Structural Engineering and Mechanics, Vol. 7, No. 6 (1999) 575-588 575
DOI: http://dx.doi.org/10.12989/sem.1999.7.6.575

Prediction of crack trajectory
by the boundary element method
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Abstract. A boundary element method is applied to the analysis of crack trajectory in materials with
complex microstructure, such as discontinuously reinforced composite materials, and systems subjected
to complex loading, such as indentation. The path followed by the crack(s) has non-trivial geometry. A
study of the stress intensity factors and fracture toughness of such systems must therefore be
accompanied by an analysis of crack trajectory. The simulation is achieved using a dual boundary
integral method in planar problems, and a single boundary integral method coupled with sub-
structuring in axisymmetric problems. The direction of crack propagation is determined using the
maximum mechanical energy release rate criterion. The method is demonstrated by application to (i) a
composite material composed of components having the elastic properties of aluminium (matrix) and
silicon carbide (reinforcement), and (ii) analysis of contact damage induced by the action of an indenter
on brittle materials. The chief advantage of the method is the ease with which problems having
complex geometry or loading (giving rise to complex crack trajectories) can be treated.
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1. Introduction

The fracture toughness in a composite material depends on a complicated interaction between a
multitude of factors, including the particle shape, volume fraction, interface strength, particle
strength and pre-existing flaws. It is now well known, for example, that although the mechanical
properties of particulate reinforced metal matrix composite materials are generally better than the
properties of the monolithic alloy alone (Karandikar and Chou 1991, Levy and Papazian 1992),
the fracture properties are not improved. Indeed, the fracture toughness may be significantly lower
than that of the monolithic matrix material (Arsenault et al. 1991, Leggoe er al. 1996). The failure
exhibits many of the characteristics of brittle fracture, due to the presence of weak interfaces, pre-
existing flaws and restricted potential for plastic deformation in the matrix.

It follows that analysis of the effects of these factors is an equally complex exercise. To analyse
the problem effectively we must track the path of the crack, at each stage checking for the
preferred direction of propagation, and then allowing the crack to proceed in that direction.
Although several crack trajectory algorithms have been proposed in the literature, previous
attempts to deal specifically with the discontinuous composite materials are very scarce. Faber and
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Evans (1983) presented a theoretical analysis based on the assumption that the crack will run in a
straight line from particle to particle and then deflect at the particle. For a variety of ideal particle
shapes (spheres, rods, discs), they develop a statistical analysis of the toughening expected due to
the crack deflection. The analysis assumes that the crak intercepts particles at predetermined
points (the path is determined by the particle orientations). Patton and Santare (1993) considered
the question of deflection by combining a complex-variable boundary element analysis with
common theories for determination of crack direction to study the path of a crack near an
elliptical inclusion within an infinite medium. The presence of the ellipse is automatically taken
into account by use of the appropriate Green's function. This would appear to be the first such
theoretical study, but is nonetheless limited to a rigid inclusion or a pore embedded in an infinite
domain. A somewhat more sophisticated analysis was more recently carried out by Kim et al.
(1997), who analyse the effects of particle clusters on the toughness of silicon carbide particulate
reinforced alumina. They demonstrate the importance of thermally induced residual stresses on the
crack behaviour in these systems, however, their analysis does not take into account the elastic
mismatch between the phases in the composite. In the present work we consider the effects of
elastic mismatch in the absence of residual stresses. The effects of residual stresses are easily
included if required (Mammoli and Bush 1995).

All the above studies demonstrate the importance of correctly predicting the crack geometry
before any conclusions can be drawn regarding the effective toughness of the material. At a given
location of the crack front, calculations must be performed to determine the preferred direction of
propagation. The crack is then incremented by a small amount in this direction and the process
repeated. Several algorithms of this type have been proposed in the past, using both finite element
methods (Brazant et al. 1973, Valliapan and Murti 1985, Kocer and Collins 1997) and boundary
element methods (Portela ef al. 1993). A drawback of the finite element approach is the need to
re-mesh the problem at every increment of the crack, although much of the additional
computational load can be alleviated through the use of a moving patch of elements surrounding
the crack tip. The problem of re-meshing does not arise in the boundary element method, making
the method very attractive in problems having complex geometry. It must be noted, however, that
there may be an additional computational cost associated with the use of this method relative to
the finite element method.

