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Abstract. The mechanical behaviours of the structure made from composite materials or the structure
with periodic configurations depend not only on the macroscopic conditions of structure, but also on
the detailed configurations. The Two-Scale Analysis (TSA) method for these structures, which couples
the macroscopic characteristics of structure with its detailed configurations, is presented for 2 or 3
dimensional case in this paper. And the finite element algorithms based on TSA are developed, and
some results of numerical experiments are given. They show that TSA with its finite element
algorithms is more effective.
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1. Introduction

Composite materials have been widely used in high technology engineering as well as ordinary
industrial products because they have many elegant qualities, such as high strength, high stiffness,
high temperature resistance, corrosion resistance and fatigue resistance. Most of the composite
materials have periodic configurations. For example, in composite materials reinforced with
metallic fibres, the reinforce, the matrix and their interfaces are regularly distributed, and they
have very strong coordinate effects. Moreover, structures with periodic configurations have many
advantages, for example, under bearing certain loadings the amount of materials can be reduced.

In order to understand the coordinate effects so as to improve the design and manufacture of
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new composite materials and structures with periodic configurations, many experts have been
working in this field from macroscopic, detailed or microscopic points of view. They have
achieved useful results in experiment, theory and applications. R. Hill, Z. Hashin. J. Reddy et al.
and J.L. Lions, O.A. Oleinik et al. have proposed important theories in effective constants of
material, multi-laminated plate model and homogenization methods. But so far there are no
unified model and effective numerical method to analyze in detail and precisely the problems
arisen from these fields. This might be due to the size € of the basic cell is very small and the
composition of the reinforce, the matrix and their interfaces is very complicated. This paper
contributes to develop a kind of two-scale variable model and the corresponding FEM algorithms
to analyze the problems in detail and more efficiently.

The mechanical behaviours of these structures and the mechanism of failure depend not only on
the macroscopic conditions, the geometry of the structure, the effective constants of materials, the
loadings and the constraints, but also on the detailed configuration, especially the states of strains
and stresses within a basic cell since they vary sharply in locale. Therefore using the analysis
from either macroscopic or microscopic scale, one cannot obtain an accurate estimation. We
consider that it is a reasonable strategy to construct a method for coupling the macroscopic
behaviours of the structure with its detailed configuration.

The Two-Scale Analysis method (TSA) that couples both characteristics of global behaviour of
the structure and its detailed configurations is studied for problems in two and three dimensional
cases. The mathematical model of the problem is given in section 2. The asymptotic expansion of
the solution and its approximation are briefly discussed in section 3. The finite element algorithms
based on TSA and some results of numerical experiments are shown presented in section 4.

2. Mathematical model

In structural engineering and in the design and manufacture of new industrial products, the
analysis problems for the structures with the following features will be encountered:

» The whole structure or the main part of the structure has periodicity, that is, it is composed of
same basic configurations, for example, the bricked wall shown in Fig. 1(a).

s The structure is made from composite materials with the same cells shown in Fig. 1(b).

¢ Rock structures with probable models.

In two or three dimensional cases, the analysis of these structures leads to the following elasto-
static problems with material constants changing sharply and periodically. For simplicity,
following conventional notations are introduced: Assume that a group of loads and constraints are
imposed on the structure €2

body force: ) =), -, L), xEQ

surface forces: p(x)=(px), -, px), xES,

given displacement: u(x) = @), -, w,®), xES, (1)
where n=2 or 3, x=(x,, -, x,)” denotes the coordinates of structure, and the surface 9 is
divided into two parts S, and S,, 0Q2=S, U S, and S, N S,=¢. The displacement is denoted by
the vector valued function u(x) = (u,(x), -, u,(x))".

