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1. Introduction  
 

Plates and shells are of significant interest as structural 

members in civil and aerospace industries. They are used in 

applications ranging from bridge decks to solar panels of 

satellites. Due to their potentially endless applications, it is 

imperative for any structural design engineer to understand 

their static and dynamic behaviours. In this regard, the finite 

element method (FEM) is regarded as one of the most 

versatile analysis tools specifically in structural mechanics 

problems (Zienkiewicz et al. 1977). In fact, analysis of 

plates and shells is one of the first problems where FEM 

was applied. The initial attempts were made with Kirchoff’s 

hypothesis where a number of problems were faced. The 

major problem concerned the satisfaction of normal slope 

continuity at the element edges which could not be solved 

satisfactorily. In the current study, the above problem is 

avoided by adopting Mindlin’s hypothesis where the effect 

of shear deformation is considered.  

A considerable amount of literature is available on free 

vibration of skew plates and shells. But works on bending 

behaviour of skew cylindrical shell panels are rare. 

Mizusawa (1994) presented spline element method to 

analyse the bending of skew plates subjected to transverse 

uniform load and concentrated load with arbitrary boundary 

conditions. Sheikh et al. (2002) presented a high precision 

shear deformable element for bending analysis of plates of 

different shapes. They analysed plates (rectangular, skew, 

triangular, trapezoidal) having different boundary 

conditions, thickness ratios, number of layers and fiber  
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orientations. Muhammad and Singh (2004) presented an 

energy method for the linear static analysis of first-order 

shear deformable plates of various shapes. Sahoo and 

Chakravorty (2004) presented a finite element procedure 

with an eight-node isoparametric curved quadratic element 

for investigating the static behaviour of laminated 

composite hyperbolic paraboloid shell. They analysed the 

shell considering differing boundary conditions subjected to 

a uniform distributed load. An improved finite element 

model for the bending and free vibration analysis of doubly 

curved laminated composite shells was presented by Latifa 

and Sinha (2005). Achryya et al. (2009) developed a 

formulation using an eight-node isoparametric shell element 

to analyse bending behaviour of delaminated composite 

shallow cylindrical shells. Effect of various boundary 

conditions, lamination, curvature and extent of delamination 

area was studied by them. A finite element analysis of 

composite conoidal shells with delamination damage was 

carried out by Kumari and Chakravorty (2010) to examine 

the bending behaviour of such shell configurations. They 

used isoparametric shell bending element for analysis of 

shell and validated the formulation through a solution of 

benchmark problems. Shariyat (2011) proposed an accurate 

high-order global-local theory for bending and vibration of 

cylindrical shells subjected to thermo-mechanical loads. 

Bending response of functionally graded skew sandwich 

plates was analysed by Taj et al. (2014) using a C0 finite 

element formulation with higher order shear deformation 

theory. They studied the plate considering different skew 

angle, aspect ratio, thickness ratio and boundary conditions. 

Maleki and Tahani (2014) investigated the 

bendingbehaviour of composite conical shell panels 

subjected to different distributed mechanical loads with 

various types of orthotropy. A C0 finite element formulation 

based on higher order shear deformation theory was 

developed by Kumar et al. (2015) for free vibration analysis 
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of composite skew cylindrical shells. They used a nine-node 

curved isoparametric element for analysis of composite 

skew cylindrical shells having different geometry, boundary 

conditions, ply orientation and skew angles. Biswal et al. 

(2016) used a first-order shear deformation theory (FSDT) 

based FEA analysis to study effects of moisture and 

temperature on buckling of laminated composite cylindrical 

shell panels. A similar approach was adopted by Sofiyev et 

al. to study dynamic instability of shells (Sofiyev et al. 