In previous studies of crack trajectory, the direction of crack propagation was determined by
utilizing information near the crack tip, either by direct examination of the crack tip stress field or
through the calculations of strain energy. The strain energy is determined by integration of the
stress and strain fields or by evaluation of the J-integral around the crack tip. In the current
applications, however, the crack tip may pass very close to an interface in the composite system.
Under such conditions, the use of stress fields close to the crack tip may become unreliable.
Alternatively, we may evaluate the energy release rate from the work done by the external loads.
The direction of maximum energy release rate is determined directly by allowing the crack to
propagate in a number of test directions. In this way we directly identify the direction of
maximum energy release rate without making any prior assumptions about the system.

2. Formulation
2.1. Boundary element formulation

The dual formulation described by Portela ef al. (1993) allows the crack problem to be treated
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without the need for artificial sub-structuring. Elements are only required on the crack faces and
outer boundary of the computational domain. The dual boundary element method is characterised
by the use of a pair of integral equations:

¢;(P) uj(P)=er,.‘;(P, 0)t;(Q)dI- er,.’;(P, Q)u;(Q)drI 1)
and
Cij(P)tj(P)=frDi’}k(P, Q)nkt;(Q)dF—IrS{}fk(P, Q)m u(Q)dI' 2

where I indicates the problem boundary (including the crack faces), u(P) and #(P) represent the
velocity and traction at a boundary node P, n, is the outward directed normal vector at P and the
coefficients c; and C; are tensors that depend on the continuity of the surface at P. The functions
Uy, T;*, Dy* and S;* are the relevant fundamental solutions, which link together the point P
and any other general boundary point Q.

Eq. (2) is obtained by differentiation of Eq. (1). As a result, the functions Dy* and S;* are
derived by differentiation of U;* and T;*. In planar or three dimensional problems these functions
are all easily defined in analytical form. In an axisymmetric problem, however, the functions U*
and T;* contain higher transcendental functions. The differentiation of these functions and
manipulation to produce D,* and S;* involves a ridiculous amount of algebra. As a result,
attempts to produce a set of dual equations analogous to Egs. (1) and (2) for axisymmetric
problems have not been successful. In the current work, the axisymmetric problem has been
treated using the single Eq. (1) coupled with domain sub-structuring (the crack lies on a fictitious
interface). The resulting formulation, although not as convenient or efficient as a dual formulation,
still retains the advantages of the simple mesh structures characteristic of the boundary element
method.

Egs. (1) and (2) are solved in conjunction with appropriate boundary and interface conditions.
The boundary conditions consist of prescribed values of displacement or traction components.
Each particle is treated as a separate sub-region, with its own set of material properties. If the
particle and the matrix are perfectly bonded, then the interface conditions become:

tr=—t], ul'=uf 3

where the superscripts ‘m and ‘p’ refer to the matrix and the particle, respectively. This merely
states that forces and displacements are continuous across the interface. If a flaw exists on part of
the interface, then the displacement will no longer be continuous. In this case the interface
conditions take the form:

t'=12=0, ul=u? +du; )]
where dy; is the displacement vector across the flaw. Finally, the crack faces are assumed to be
traction free:

t}1=t]2=0, u]1=u12+du] (5)

where the superscripts 1 and 2 refer to the two sides of the crack face.

The application of the method is illustrated in Fig. 1. In the case of the dual equation
formulation (planar problems), Eq. (1) is applied to all boundary nodes and the nodes that lie on
one side of the crack. Eq. (2) is then applied to nodes that lie on the opposite side of the crack. In
the case of the single equation formulation, Eq. (1) is first applied to the sub-region A, followed
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Planar I Axisymmetric
Fig. 1 Example boundary element models of planar (x-y) and axisymmetric (r-z) problems. The filled cir-

cles indicate nodes, while the short lines indicate the element end points. The letters ‘m’ and ‘p’ ref-
er to the matrix and particle, respectively, while ‘A" and ‘B’ refer to sub-regions

by sub-region B. In this manner a sufficient number of linearly independent equations are
developed for the boundary, interface and crack face solution variables.