Based on solid mechanics the problem can be formulated as following elasto-static problem
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% a5 (x )2 ?;z g%: =fix), i=1l.,n,xE Q )

o;w)=p;x), x €8,, i=1,..,n 3)

ux)=u, x € S, )

where {a;5,(x)} is the tensor of material parameters which are periodic functions with period ¢
in the direction e, e, is a base vector. In this paper, suppose that € =--- = g, = €. Then

a;5u(x + €em) = a;5,(x) ®)

v=(v,, ---, v,)' denotes the normal direction on I',. Usually material constants have the following
properties:
Property 2.1 Material constants {a,5,(x)} are bounded, measurable and symmetric, i.e.,

A5 = A5 = A fiuk (6)
and they satisty the E(u,, i,) condition
MM Mg = G5 Mie < N M @)

where {7, } is a symmetric matrix, and u, u, are constants with 0 < 1, < 11,

In this paper we discuss the TSA method for the structure composed of the entire basic
configurations without holes and the boundary condition of displacements is given. Let Q. denote
a basic configuration that is a é&square with prescribed composition of materials shown in
Fig. 1(c), Q is a 1-square, and Q. is shrunk to Q. in &, then £2 can be denoted as

Q= £Q+2) )

where Z is an n-dimensional integer vector, and T is the set of Z, such that &Q+Z)=£. From
Eq. (5) {a;54(x)} can be expressed as

l]hk(x) az]hk( ) az]hk(g) é"_ (9)
XXPIXDAX
XXX XD
DXIDXIXDXXIX XX
1 T 1 1 XXDIXIXDXIX XX X
L. T T T 1T 71 AX WNN)‘ZWPA 020:1
S N wr«mrmomrwmj |
CT T T 1T 1 |
|l1IL|IIJILL]|]
T T T T T T 1 }V<
C1 | T T 1 A
I I I 1 1 1T 7T
(a) (b (c) Basic configuration

Fig. 1 Composite materials and structures with periodicity
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{a;4 (&)} are 1-periodic functions.
In the following discussion it is also supposed that a,,(x/e) € C'(©) and fix) € C™ ().

3. Two-scale asymptotic analysis

Consider the following elasto-static problem

K
ox

J

1( 0w, ou
ox,  ox,

aijhk(é)z —+—] =fix),x€ Qi=1-,n (10)

Uu=u x & o0

Since the deformations of the structure with periodic configurations depend on both its global
behaviours and basic configurations, the displacements of the structure can be expressed as the
vector valued function u(x)=u(x, &) of the two scale variables x and &. Assume that u(x) can be
expanded into a series in the following form:

u@)=Y ' Wx, (1)
1=0
and that Wx, &) for /=0, 1, 2, --- can be expressed in separated variables as follows
Wi =Y Ny x) (12)
where a=(a, &, -+, o), for j=1, ---, I, ¢ can take any integer satisfying 1 < o < n.
Nall(é)a" ) Naln (6) Val(x)
Noe(é)z > T » Va(x)= (13)
Nanl(g)"”sNann(g) van(x)

every N,,;(©)(,j=1,--,n and o=(ty, &, -+, o), [=0, 1, 2, --+) is a 1-periodic function
defined on R", and v,(x) is a vector valued function defined on £.

)= € TN i @), i =1, (14)
=0 (74

Every N (&) and v,,(x) will be determined below. Respecting

du; Ju; 1 oy

_ow 1 15
o, o, | € 9 3)

one obtains that

J

0 1[0u, O
o |G 5 [% i ]
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ax,, 8x

o

+28’ 12 @i () = [aN”’""@ + BN"”‘”’@] a;x"f”

NGE [Nm O Nan O
=0 k

Gk G

) d
+ ; et zo:‘ %— {% (W o (5) ;xk a!;, @

I

9% G
= filx) i=1-,n, x€ Q & e (16)

+§0‘81_2§‘8L§j% & i (8) {aNahm(@ + aNm(g)] Vom (X)

Suppose that the expression (16) is valid for arbitrary € and basic conflguratlon and load fix).
Compare the coefficients of &' on both sides of (16), and one obtams a series of equations with
respect to N,,(€) and v,,(x). First consider the coefficients of £ %, and one obtains that

d ON i (8)  ON g (5)
< la. — + =0,x € Qs Qe 17
aé} al]hk (é) 2 [ agk agh VOm (x) X 6 ( )
i=1,-,n
Since vy(x) = (Vou(x), -, Vou(x))" arises from the macroscopic behaviour of the structure, geometry,

loads and constraints, it cannot indentify to zero. Thus, from N, ()s periodicity, it follows that
form=1, .-, n

0 1 | N (E) | INym (&) _
9% aijhk(‘g)z[ 32, + 2, J—O, seQ (18)

T
Ny, (&)= (N otm (€ s Nopm (§)) is a 1-periodic vector valued function.