2017, Sofiyev and Kuruoglu 2016, Sofiyev and Kuruoglu 

2015). Najafov et al. (2014) studied the effect of a 

Pasternak elastic foundation on the stability of 

exponentially graded cylindrical shells under hydrostatic 

pressure. Recently, an energy-oriented modified Fourier 

method has been used to perform dynamics analysis of 

isotropic and composite plates and shells with general 

boundary conditions. Dynamic analysis of laminated 

cylindrical shells (Jin et al. 2013), laminated plates (Ye et 

al. 2014), composite cylindrical shells with general elastic 

boundary conditions (Jin et al. 2013), functionally graded 

cylindrical shells (Jin et al. 2014), composite laminated 

structure elements of revolution (Jin et al. 2014) has been 

carried out by this method. 

As seen from the literature review, there is a very 

limited number of works available on bending behaviour of 

isotropic skew shells. Literature on bending behaviour of 

laminated composite skew cylindrical shell panels subjected 

to different types of mechanical loading is even rarer. The 

main objective of the present study is to investigate the 

effect of different types of mechanical loadings 

(concentrated, uniform distributed, linear varying distribute 

and sinusoidal) on bending behaviour of laminated 

composite skew cylindrical shell panels having various 

skew angles, fibre orientations, number of layers, radius to 

length ratios, thickness ratios and boundary conditions. In 

the present work, a finite element code is written using 

nine-node isoparametric element with the concept of 

shallow shell theory. The finite element code is validated 

against benchmark solutions. For future research, various 

new results are presented.    

 

 

2. Finite element formulation 
 

The formulation is based on shallow shell theory. The 

effect of shear deformation is taken into account following 

the Mindlin’s hypothesis where it is assumed that the 

normal to the middle plane of the shell before bending 

remains straight but not necessarily normal to the middle 

plane of the shell after bending. Taking the middle surface 

of the shell as the reference surface, the formulation is 

carried out following the usual assumptions of linear elastic 

analysis. 

Element used in the present work is the nine-node 

isoparametric element. In the recent past, the authors have 

used this element to conduct free vibration studies on plates 

(Kalita and Haldar 2017, Kalita et al. 2018). One of the 

major advantages of the element is that any plate shape can 

be nicely handled through a simple mapping technique 

which may be defined as  

𝑥 =∑𝑁𝑟𝑥𝑟

9

𝑟=1

𝑎𝑛𝑑 𝑦 =  ∑𝑁𝑟𝑦𝑟

9

𝑟=1

 (1) 

Where (x, y) are the coordinates of any point within the 

element, (xr, yr) are the coordinates of the rth nodal point 

and Nr is the corresponding interpolation function of the 

element. In this element, Lagrangian interpolation function 

is used for Nr by Zienkiewicz (1977). Taking the bending 

rotations as independent field variables, the effect of shear 

deformation may be expressed as  

{
𝜙𝑥
𝜙𝑦
} =  {

𝜃𝑥 −
𝜕𝑤
𝜕𝑥

𝜃𝑦 −
𝜕𝑤
𝜕𝑦

} (2) 

Where, ϕx and ϕy are the average shear rotation over the 

entire shell thickness and θx and θy are the total rotations in 

bending. The other independent field variables are u, v and 

w, where w is the transverse displacement while u and v are 

the corresponding in-plane displacements.  

The interpolation functions used for the representation 

of element geometry, Eq. (1) are used to express the 

displacement field at a point within the element in terms of 

nodal variables as 

u= ∑ 𝑁𝑟𝑢𝑟
9
𝑟=1   , v= ∑ 𝑁𝑟𝑣𝑟

9
𝑟=1   , w = ∑ 𝑁𝑟𝑤𝑟

9
𝑟=1   , 

𝜃𝑥 = ∑ 𝑁𝑟𝜃𝑥𝑟
9
𝑟=1  and    𝜃𝑦 = ∑ 𝑁𝑟𝜃𝑦𝑟

9
𝑟=1  

(3) 

The generalized stress-strain relationship with respect to 

its reference plane may be expressed as  

{𝜎} = [𝐷]{𝜀} (4) 

Where 

{𝜎}𝑇 = [𝑁𝑥𝑁𝑦 𝑁𝑥𝑦  𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥 𝑄𝑦] (5) 