The equations are converted into discrete form using quadratic, isoparametric boundary
elements, as illustrated in Fig. 1. Each element is associated with three nodes, thereby allowing
the displacement and traction forces on the element to be represented by quadratic functions. The
outer nodes on each element may coincide with the end points of the element, but may also be
moved along the element away from the end point to allow for a discontinuity of the function
across the element end point. The elements used on the crack faces must be discontinuous to
avoid mathematical singularity in the formulation.

2.2. Crack propagation criterion

Most of the proposed criteria for defining the preferred direction of crack propagation fall into
two categories: Energy methods and stress methods. Energy methods propose that the crack will
propagate in the direction of maximum energy release rate, while the stress methods assume that
the crack will propagate in the direction that minimizes the Mode II loading. There appears to be
little difference between the predictions obtained by these methods, provided that the mode II
loading on the crack is relatively small.

The energy release rate can be determined using a variety of techniques. Firstly, we can directly
calculate the work done by external forces as the crack is allowed to propagate a small amount in
a chosen test direction. Secondly, we can determine the work of crack closure after propagation in
the test direction. Thirdly, the J-integral can be utilized. In the first two cases the direction of
maximum energy release rate must be found by repeating the calculation using a number of test
kink angles, until the direction of maximum release rate is found. In practice the number of test
angles is limited to less than three or four, since the kink angle will be close to zero. Use of the J-
integral avoids the need for repeated calculation (Portela et al. 1993), but requires further
calculation of stresses and strains along the integral path. These calculations can become
inaccurate when they are made close to a boundary or the crack tip. Since we wish to allow the
crack tip to closely approach the interface between the matrix and reinforcement, we have utilized
the first of the approaches described above in the current work.

The process of determining the direction of crack propagation is illustrated in Fig. 2. After the
solution corresponding to a particular crack location has been obtained, the potential energy in the
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Fig. 2. Procedure for evaluation of the direction of maximum energy release rate

structure is determined by calculating the work done by external forces applied as boundary
conditions. The crack is then allowed to propagate by a small amount, da, in a chosen direction
and the solution repeated. The energy release rate, G, is then determined by:
B | PE | — PE,|

B da

G (6)
where PE; and PE, are the potential energies corresponding to the two crack locations. The entire
exercise is then repeated for each of a variety of increment angles until the direction of maximum
energy release rate has been found. The crack is then propagated in that direction by a prescribed
amount, and the process repeated.

The appropriate choice of the crack tip increment, da, is considered in the following section,

Setinitial geometry

[ Solve using BEM |
Choose new kink J
Eiucrackalreadybeenincremented? ]lb angleand
incrementerack

Y
| Calculateenergy releaserate |

N
lHas maximum energy release rate been found? ]—

Y

I Propagate crack in preferred direction |
{

Fig. 3 Algorithm for calculation of crack trajectory
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where the solution to a well defined problem is examined. A variety of tests have shown that
adequate evaluation of the crack propagation direction can be made using a kink increment of 4
degrees. Interpolation to find the exact angle that maximizes the energy release rate can then be
performed accurately. Once the appropriate direction has been determined, the crack is propagated
in that direction by an amount typically equal to 3(da), although increments as small as (da) are
used when the rate of change of crack direction is high. In general, however, smaller increments
make little difference to the calculated trajectory. The overall algorithm is illustrated in Fig. 3.

3. Energy release rate for a uniformly stressed square plate with an edge crack

The accuracy of the calculated energy release rate obviously depends on the relative size of the
crack tip increment. Since the energy release rate is determined by numerical differentiation
according to Eq. (6), the accuracy should be increased as the size of the increment is reduced.
However, in practice there is also the potential for numerical round-off error to become dominant
under these conditions. Although all calculations have been performed using double precision
arithmetic to minimize the influence of round-off error, it is nonetheless necessary to
systematically assess the effects of the numerical approximations by comparison with the exact
solution of a well defined problem. This analysis will provide the basis for choosing appropriate
crack tip increment and element numbers in more complex problems.