It can be proved that problem (18) for N, (£) has a constant solution. Thus N (&) can be
chosen as

N(@=|: - : (19)
0-- 1

Now compare the coefficients of € ' on both sides of Eq. (16) one obtains that

a hm a okm
Z B§ @ (8) = [ Ne (5) ol (6)] Vaim

o1=1 a‘;:k aéh
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Vo Ny,

(a; i ik (5) N oion (5))

1
E g (az]hk(é) NOhm (5)) 5

=0, x € Q &€ Qg andi, =1, -, n
Further

av Oom and avOm

AT Oxg ox

Respecting the symmetry of {a,;,(§)} and N ayen’ (E)s 1-periodicity then one can obtain the Lame
equations satisfied by vector-valued function N ,,, (§) = (N attm (8 s N oy (E))T

v

+0 Vxe Qo,m=1,---,n

o1

, e Q,i=1, - ,n (20)

a 5) a]voqhm (5) aNalkm (é) — a t}m o1
2g, | o 2, - | I

Attach the following boundary condition on 0Q
Nom(8) =0, VEe dQ 1)

From Korn's inequality and Lax-Milgram Lemma, (20) and (21) have a unique solution for the
pair (o, m).
Next, compare the coefficients of € on both sides of Eq. (16), and one obtains that

a o 0phm aN o) 0pkm
a gj a; i jhk (6) [ a ék + a 5}, v ojoom

1 9 am 1 0 P aym
+ E a—g— @i jnk (@Noqhm (5)) x; 2 p) 5 (allhk (g)Nalkm (é)) .
oN ov
oqhm arkm om
@i jik (é) [ d ék + 9 (Sh J axj
*vy, m
+ aijhk(f) ; 0hm (5) 0 Okm (g) ox vaox ]
=fix), x € Q §E We and iym=1,-,n,0,0,=1,,n @2
Further let
Y gym
Vauan () = 2 @

Assume that f{x) is an integrable function on domain G € R" and let ~ denote the homogenization
operator defined by:

= 1
[ =gyl T 24)
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It is noticed that Eq. (22) is an equation of two - scale variables (x, &), but on the right hand side
there exists only one variable x. Since all functions of variable & in Eq. (22) are 1-periodic and
Nyoy =N m, ONE can impose a homogenization operator for the variable & on both sides of Eq.
(22) and obtain

axk ax h

i az. % {av"" + o J=f,~(x), xEQi=1-,n (25)
J

where

Gy = J 0 L4510 (8) + @1ipg (D80 N )] 4S5 & (Ni) = % [ 9% 9&

In general {4, } is called the homogenization constants of materials, or macroscopic parameters.
Let

vox)=u (x), x € 0Q 27

then Eq. (25) and Eq. (27) compose a Dirichlet problem with constant coefficients. It can be
proved that the homogenization constants {,;, } satisfy the E (u,, 1,) conditions (Aboudi 1991).
Then Eq. (25) and Eq. (27) have one unique solution denoted by u(x), and it can be proved that
uy(x) is sufficiently smooth in arbitrary internal sub-domain €' of Q.

