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Abstract. In the present study, the thermal buckling analysis of thick anisotropic laminated
composite plates is carried out using the finite strip method based on the higher-order shear
deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains
through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore,
this theory yields improved results over the Mindlin plate theory and eliminates the need for shear
correction factors in calculating the transverse shear stiffness. The critical temperatures of simply
supported rectangular cross-ply and angle-ply composite laminates are calculated. The effects of several
parameters, such as the aspect ratio, the length-to-thickness ratio, the number of plies, fibre orientation
and stacking sequence, are investigated.
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1. Introduction

Some composite plate structures in aircrafts and space vehicles have experienced thermal
buckling due to aerodynamic and solar radiation heating. Seeking a better understanding on the
thermal buckling behavior of composite plates and creating more accurate and more efficient
methods to predict the critical thermal buckling temperature have become an important target for
many engineers and researchers. Some results have been reported (see e.g., Whitney and Ashton
1971, Stavsky 1975, Tauchert and Huang 1986, Chen and Chen 1987, Shu and Sun 1994).

In the present study, the thermal buckling analysis of thick anisotropic laminated composite
plates is carried out using the finite strip method based on the higher-order shear deformation
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theory developed by J.N. Reddy (see Reddy 1984, Reddy and Phan 1985). This theory accounts
for the parabolic distribution of the transverse shear strains through the thickness of the plate and
for zero transverse shear stresses on the plate surfaces. Therefore, this theory yields improved
results over the Mindlin plate theory and eliminates the need for shear correction factors in
calculating the transverse shear stiffness. As indicated by Reddy, this theory can be used to
simulate global behaviors (deflection, natural frequency and buckling load) for very thick plates
with the length-to-thickness ratio as low as a/h=4.0. The results are satisfactory in comparison
with three dimensional elasticity analysis and the extra cost in the analysis is little. Furthermore,
the finite strip method is employed for the numerical implementation of the current analysis. This
method utilizes a series of beam eigenfunctions to express the displacement variations in the
longitudinal direction of a plate (see Cheung et al. 1996). Thus, the two dimensional analysis is
transformed into one dimensional. The cost of analysis is reduced significantly not only due to the
reduction in the required computer time and storage space, but also due to the substantial
simplification of input data preparation. Moreover, the accuracy of analysis is also improved,
particularly for the highly anisotropic laminates, because the numerical error attributed to the
material anisotropy is also cut down by the considerable decrease in the number of unknowns
involved in each analysis.

The critical temperatures of simply supported rectangular cross-ply and angle-ply composite
laminates are calculated. The effects of several parameters, such as the aspect ratio, the length-to-
thickness ratio, the number of plies, fibre orientation and stacking sequence, are investigated.

2. Material properties of lamina

A laminate is manufactured from orthotropic layers (or plies) of preimpregnated unidirectional
fibrous composite materials. Neglecting o, for each layer, the stress-strain relations in the fiber-
fixed local coordinate system can be stated as
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where the subscripts 1 and 2 are respectively the fiber and the normal to fibre inplane directions, 3
is the direction normal to the plate; o, and o are the coefficients of thermal expansion; AT is the
temperature rise from the state free of any thermal stresses; Q,; are the reduced stiffness
components, which can be evaluated from the experimentally determined material properties as
follows:
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in which E, and F, are the Young's moduli; v, and v,, are the Poisson's ratio; G,,, G,; and
G, are the shear moduli.

By performing a coordinate transformation (see Agarwal and Broutman 1980), the stress strain
relations in the global x-y-z coordinate system can be obtained as
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where Q', «, o, and «, are respectively the reduced stiffness coefficients and the thermal
expansion coefficients of the lamina in the x-y-z system, which are obtained using the following
expressions:
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in which c=cos8 and s=sinf with 6 representing the angle between the axes 1 and x, while z axis
is assumed to coincide with axis 3.

3. Higher-order shear deformation theory

The higher-order shear deformation theory developed by Reddy (1984) accounts for:

(1) the transverse shear deformation;

(2) the parabolic variation of the transverse shear strain throughout the thickness of the plate;

(3) the vanishing shear stresses on the plate surfaces. This theory yields the following
displacement field:
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4
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where u and v are the inplane displacements at any point (x, y, z), 4, and v, denote the inplane
displacements of the point (x, y, 0) on the midplane, w is the deflection and is assumed to be
constant in the thickness direction z, y, and y, are the rotations of the normals to the midplane
about the y and x axes, respectively, and & denotes the thickness of the plate.

As indicated by Reddy, this theory employs the same number of degrees of freedom as those of
the first order shear deformation theory but gives more accurate results, especially for the thick
plates with the length-to-thickness ratio lower than a/h=10.
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y

4. Finite strip method

In the present analysis, the rectangular composite laminate is modeled by a number of finite
strips, each of which has 3 equally spaced nodal lines (Fig. 1).
For the laminates with two simply supported opposite sides, the boundary conditions at both

ends of the strip are

w=y;=0, M,=0, Ny=Nyg =0 at y=0 and y =1/ (6)
In this case, the midplane displacements and the normal rotations can be expressed in terms of the
above displacement parameters as

r 3
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Fig. 1 A finite strip



Thermal buckling analysis of thick anisotropic composite plates by finite strip method — 477

where r is the number of harmonics employed in the analysis; ! is the length of the strip; u,,,
Uiny Vims Vims Wimy (OW/0X )iy Wi and s, are the displacement parameters for nodal line i and the
mth harmonic; N,(x) is the quadratic Lagrangian interpolation function for nodal line i (i=1 to 3)
and has the following form:

3 —X:

N@)= 1T = ®)
=X, —x;
I J

F(x) and H(x) (i=1,3) are the following Hermitian cubic polynomials:
Fi)=1-3(; P42 )
Fa)=3(, P -2(5)°
H () =x[1-23-+( 7]
Ha) =x[(37 - 7] 9)
in which b is the width of the strip.