{𝜀} =  

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢
𝜕𝑥⁄ + 𝑤/𝑅𝑥

𝜕𝑣
𝜕𝑦⁄ + 𝑤/𝑅𝑦

𝜕𝑢
𝜕𝑦⁄ + 𝜕𝑣 𝜕𝑥⁄

−
𝜕𝜃𝑥

𝜕𝑥
⁄

−
𝜕𝜃𝑦

𝜕𝑦⁄

−
𝜕𝜃𝑥

𝜕𝑦⁄ −
𝜕𝜃𝑦

𝜕𝑥
⁄

𝜕𝑤
𝜕𝑥⁄ − 𝜃𝑥

𝜕𝑤
𝜕𝑦⁄ − 𝜃𝑦 }

 
 
 
 
 
 

 
 
 
 
 
 

 (6) 

and 
[𝐷]

=  

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0
𝐴21 𝐴22 𝐴26 𝐵21 𝐵22 𝐵26 0 0
𝐴61 𝐴62 𝐴66 𝐵61 𝐵62 𝐵66 0 0
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0
𝐵21 𝐵22 𝐵26 𝐷21 𝐷22 𝐷26 0 0
𝐵61 𝐵62 𝐵66 𝐷61 𝐷62 𝐷66 0 0
0 0 0 0 0 0 𝐴55 𝐴54
0 0 0 0 0 0 𝐴45 𝐴44]

 
 
 
 
 
 
 

 
(7) 
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Table 1 Central deflection (w*=100wD/qa4) and bending 

moments (M*
max=10Mmax/qa2 and M*

min=10Mmin/qa2) of a 

simply supported isotropic skew plate under uniform 

distributed and concentrated load. (b/a=1, h/2a=0.01, 

ν=0.3, α=45°) 

Load Source w* M*
max M*

min 

UDL 

Present (12x12)# 2.093 1.520 0.993 

Present (16x16) 2.101 1.468 0.982 

Present (20x20) 2.103 1.452 0.974 

Butalia et al. (1990) 1.912 1.227 0.780 

Sengupta (1995) 2.203 1.326 0.901 

Concentrated load 

Present (12x12) 2.532 

- 

Present (14x14) 2.537 

Present (16x16) 2.540 

Butalia et al. (1990) 2.309 

Aggarwal (1966) 2.509 

#Present result with different mesh divisions 

 

 

Fig. 1 Skew plate 

 

 

The rigidity matrix [D] constitutes the contributions of 

individual orthotropic layers oriented in different directions. 

Using the material properties and fiber orientations of these 

layers, it can be easily obtained following the steps 

available in any standard text on mechanics of fiber 

reinforced laminated composites.    

With the help of Eqs. (3) and (6) the strain vector may 

be expressed in terms of the nodal displacement vector {δ} 

as 

{𝜀} = ∑[𝐵]𝑟

9

𝑟=1

{𝛿𝑟}𝑒 (8) 

Where [B] is the strain displacement matrix containing 

interpolation functions and their derivatives and {δ} is the 

nodal displacement vector. 

Once the matrices [B] and [D] are obtained, the stiffness 

matrix of an element [K]e can be easily derived with the 

help of virtual work method which may be expressed as 

[𝐾] = 𝑡 ∫ ∫ [𝐵]𝑇
+1

−1

+1

−1

[𝐷][𝐵]|𝐽|𝑑𝜉𝑑𝜂 (9) 

Table 2 Deflections (w*) and bending moments (M*
x and 

M*
y) for an isotropic plate 

Source b/a w*=104wqa4/D 
M*

x = 103Mx /qa2 

M*
x M*

y 

Present 

1 

36.85 32.56 0 

Thin plate solution (Timoshenko 

and Woinowsky-Krieger 1959) 36.8 32.5 0 

Present 

2 

29.09 25.9 0 

Thin plate solution (Timoshenko 

and Woinowsky-Krieger 1959) 29.1 25.8 0 

 

 

In Eq. (9) the Jacobian matrix |J| is derived from Eq. (1). 