Further substituting u,(x) for v,(x) in Eq. (22), and making use of Egs. (25) and (6) one obtains

8 1 oN o hm aN o1 okm
2 Zla. 28
a&] 2 at]hk (é) [ aék + aéh ( )
aN a1hm i

=q; wmay ~ 4 oom (xl(g) —a; ohk (5) ) gk - p) éj (ai jh @(@Noqhm (5))
EeQ, i, m=1,--,n and o, =1, -+, n
Attach
N oyopm (5) = 0’ é = aQ (29)
then Eq. (28) and (29) determine N, (§) for &y, o, =1, -+, n.
Similarly, letting the coefficients of &', [=1, 2, -+ on both sides of Eq. (16),

Von )= Xt @0)
o

from which, one obtains the following problems that determine N ..., (§) (1 < o < n,
m=1,---,n, 1=34-")

9 1 {ONg..omm ONg.
a—éf aijhk(é)? [ L ohn 4 Lotk ]
i

9%k 9Gh
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0
== [aialm al_l(g)Nalm o _2hm (5) + f (aijh o (@wa oj—1hm (5))
J
aNa1-~ of —1hm
9&,

Now-an®=0,  £€ 30 (32)

To sum up, one obtains the following theorem.
Theorem 3.1 Problem (10) has a formal solution as follows

_ S du
u(x) uO(x)"';g ;Nal'““l (5) axal‘_.axal
where Ny . (=W pu(©), -, N, (&), every Ny am(E)m =1,---,n) is a 1-periodic vector
valued function defined on R and can be solved on 1-square Q, and uy(x) is the solution of
homogenized problem defined on . They are the solutions of following problems respectively:
L. For I=1, N, (&) (04, m =1, ---, n) is the solution of the problem defined by Eqs. (20) and
(21) on 1-square Q.
2. uy(x) is the solution of the homogenization problem of Egs. (25) and (27) on £2; it and
homogenization constants are defined by Eq. (26).
3. For I=2, N g 00n (&) (04, @y, m =1, -+, n) is the solution of the problem defined by Egs. (28)
and (29) on 1-square Q.
4. For =3, 4, -, N cyon o (§) (0, Oy 04, m =1, -,n) is the solution of the problem
defined by Egs. (31) and (32) on 1-square Q.
It is easy to see that the right side of Eq. (20) only depends on the composition of {a,,(£)} on
a basic configuration, and the right side of Eq. (28) depends on the distribution of {a(8)} and
Nom(8), and for =3, 4, -, the right side of Eq. (31) depends on the distribution of {a:(&)}
and N g0 o omzy N o100 ogm (E), and they can be computed in a recursive formula.
For practical computation, let

Mo, du,
u(M)(x)=u0(x)+Z£ zNa1~~~a1(§) ax
=1

o oq”'axa]

+aia1hk(€) ]’ ée Q, i,m=1, s h (31)

(33)

(34)
where M=2, 3, ---.
One can prove the following theorem, see (Cui, Shih, Shin and Wang)

Theorem 3.2 Let u(x) be the true solution of problem (10), and suppose that € is a convex domain
with piecewise smooth boundaries and f{x) satisfies the conditions such that u(x) € C*"4(Q), then

I u®0) —u(x) | Hol < AeMIC (35)

where A and C are constants independent of .

4. FE algorithms based on TSA
4.1. Virtual work equations on TSA

Using the integration in part, one can prove that the previous problems in Egs. (25), (26) and
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(27) for homogenization solution uy(x) on €2, the problem Egs. (20) and (21) for periodic solution

om (&), the problem Eqs. (28) and (29) for N ., (£), and the problem Egs. (31) and (32) for
N o... qm (&) are equivalent to following virtual work equations, respectively

o, . I, ON o11m E)N o _ . ai
'[Q [ag ] thk(é)[ 85 aéh ]dé‘ 4IQ ijmog agj d‘:

9¢;

i, j=1, --,n, Yv&E H}Q) (36)

avi ov f A Ju Ok ou 0k _ 1
J. [axj * ox; s [ ox, ¥ 0x;, de = 4J..in(x)Vidx’ Vv € Ho(@), G

aV ov aNal hm aNoq km
I, |5 _é] (@ | =38 T oe, ]dﬁ

Q

== 4_[ ( iogmay — uxzm al(é) a; ophk (‘:) agchm J Vi ¥ al}h azNoqhm (g) aé dé

als ab m =]-7 T, R, VV = HOl(Q) (38)

o, . ov; ot ogm . ON g ogtom
‘[Q [aé 8/,‘ ] t]hk(‘g)[ aék + aléh 1 Jd&

= 4J.Q { iogm oy 1(§)Na1 o —2hm (g) t+q; oghk (é)_&;i] Vi (39)