The geometry of the problem is shown in Fig. 4. A square plate containing a single edge crack
is subjected to a uniform traction loading. The exact solution to this problem for various values of
a/H is given by (Chivelek and Erdogan 1982). Boundary elements of equal length are used to
represent each of the edges of the square. The same number of elements, Ny, is used on each edge.
The crack faces are also subdivided into elements of equal length, except for the final ‘graded

SRSV

H/10
Graded Regio:
Crack

a

H/2

EEEERXEERE;

Fig. 4 A square region containing an edge crack of length a. The elements used on the crack faces have
equal length, except for a graded region near the crack tip
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region, representing a total length of H/10. In this region the element lengths are reduced as the
crack tip is approached. This is achieved using a geometric scaling factor, SF, in conjunction with
the total number of elements in the graded region, N, The scaling factor is just the length of one
element relative to the length of the adjacent element. The effects of both SF and N, are
investigated below.

In Fig. 5 we see the computed energy release rate, G, plotted against N, for a plane stress
analysis with a/H=0.5 and SF=0.7. The graph also gives the corresponding values of da. The
results are presented in non-dimensional form using the exact solution G.,,. Very high accuracy
can obviously be achieved with relatively few elements. The largest error, corresponding to the
use of only four crack tip elements (N,=4), is just 6 per cent. The accuracy clearly improves as N,
is increased, with less than one per cent error incurred with N=8. Although convergence is

Crack increment, da

10" 102 10°® 10*
1.10 I r ; ;

1.05

exact

G/G

1.00

0.95 - : . ‘ :

No. Crack Tip Elements, N,
Fig. 5 The dimensionless energy release rate for the problem of Fig. 4, with a/H=0.5. and SF=0.7
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Fig. 6. The product of energy release rate, G, and Elastic modulus, E, for the problem of Fig. 4, with SF=

0.7, N=8, and N,=10. The Solid line is the numerical prediction while the filled symbols
represent exact results (Civelek and Erdogan 1982)
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observed as Ny is increased, the effect is relatively minor and excellent accuracy is achieved with
N,=10. It is also noteworthy that there is no sign of the onset of round-off error. The effect of the
scale factor, SF, was found to be relatively minor, although SF=0.7 yielded the best accuracy.
Finally, in Fig. 6 we show the computed energy release rate as a function of a/H. Once again, a
high degree of accuracy is maintained as the relative length of the crack is varied.

The results of the above analyses suggest that excellent accuracy can be achieved in this
geometry using SF=0.7, N=8 and N,=10. These are typical of the values utilized in all subsequent
work. Greater accuracy could be achieved by using more elements, although at the expense of
increased computational cost.

4. Crack shielding due to a single particle

An edge crack is allowed to propagate towards a single, centrally located particle contained
within a square plate of side length H. The crack is located on the left edge, and the plate is
subjected to a uniform traction force applied to the top and bottom edges (see Fig. 4). The particle
radius, a, is 0.05H. The co-ordinates are made non-dimensional by dividing by the particle radius.
The ‘effective’ toughness of the composite (K,) is presented in the form of a toughness
‘enhancement’, K/K.’, where K is the toughness of the non-reinforced matrix material. It is easily
shown that the ratio K/K.’ is equivalent to V(Go/G), where G is the actual energy release rate
and G, is the energy release rate that would exist under the same loading conditions, but in the
absence of reinforcing particles.

The properties of the phases were taken to be those of a typical aluminium alloy and silicon
carbide: E,/E,=6.43, v,=0.17 and v,=0.33, where E is the elastic modulus, v is Poisson's ratio and
the subscripts p and m refer to the particle and matrix, respectively.

Typical boundary element numbers used in the calculations are 50 on each particle and 20 on
each side of the enclosing boundary. Further increases in these values made little difference to the
results. Several hundred elements may be used on the crack faces, depending on the length of the
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Fig. 7 The composite toughness for a crack approaching a single particle along the centerline, for various
values of the stiffness ratio, E,/E,



Prediction of crack trajectory by the boundary element method 583

crack. A crack increment, da, of approximately 0.0025H was found to give accurate results.

Fig. 7 illustrates the variation of effective toughness as the crack approaches the particle. It is
clear that the particle produces substantial crack ‘shielding (K/K.”>1), which becomes more
important as the ratio of the particle stiffness to matrix stiffness is increased. In the case of Al/SiC,
where the ratio of elastic moduli is 6.43, the crack will sense the particle at a distance of at least
five particle radii. The results agree with the work of (Li and Chudnovsky 1993), which deals
with the interaction between a crack and a particle in an infinite medium.