The degrees of freedom of the inclined edges are 

transformed from global to local axes. This transformation 

is done in element level. In a similarmanner, the load vector 

{Pe} may be expressed as  

{𝑃𝑒} = ∬𝑞 [𝑁]𝑇|𝐽|𝑑𝜉𝑑𝜂 (10) 

The integration of the above Eqs. (9) and (10) is carried 

out numerically following the Gauss-quadrature rule.    

The stiffness matrix and load vector having an order of 

forty-five are evaluated for all the elements and they are 

assembled together to form the overall stiffness matrix [K] 

and load vector {P} respectively. 

Different boundary conditions used are simply-

supported (S), clamped or fixed (C) and free (F).  

Simply-supported (S) boundary condition is realized by 

using, 

𝑤 =  𝜃𝑥 = 0, At boundary line parallel to x − axis 
𝑤 =  𝜃𝑦 = 0, At boundary line parallel to y − axi

 (11) 

Clamped or fixed (C) boundary condition is realized 

using, 

𝑤 =  𝜃𝑥 = 𝜃𝑦 = 0 (12) 

Free (F) boundary condition is as follows, 

𝑤 ≠ 0, 𝜃𝑥 ≠ 0, 𝜃𝑦 ≠ 0 (13) 

After incorporating the boundary conditions in the 

overall system of equations it is solved to get the nodal 

displacements of the structure. Once nodal displacements 

are obtained, the stresses at any point within an element can 

be evaluated with the above equations. 

 

 

3. Results and discussions 
 

3.1 Isotropic skew plate 
 

A simply supported isotropic skew plate as shown in 

Fig. 1 under uniform transverse distributed and centrally 

applied concentrated load with skew angle α=45°, aspect 

ratio b/a=1 and thickness ratio h/2a=0.01 is analysed. As 

the two sides are inclined to the global axis system (x-y), 

the necessary transformation is made to express the degree 

of freedom of the nodes on these two sides along t-x axis 

system (Fig. 1). The non-dimensional deflection and 

principal bending moments are given in Table 1 with those  
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Table 3 Deflection (w*=1000wE2h3/qa4), bending moments 

(M*=100M/qa2) and in-plane stresses (σ*=10h2σ/qa2) at the 

centre of a simply supported cross ply (0/90/0) cylindrical 

shell panel under uniform distributed load. (b/a=1, R/a=3, 

h/a=0.1) 

Source w* M*
x M*

y 
σ*

x σ*
y σ*

x σ*
y 

Top surface Bottom surface 

Present 

(12x12) 9.09 11.85 1.13 7.57 0.41 -7.57 -0.41 

Present 
(16x16) 

9.09 11.97 1.15 7.65 0.42 -7.65 -0.42 

Present 

(20x20) 
9.09 12.15 1.17 7.76 0.42 -7.76 -0.42 

Analytical 

(Seide and 

Chaudhuri, 
1987) 

8.69 12.06 1.089 7.32 0.40 -7.33 -0.37 

FEM  

(Seide and 

Chaudhuri 

1987) 

10.84 11.83 1.281 8.40 0.46 -8.03 -0.43 

 

 

Fig. 2 Cylindrical shell panel 

 

 

of Butalia et al. (1990), Sengupta (1995) and Aggarwal 

(1966). Butalia et al. (1990) used an eight-node 

isoparametric element whereas Sengupta (1995) used a 16-

node triangular element and the fourthorder polynomial for 

transverse displacement. For the convergence test, present 

results are given with different mesh divisions. The present 

results are very close to the published results. 

Next, an isotropic plate under transverse hydrostatic 

load is investigated. The left side of the plate is free and 

other three edges are simply supported. The deflections, 

bending moments and in-plane stresses at x=0 and y=a/2 are 

presented in Table 2 with the thin plate solutions of 

(Timoshenko and Woinowsky-Krieger 1959). There is an 

excellent agreement between the present results and that of 

Timoshenko and Woinowsky-Krieger (1959) for isotropic 

plate.  