~ Gijiog N oy 1hm(§) &, oy, -, o, m=1, n, Vv& H}(Q)
35

Further it is easy to see (Cui, Shih, Shin and Wang) that one can obtain the FE solutions u’ (x)
for MO(X) N 1m(§) N Zz?azm(‘s) and N hO a[m(g) for N ogm (5) N aopm (g) a1 - ogm (é) by SOlVlng
the following FE virtual work equation respectively

o, | ov; ON%9 aghm ON e -
JQ [_+ J t]hk(‘g)[ é agh ]dé 4_[ Lijmoy g a€ dé

ag; 9§
i, j=1, -, n,  VveE SQ) (40)

av~ a‘/ ~p auﬁh au%k h
i ho | 2Ok =—41 f(xWvdx, Vv e SHQ 4
I ( + i]al] [ + ]dx J ,(X), s ( )7 ( 1)
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v v, IN* AN
i 4 y o1 ohm + o 0km d
J, { % "o J"”’"‘@ o5 o |
” hy " ov;
=-4 IQ a; o(z]zm a1 ~ iogm a1(§) = A; ook (&) Enie (Noqm v + ijn azNa?hm(é)sz dé
J
(xl, o, m=1,~~-,n, VV S ShO(Q) (42)

aV< avj aN}&(l) ogh aN}}x? ogkm
— 4+ a. m d
Jo [aéj "% ] "”""@[ o8 T og  |Y
=4 IQ [(ai o mal_l(é)N}&%‘-‘ oq_2hm (g) + aialhk (5) Eni (N’&(l) oq_lm)) Vi
v,
- aijhalNl&?"‘al—lh'n(g)TgJ d&s o, -, al, m= ]-’ T, n, Vv e ShO(Q) (43)
J

where

INY N ONPY

% '3 )

=], {hk O+ 40D (N'f'k‘)ﬂ 45 e (Vi) =

4.2. The FE algorithm procedure for TSA:

(1) Set up the mechanical and mathematical model

* Form and verify the geometry of the structure, the material properties of the components, the
loading conditions and constraints.

* Form and verify the composition of the basic configurations for every component with
periodicity, matrix, reinforce and their interfaces.
(2) Set up the FE model

* Partition the structure into a set of finite elements according to the composition of the structure.
Let h denote the maximum diameter of finite elements in €.

* Partition the 1-square domain into a set of finite elements (triangles or quadrangles) according
to the composition of every basic configuration. Let 4, denote the maximum diameter of finite
elements for 1-square Q.

(3) Compute N%9, (&Y, m =1,---,n) on a l-square domain according to the material
properties of the basic configurations by the FE program, and then compute &y (N%9,) in formula
Eq. (44). Since the left sides of all equations satisfied by Nal... alm(@(aj, m=1,--,n,j=1,-- 1,
and /=2, 3, ) are the same as those by N wm (0, m =1, -+ n), it is necessary to compute the

stiffness matrix Ay of the FE equations for N a1 am (&), decompose Ay into Ay=LDL" only one
time, and save L and D.

(4) Compute the homogenization constants by formula Eq. (44), where N/9(&) are obtained by
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step 3.

(5) Compute uf(x) on the whole structure by FE program based on the homogenization
constants obtained by step 4. Then evaluate

~ oul, axﬁ
8!](”8)= a ax] (45)
(6) Compute the following approximations of the higher-order derivatives
-
au_ﬁ”’, (1=1, M1 < o < onyi=1, l)
0X gy OX g

using the data processing technique of the average of relative elements (Cui, Shih, Shin and
Wang).