If the crack is approaching along a path that is offset from the centreline of the particle then it
will deflect as it nears the interface. Fig. 8 shows the effect of moving the crack a distance d
from the particle centreline, and some corresponding trajectories are shown in Fig. 9. It is
interesting to note that as the crack approaches the particle it experiences a substantial shielding
effect, as expected, but that after it passes the particle an ‘amplification’ effect occurs (K/K.” < 1).
It is also noteworthy that although the crack ‘senses the presence of the stiff phase at least five
radii ahead of the particle, as evidenced by its effect on the toughness, the crack does not
experience a substantial deflection until it is within approximately one radius of the interface. As
a consequence, the stresses on the interface and within the particle may become relatively large,
and this will have corresponding consequences regarding interface failure of particle fracture.
This may go part of the way to explain the high incidence of interface and particle failure that
has been observed to accompany the fracture of SiC/Al metal matrix composite systems (Leggoe
et al. 1996). In particular, damage is observed to accumulate some distance ahead of the crack
tip.

When interface stresses are sufficiently high to induce fracture, the resulting flaw will then
influence the subsequent behaviour of the crack. Such flaws appear to attract the crack (Leggoe et
al. 1996, Patton and Santare 1993), thereby promoting rapid crack propagation and subsequent
fracture of the material. In order to observe the effect of an interface flaw, the case of d/r=0.8 has
been repeated, but now a flaw is located between the angular positions 6, and 6,. The angle 6 is
measured in the anticlockwise sense from the initial crack path (Fig. 7). The cases of a flaw
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0.9 1 | | | L | 1 | L
5 4 3 -2 -1 0 1 2 3 4 5
x/r
Fig. 8 The composite toughness for a crack approaching a single particle for various values of dfr. The

components of the composite have the elastic paroperties of aluminium (matrix) and silicon car-
bide (particle)
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—d/r= 1.0—————/

—d/r=08
— d/r=0.6

Flaw at 160° - 2000

Flaw at 609 - 1200

d/r=08

O~

Flaw at 1500 - 2100

X/t

Fig. 10 The composite toughness for a crack approaching a cluster of two equal particles separated by a
distance equal to 1r, for various values of the angle ¢. The initial crack path is equidistant from

each particle

centred on the position 6=90 degrees and 6=180 degrees are considered. The resulting trajectories
are illustrated in Fig. 9. Although the flaw centered on 6=180 degrees deflects the crack, it does
not substantially affect the crack until the extent of the flaw is increased from 40 degrees to 60
degrees. The deflection of the crack path is associated with a dramatic increase in the energy
release rate as the ligament of material between the ‘crack tip and the flaw becomes smaller; the

crack will rapidly propagate towards the flaw.
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5. Crack interaction with a pair of particles

Fig. 10 illustrates the toughness enhancement as the crack approaches and passes the pair of
particles with various orientations. Shielding occurs in all cases, particularly when =0 and 30
degrees, where the crack collides with the particles. When the crack is able to pass between the
particles (>60 degrees) the cluster behaves in a similar fashion to a single particle (but with
larger diameter) as the crack approaches. Notice, however, that the maximum degree of shielding
occurs when the crack draws approximately level with the first particle (x/a=-1). At some point
beyond this position ‘amplification’ is seen to occur (K/K.'<1). Both effects are the result of
stiffening created by the presence of the particles. Stiffening of the region ahead of the crack
reduces the crack opening and hence the energy release rate. Once the crack has passed the
particles, however, the region behind the crack tip is now stiffened, leading to increased crack
opening. Once the crack is well clear of the particles, the energy release rate returns to the value
seen in the unreinforced material (K/K,’=1).

6. Contact damage due to surface indentation

We now move to an example in which the geometry is simple, but where the loading and stress
fields are complicated. Indentation induced damage on the surface of monolithic ceramic materials
or ceramic coatings has been used as a simple means of investigating the surface properties of
these materials. (See, for example, An et al. 1996 and Wauttiphan er al. 1996). It is now well
known that indentation on a brittle monolith produces a spectacular cone crack, as illustrated in
Fig. 11. The angle the crack makes with the surface is a function of the Poisson's ratio. In coarse
grained ceramics, indentation may also be associated with quasi-plastic deformation due to the
creation and deformation of micro-flaws by shear within the compression zone beneath the
indenter. The energy absorption associated with such damage affects the growth of the cone crack,
generally leading to suppression of the crack (Lee et al. 1997a). Indentation of a stiff coating
which is strongly bonded to a compliant substrate usually leads to multiple cone cracks (Lee et al.

