.4172 1.4097 1.4097 0.7021 

   1.5 7.7163 3.23514 3.23514 1.1376  5.6689 3.3062 3.3062 1.6466 

   3 14.3419 6.01295 6.01295 2.1143  10.5364 6.1449 6.1449 3.0604 

  2 0 1.8996 0.7964 0.7964 0.2801  1.3956 0.8139 0.8139 0.4054 

   1.5 4.4550 1.8678 1.8678 0.6568  3.2729 1.9088 1.9088 0.9507 

   3 8.2803 3.4716 3.4716 1.2207  6.0832 3.5478 3.5478 1.7669 

 2 0 0 5.9668 2.5135 2.5135 0.8031  5.4980 2.8023 2.8023 0.9597 

   1.5 13.9933 5.8948 5.8948 1.8835  12.8939 6.5720 6.5720 2.2506 

   3 26.0085 10.9562 10.9562 3.5007  23.9651 12.2151 12.2151 4.1831 

  1 0 3.4449 1.4512 1.4512 0.4637  3.1743 1.6179 1.6179 0.5541 

   1.5 8.0790 3.4033 3.4033 1.0874  7.4443 3.7944 3.7944 1.2994 

   3 15.0160 6.3256 6.3256 2.0211  13.8363 7.0524 7.0524 2.4151 

  2 0 1.9889 0.8378 0.8378 0.2677  1.8327 0.9341 0.9341 0.3199 

   1.5 4.6644 1.9649 1.9649 0.6278  4.2980 2.1907 2.1907 0.7502 

   3 8.6695 3.6521 3.6521 1.1669  7.9884 4.0717 4.0717 1.3944 

2 0 0 0 7.4191 4.6955 4.6955 2.5841  5.8536 4.6955 4.6955 3.2988 

   1.5 32.3392 20.4674 20.4674 11.2638  25.5151 20.4674 20.4674 14.3791 

   3 63.3890 40.1187 40.1187 22.0786  50.0129 40.1187 40.1187 28.1848 

  1 0 2.4730 1.5652 1.5652 0.8614  1.9512 1.5652 1.5652 1.0996 

   1.5 10.7797 6.8225 6.8225 3.7546  8.5050 6.8225 6.8225 4.7930 

   3 21.1297 13.3729 13.3729 7.3595  16.6710 13.3729 13.3729 9.3949 

  2 0 1.2915 0.8174 0.8174 0.4498  1.0190 0.8174 0.8174 0.5742 

   1.5 5.6295 3.5630 3.5630 1.9608  4.4416 3.5629 3.5629 2.5031 

   3 11.0346 6.9838 6.9838 3.8434  8.7061 6.9838 6.9838 4.9063 

 1 0 0 7.6682 4.7373 4.7373 2.5466  7.2849 4.6515 4.6515 3.1131 

   1.5 33.4247 20.6493 20.6493 11.1005  31.7541 20.2752 20.2752 13.5697 

   3 65.5168 40.4754 40.4754 21.7584  62.2421 39.7420 39.7420 26.5983 

  1 0 2.5561 1.5791 1.5791 0.8489  2.4283 1.5505 1.5505 1.0377 

   1.5 11.1416 6.8831 6.8831 3.7002  10.5847 6.7584 6.7584 4.5232 

   3 21.8389 13.4918 13.4918 7.2528  20.7474 13.2473 13.2473 8.8661 

  2 0 1.3349 0.8247 0.8247 0.4433  1.2681 0.8097 0.8097 0.5419 

   1.5 5.8185 3.5946 3.5946 1.9324  5.5277 3.5295 3.5295 2.3622 

   3 11.4050 7.0459 7.0459 3.7877  10.8350 6.9182 6.9182 4.6302 

 2 0 0 8.3735 4.8835 4.8835 2.4322  10.1712 5.6995 4.9249 2.3575 
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4.4 Pasternak constant 

 

Fig. 7 demonstrates the effects of Pasternak constant of 

FG anisotropic nanoplate on the phase velocity in different 

theories. An increase in Pasternak constant leads to an 

increase in the phase velocity. In this case, increasing in 

Pasternak constant and gradient parameter is accompanied 

by an increased in the rigidity of the FG anisotropic 

nanoplate while the nonlocal theory has the behavior 

contrary to them. 

 

4.5 Four different modes for wave analysis 
 

One of the aims of this study is to provide the wave 

behavior of rectangular FG anisotropic nanoplates with 

respect to nonlocal parameter (μ) and strain gradient length 

scale parameter (l). So, as a benchmark table, wave 

characteristics of FG anisotropic nanoplate for the wave 

frequency for different nonlocal parameter (μ), strain 

gradient length scale (l), wave number, exponential factor 

(λ) and thickness of the plate (h) has been tabulated in Table 

1. To provide results, results are explored for four pairs of 

distinct dispersion modes, 
1 2 3 4( , , , )T T T T . As can be seen, the 

wave frequency of FG anisotropic nanoplate rises with the 

increment of the strain gradient length scale (l) and reduces 

with the increment of the nonlocal parameter (μ). 

 

 

5. Conclusions 
 

The objective of present work was to analyze the size-

dependent wave propagation behavior of rectangular FG 

anisotropic nanoplates rested on elastic foundation 

including both of hardening-stiffness and softening-stiffness 

size effects. To this end, the nonlocal strain gradient theory 

of elasticity was incorporated to the RPT the governing 

equations of wave motion was obtained employing the 

Hamiltonian principle. After that, an analytical technique 

was used to solve the governing equations for wave 

propagation of FG anisotropic nanoplates as a function of 

wave number. 

It was revealed that the softening-stiffness influence of 

nonlocality causes to reduce the phase velocity, while the 

hardening-stiffness of strain gradient size dependency leads 

to enhance them. Moreover, it was observed that the wave 

number cause enhances the phase velocity of FG 

anisotropic nanoplate. It was revealed that the softening- 

 

 

stiffness effect of nonlocality causes to reduce the phase 

velocity, while the hardening-stiffness of strain gradient size 

dependency leads to enhance them. Moreover, it was 

observed that the wave number cause enhances the phase 

velocity of FG anisotropic nanoplate. Additionally, it was 

seen that both of the electric foundation parameters cause to 

increase of the phase velocity of FG anisotropic nanoplates. 

Furthermore, increasing the exponential factor induces a 

reduction effect on the obtained results for phase velocity. 

In addition, it was demonstrated that the thickness of plate 

had the more important role on the wave behavior of FG 

anisotropic nanoplate. 
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