(7) Compute N%9. cam ©l=1,--,M,1< o4 < n,i=1,--1) recurrently from the former
results N%9.. o, ,(§) and N%0.., (&), and then compute

oN"o ON"0
N o) ofhm + oy afkm 46
8hk( ag- oqm) aék aéh ( )
(8) Compute the final results by following formulas
— M X alugm .
O0) =)+ ! TN [;] Trgarg b “7)
o ul
) 7 g | Nho L N e
) = € (uf )+zz;'8 Enk [ atogim (gj] axal...axal
M x al+1u_6m
et i ) e
o+

Nho X —mﬂ__ 48
*far al"'"( J axy, axa,ax,,} 49
O'i(,}'w)(x )= @ ( ]Ehk (x) (49)

4.3. Numerical results

We have coded the computing program of previous algorithms using COREP, which is a FE
software developed by the authors, and some numerical experiments are evaluated to verify the
effectiveness of the FE algorithms based on TSA.

In order to test the FE computation of homogenization constants, making use of two kinds of
isotropic materials, we designed three kinds of basic configurations for periodic structures shown
in Fig. 2. The basic material constants corresponding to the shaded and white areas respectively
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N N
N
N
", N
N
N
N
1143604 175017 0 1334341 188121 0 1029547 266973 85244
175017 1143604 0 s 188121 937491 0 y 266973 1029547 85244
0 0 286746 0 0 245477 85244 85244 343238
(2) (b) (e)
N
A V.
B
N
1134231 182435 0 932821 171846 0 1029378 266772 -85104
182435 1134231 0 y 171846 1300548 0 , 266772 1028378 -85104
0 0 277228 0 0 240848 -85104 -85104 343146
(d) (e) ()

Fig. 2 The basic periodic configuration and their homogenization constants

are following:

3125000 625000 0 178571 71428 0
625000 3125000 0| and | 71428 178571 0|,
0 0 1250000 0 0 53571

In the basic configurations, though the areas of two materials are equal, the corresponding
homogenization constants are very different, not only in magnitude but also in the number of
independent constants shown in Figs. 2(a)-(f).

In order to demonstrate the accuracy and efficiency of FE algorithms based on TSA, we

computed the displacements and stresses of the periodic structure in Fig. 3. For u}(x) the whole
structure is partitioned into 38 X 94 rectangles, and for N 0 (&) 1-square Q is divided into 40X 40
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nEw
ot

X1

(@)

OgTzy Tz Tzy

Oz TzyOzx Tzy
(© (d)
Fig. 3 Structure with periodic configuration and some stress results

rectangles. The results of detailed stress distributions inside every basic configuration are obtained.
Owing to the limitation of space here the stress results on the three black squares in Fig. 3(a) with
the basic configuration in Fig. 2(c) are shown in Fig. 3(b)-(d). For conventional FE method, much
more refined rectangular meshes might be needed to achieve the same accuracy. Therefore the FE
method based on TSA is very efficient for problems raised from composite materials and
structures with a small period.

5. Conclusions

The mechanical behaviours of the structures made from composite materials or the structures
with periodic configurations depend not only on the macroscopic conditions, such as the geometry
of the structure, the effective constants of materials, the loadings and the constraints, but also on
the detailed configurations. So the elasto-static problems for these structures cannot be reasonably
and precisely analysed by using either macroscopic scale analysis or detailed cell scale analysis.
The two-scale variable model and its FE algorithms form an effective method for analysing these
kinds of structures.

The two-scale variable expressions of displacements simplify the complexity of solving the
problem. The approximation of displacements u#&) can be evaluated by solving one
homogenization problem on £ and several simple problems with the same basic configurations on
1-squire Q, respectively.

From the previous discussion, all left sides of PDE equations satisfied by N, (&), N aoom (©)s
Noypoam(© (m, 04, 0w =1,--,n,1=1,2,---,M) are the same, and the right sides can be
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recursively computed one by one. So it is easy to obtain their approximations using finite element
method and its software. The finite element meshes for evaluating N 292 N a1oom () Ny o ()
(m,a, -ow=1,---,n,1=1,2,---, M) are chosen the same, and then the global stiffness matrix

is computed, decomposed and saved only one time. Therefore the computing amount of FE
algorithms based on TSA is smaller than the classical macroscopic scale FE algorithms used to
obtain the results with the same precision.
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