Fig. 11 A cone crack created by the action of a cylindrical indenter
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1997b). Cracks are observed to initiate at the surface and extend towards the interface, while other
cracks initiate at the interface and extend towards the surface. Additional cracks may initiate
within the coating and extend in both directions. However, none of these cracks fully traverses the
coating. In particular, the cone cracks extending from the surface show a tendency to deflect away
from the interface and eventually cease to propagate as the indentation load is further increased.
This is quite contrary to the behaviour observed during indentation of a brittle monolith, where
the crack continues to propagate into the material. The phenomenon appears to be intimately
linked to the elastic mismatch between the layers, which substantially alters the nature of the
stress and strain fields in the coating relative to the case of a monolith.

The problem of cone crack formulation in soda-lime glass has recently been revisited by Kocer
and Collins (1997). In particular, they use a finite element analysis to determine the cone crack
angle (22°). A significant outcome of this work is the conclusion that the crack trajectory cannot
be determined on the basis of the calculated stress field in the absence of the crack, an approach
that yields the true cone angle only of the Poisson's ratio is assumed to be 0.33 rather than the
actual value of 0.21 (Lawn 1993). In the current example we extend the work of Kocer and
Collins to calculate the cone angle as a function of Poisson's ratio. In addition, we have modelled
an actual set of experiments to predict the crack length as a function of indenter load.

A boundary element model of the problem shown in Fig. 11 was established using a cylindrical
block of material having radius and depth both equal to 20R,. A small starting crack (0.01R,) was
located at a radius equal to 1.1R,. This approximates the experimentally observed behaviour. The
starting crack is placed normal to the surface, which again matches experimental observation.
Under the action of a given indenter load, the crack first propagates further into the material and
then turns away from the compression zone beneath the indenter to finally achieve a given cone
angle. Propagation will continue until the energy release rate falls below the critical value
determined by the toughness of the material. Increased indenter loading will then force the crack
to propagate further. If the trajectory of the crack is all that is required, then it is sufficient to set
the toughness to zero and to compute the trajectory under the action of an arbitrary constant
indenter load.

30
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Fig. 12 Predicted cone crack angle as a funtion of Poisson's ratio. The filled symbols are experimental
data
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Fig. 13 Calculated crack depth (filled symbols) as a function of indentation load. The solid line

represents Eq. (7) fitted to the predicted data. The open symbols are experimental data obtained
from Lawn (1993)

The calculated cone angle as a function of Poisson's ratio is shown in Fig. 12, together with the
experimental data for soda-lime glass (Lawn 1993) and silicon nitride (Lee ef al. 1997a). Most
brittle materials exhibit a Poisson's ratio between 0.2. and 0.3. No reliable data outside this range
is available at the current time.

In the specific case of soda-lime glass we have modelled indentation by an indenter having a
radius of 1 mm. The following material properties were adopted: Elastic modulus E=69 GPa,
Poisson's ratio v=0.21, Toughness K.=0.75 MPavm . Lawn (1993) show that when the crack
length is substantially larger than the indenter radius, an asymptotic expression can be used to
represent the relationship between crack length and load:

C = (y/K.)’P% )

where C is the extended crack length shown in Fig. 11 and y is a function of the Poisson's ratio.
Fig. 13 shows the computed relationship between C and P compared to a set of careful
experiments (Lawn 1993). The value of y determined from the slope of the line is 0.045. It is
clear that the boundary element model accurately predicts the crack length.

7. Conclusions

(1) A boundary element method for analysis of crack trajectory and energetics in complex
problems has been developed. The chief advantage of the method when applied to problems
having complex geometry is the ease with which the mesh is updated as the crack grows. The
examples presented illustrate that problems involving rapid changes in propagation direction
and problems in which the crack passes close to an interface can be handled with equal ease.

(2) The energy release rate is evaluated directly through calculation of the work done by external
forces as the crack propagates. The preferred direction of propagation is determined by
allowing the crack to proceed in several test directions. We have found this to be a very
reliable and robust means of trajectory calculation.
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