 
3.2 Laminated composite cylindrical shell panel  
 

A three-layer symmetric cross-ply (0/90/0) cylindrical 

shell panel (Fig. 2) with aspect ratio b/a=1, radius to side 

ratio R/a=3 and thickness ratio h/a=0.1 is analysed. The 

shell is simply supported along all the four edges and 

subjected to a uniform distributed transverse load. The non-

dimensional values of deflection, bending moments and in- 

Table 4 Deflection (w*=1000wE2h3/qa4), bending moments 

(M*=100M/qa2) and in-plane stresses (σ*=10h2σ/qa2) at the 

centre of a simply supported cross ply (0/90) skew 

cylindrical shell panel under doubly sinusoidal load. 

(b/a=1, R/a=3, h/a=0.1) 

Skew 
angle 

R/a Source w* M*
x M*

y 
σ*

x σ*
y 

Bottom surface 

0 Infinity 

Present 

FSDT 

(Reddy 
1989) 

HSDT 

(Reddy 
1989) 

12.17 
12.37 

12.14 

4.21 4.21 
-7.20 
-7.16 

-7.47 

-0.848 

15 

3 Present 

10.29 4.07 3.59 -6.55 -0.782 

30 7.78 3.33 4.59 -5.26 -0.726 

45 5.06 2.28 7.33 -3.58 -0.705 

60 2.64 1.30 8.11 -1.99 -0.662 

 

 

Fig. 3 Skew cylindrical shell panel 

 

 

plane normal stresses obtained at the center of the shell 

panel are presented with those of Seide and Chaudhury 

(1987) in Table 3. Seide and Chaudhury (1987) analysed 

the shell with a quadratic Co triangular curved element as 

well as analytically. The Table 3 shows that the present 

results are in good agreement with those of Seide and 

Chaudhury. The material property used in the example are 

E1=25E2, G12=G13=G23=0.5E2 and υ12=0.25. Since the 

present finite element formulation gives good results for the 

isotropic skew plate and composite shell panels, it can be 

concluded that present formulation can be applied for 

composite skew shell panels also. 

 

3.3 Laminated composite skew cylindrical shell panel 
 

A two-layer anti-symmetric cross-ply (0/90) composite 

skew cylindrical shell panel (Fig. 3) having aspect ratio 

b/a=1 and h/a=0.1 is studied. The material property used in 

the example are E1=25 E2, G12=G13 =0.5 E2, G23=0.2 E2 and 

υ12=0.25. Same material properties are used for rest of the 

examples as well. The shell is simply supported along all 

the four edges and subjected to a transversedouble 

sinusoidal varying load. The analysis is performed 

considering R/a=3. The present results are given in Table 4 

with the finite element solution of Reddy (1989). The 

present results are very close to the solution of Reddy  

128



 

Bending analysis of composite skew cylindrical shell panel 

 

Table 5 Deflection (w*=1000wE2h3/qa4), bending moments 

(M*=100M/qa2) and in-plane stresses (σ*=10h2σ/qa2) at the 

centre of a skew cylindrical shell panel fixed along all the 

edges under doubly sinusoidal load. (b/a=1, R/a=3, 

h/a=0.1, α=45°) 

Ply orientation w* M*
x M*

y 
σ*

x σ*
y σ*

x σ*
y 

Bottom surface Middle surface 

Anti-symmetric 

0/90/0/90 1.76 1.16 0.95 -1.22 -0.15 0.335 -0.050 

75/-75/75/-75 1.46 0.28 1.91 -0.21 -1.59 -0.037 -0.477 

60/-60/60/-60 1.59 0.66 1.74 -0.48 -1.34 -0.074 -0.257 

45/-45/45/-45 1.87 1.35 1.43 -0.90 -1.00 -0.039 -0.087 

30/-30/30/-30 2.30 2.21 1.02 -1.26 -0.65 0.066 -0.034 

Symmetric 

0/90/90/0 2.00 1.68 1.17 -1.15 -0.22 -0.01 -0.97 

75/-75/-75/75 1.53 0.31 1.86 -0.22 -1.68 -0.05 -0.66 

60/-60/-60/60 1.76 0.70 1.77 -0.51 -1.37 -0.15 -0.49 

45/-45/-45/45 2.13 1.47 1.56 -0.93 -1.05 -0.25 -0.30 

30/-30/-30/30 2.30 2.12 1.02 -1.26 -0.65 0.07 -0.03 

 

Table 6 Deflection (w*=1000wE2h3/qa4), bending moments 

(M*=100M/qa2) and in-plane stresses (σ*=10h2σ/qa2) at the 

centre of a skew cylindrical shell panel fixed along two 

straight edges and two curved edges are free under uniform 

distributed load. (b/a=1, R/a=3, h/a=0.2, α=45°) 

No. of Plies w* M*
x M*

y 
σ*

x σ*
y 

Bottom surface 

(0/90)2 11.64 -0.471 2.075 0.680 -0.588 

(0/90)4 10.54 -0.578 2.545 0.684 -0.281 

(0/90)6 10.46 -0.580 2.705 0.712 -0.247 

(0/90)8 10.43 -0.578 2.785 0.730 -0.233 

(0/90)10 10.42 -0.576 2.832 0.742 -0.226 

 
 

(1989). The deflections, bending moments and in-plane 

stresses for different skew angles are presented as new 

results. It is seen that as skew angle increases, the shell 

becomes stiffer and subsequently deflection reduces.  

A four-layer symmetric and anti-symmetric cross and 

angle ply skew composite cylindrical shell panel fixed 

along all the four edges subjected to a sinusoidal load 

having b/a=1, h/a=0.1, R/a=3 and α=45° is analysed. The 

analysis is performed considering different ply orientations 

of the shell panel. The non-dimensional deflection, bending 

moments and in-plane stresses at the center are presented in 

Table 5. From the results, it is seen that for the same 

thickness and number of plies, the symmetric laminate is 

stiffer compared to anti-symmetric lamination.  

In the next example, anti-symmetric cross-ply skew 

cylindrical shell panel subjected to the uniform distributed 

load having a different number of layers is analysed taking 

thickness ratios h/a=0.2. The panel is fixed supported along 

the two straight edges and other two inclined edges are free. 

The non-dimensional deflection, bending moments and in-

plane stresses at the center are presented in Table 6. It is  

Table 7 Deflections (w*=1000wE2h3/qa4), bending moments 

(M*
x and M*

y) and in-plane stresses (σ*=10h2σ/qa2) of 

composite (0/90/0) skew cylindrical shell panel (having left 

curved edge free and other edges are simply supported) 

subjected to transverse hydrostatic load. α=30°, h/a=0.1 

R/a b/a w* 
M*=100M/qa2 

σ* 

Bottom Surface 

M*
x M*

y σ*
x σ*

y 

10 

1 

33.55 -188.56 8.71 -0.517 -0.367 

5 33.07 -185.62 8.58 -1.05 -0.712 

4 32.73 -183.22 8.05 -1.25 -0.881 

10 

2 

19.85 -71.60 0.75 -0.571 -0.048 

5 19.75 -71.15 0.75 -1.13 -0.095 

4 19.68 -70.81 0.75 -1.19 -1.20 

 

Table 8 Deflection (w*=1000wE2h3/qa4), bending moments 

(M*=100M/qa2) and in-plane stresses (σ*=10h2σ/qa2) at 

centre of a simply supported skewed cross ply (0/90/0) 

cylindrical shell panel under uniformly distributed load. 

(b/a=1, α=45° and R/a=5) 

h/a w* 
M*

 σ*
x σ*

y 

M*
x M*

y Bottom surface 

0.01 2. 298 4.408 0.830 -3.220 -0.252 

0.03 3.555 6.751 1.288 -4.441 -0.416 

0.06 4.243 6.990 1.428 -4.492 -0.466 

0.09 5.118 6.844 1.572 -4.372 -0.516 

0.12 6.259 6.590 1.737 -4.204 -0.565 

0.15 7.659 6.308 1.903 -4.026 -0.614 

0.18 9.311 6.032 2.056 -3.856 -0.664 

0.21 11.21 5.779 2.191 -3.702 -0.706 

 

 

seen that the shell becomes stiffer as the number of layers 

increases.  

In the next example, a three-layer symmetric (0/90/0) 

cross-ply laminated skew cylindrical shell panel (Fig. 3) 

subjected to transverse hydrostatic load is analysed. The 

load varies linearly with the intensity of the load at the left 

side is zero and maximum at the right side (q). The non-

dimensional deflection, bending moment and in-plane 

stresses at the center are presented in Table 7. 

Next, a simply supported three-layer symmetric angle-

ply (0/90/0) skew cylindrical shell panel (Fig. 3) having 

various thickness ratios is analysed. The panel is subjected 

to a transverse uniformly distributed load. The aspect ratio, 

skew angle and radius to side ratio of the panel are b/a=1, 

α=45° and R/a=5 respectively. The non-dimensional 

deflection, bending moment and in-plane stresses at the 

center are presented in Table 8. 

Next, a simply supported skew unsymmetrical angle ply 

cylindrical shell panel (Fig. 3) subjected to doubly 

sinusoidal distributed load having aspect ratio a/b=1.0, 

thickness ratio h/a=1.0, skew angle α=45° and R/a=3 is 

analysed. Here number of plies varies from two to ten with 

various fiber angle orientations (from 15° to 75°). The 

results obtained in terms of non-dimensional deflection (w*)  
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Fig. 4 Variation of non-dimensional deflection (w*) and 

bending moments (M*
x and M*

y) at different number of 

layers 

 

 

and bending moments (M*
x and M*

y) is presented in 

graphical form as shown in Fig. 4. From Fig. 4, it is seen 

that as number of layers increases deflection and bending 

moments decrease for all fiber angle orientations. As 

number of layers increases stiffness of the shell increases 

and consequently deflection and moments decrease. It is 

also seen that when fiber angle orientations changes from 

15° to 75° deflection decreases. This is because as fiber 

angle orientation increases, stiffness of the shell also 

decreases. 

In the last example, a three-layer symmetric cross ply 

(0/90/0) cylindrical shell panel subjected to uniformly 

distributed load having aspect ratio a/b=1.0, thickness ratio 

h/a=1.0 and R/a=5 with varying skew angle (α=15° to 75°) 

is analysed. Here two types of boundary conditions are 

used. In one case the two straight edges are fixed and other 

two curved edges are free (represented as BC I) and in the 

second case curves edges are fixed and straight edges are 

free (represented as BC II). From Fig. 5, it is seen that as 

skew angle increases the shell becomes more and more stiff 

and subsequently deflection decreases. From Fig. 5 it is also 

clear that shell having two curved edges fixed and straight 

edges free is stiffer compared to another boundary 

condition.  
 

 

4. Conclusions 
 

The present analysis is performed considering the first 

order shear deformation theory. The entire analysis is 

carried out by using a nine node isoparametric element. 

Skew cylindrical shell panels with different fiber orientation 

angles, number of layers, radius to side ratio, thickness 

ratio, boundary condition and loading condition are 

analysed. The present formulation is validated with number 

of published results related to isotropic skewed plate and 

composite cylindrical shell panels. In all the cases the 

results obtained by the present formulations are veryclose to 

the published solutions. Few new examples of laminated  

 

Fig. 5 Variation of non-dimensional deflection (w*) and 

bending moments (M*
x and M*

y) at different skew angles 

 

 

composite skew cylindrical shell panels are presented which 

will be useful for future research in this field. It is seen that 

in general as number of layers is increased, the deflection 

and moments decrease. Also, as the skewness of the shell 

increases, the deflection decreases.  
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