Substituting Eq. (7) into Eq. (5), the displacements at any point (x, y, z) within the strip can be
interpolated as follows:

r 3
{f}:[u’v’w]Tz [N]zm {6}1m (10)
m=1 i-1
where
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X
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[N]. Is the interpolation matrix. For i=1 or 3, it is written as
N;Sn NCn O 0  —az’F';Sm —az’H';Sm (z—az®)N;Sn 0
0 0 0 0 F.Sn H,Sn 0 0 (12)

2
in which S,=sink,y, C,=cosk,y, and k,=m]l; ()e% and ()Nz%z); a=4/3. For i=2, the

above expression is applicable without the fifth and the sixth columns.
The following strain-displacement relationships are used in the analysis:
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By substituting Eq. (10) into Eq. (13), the strain vector can be expressed in terms of the
displacement parameters as

r
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where [B];, is the strain matrix. For i=1 or 3, [B];,, has the following expression:
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For i=2, the above expression is valid without the fifth and the sixth columns.

From Eq. (15) it can be observed that ¥, and 7, vary proportionally to (1 —3az’) throughout the
thickness of the plate, and %,=%,=0 at z=1+Ah/2 which leads to 7,,=7.,=0 at the top and the bottom
surfaces of the plate.

The stiffness matrix of the strip can be formed by following the procedure commonly used in
the finite strip analysis (see Cheung et al. 1996). The submatrix corresponding to nodal lines i
and j can be evaluated as follows:

Jijmn = j j j ndx dy dz (16)

where m and n denote the related series terms, [Q'] is the elastic matrix in Eq. (3).
The integrations in the above equations can be implemented analytically in the y and z
directions, and the following expressions can be employed
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In order to eliminate the ‘shear locking of the thin plates, in calculating the transverse shear
stiffness, the reduced integration technique (see Cook er al. 1989), i.e., the two point Gaussian
quadrature, is used in the x direction.

Because the integral I, does not always vanish for m+n, different series terms are generally
coupled in the analysis. However, for some laminates, e.g., cross-ply or anti-symmetrical angle-
ply laminates, all the stiffness coefficients associated with I, disappear. Consequently, the different
series terms become uncoupled and the efficiency of the analysis is enhanced significantly.

The thermal load vector for the m-th harmonic and the i-th nodal line is

{Pin =] | [ BILIQ HowAT, 04 AT, 04 AT, 0, 0} dxdydz (18)

After assembling the above strip matrices over the entire structure, the prebuckling thermal analysis
is carried out by solving the following matrix equation for the unknown displacements {8 }:

(Ko} ={P.} (19)
Then, the initial thermal inplane stresses are evaluated using Eq. (14) and Eq. (3). Furthermore,
the geometrical matrix (see Dawe and Roufaeil 1982) can be formed as:

L L =] [ ] (Gl [0 NGl +[G [0 NG, +1Gu 1[0 1[G ), ) dedydz - (20)
where [G, )., [G.]., and [G,]., are matrices defined by
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[0°] is the matrix of initial thermal inplane stresses:

[4] G/\{) TX(_; 22
91=] & o (22)
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Thereafter, the initial thermal buckling behavior can be revealed by solving the following
eigenvalue matrix equation: -

[K1{8}+AL1{8} = {0} (23)

The product of 4 and the initial guessed value AT is the critical thermal buckling temperature 7.,.

5. Results and discussion

If a laminated composite plate with symmetrical lay-ups is subjected to a temperature rise
which is distributed uniformly across the thickness, the prebuckling deflections do not occur.
However, as the temperature keeps rising, the thermal stresses build up in the plate and eventually
cause the plate to buckle. The thermal buckling also happens in simply supported antisymmetrical
angle-ply laminates under some types of temperature change. In the present study, the thermal
buckling analyses of the simply supported rectangular symmetrical cross-ply, symmetrical and
antisymmetrical angle-ply laminates are carried out using the proposed approach. The thermal
loading is restricted to uniform temperature rise though this approach can also be applied to other
types of temperature distribution. The effects of several parameters, such as aspect ratio, length-to-
thickness ratio, number of plies, fibre orientation and stacking sequence on the critical temperature
are investigated.

In the following analyses, unless indicated otherwise, the lamina properties are assumed to be:

El - 181.0E[) E2 - 10.3E0
G12:7.17E0 G23:2.39E0 G31 :598E0
v, =028 o =0.020 o,=22.50q,

where F, and o represent arbitrary reference values.

For a beam with rectangular cross-section under axial compression, the critical buckling stress
is proportional to h’/a* where h and a are respectively the depth and the length of the beam. If the
compression is caused by a temperature rise, the critical stress is also proportional to ¢,7T,,. This
leads to: o, =k,h*/a’=k,0,T,, or a,T.a’/h’=k /k,=constant with k, and k, denoting the related factors
of proportion. This relationship is also valid for thin plates (Johns 1995). However, for thick
plates, the transverse shear deformation reduces the stiffness of the structure significantly. As a
result, the dimensionless critical temperature o,T.a’/h’ decreases as the plate becomes relatively
thicker and the a/h ratio goes down. This trend can be observed in the following analyses.

5.1. Simply supported rectangular (0°/90°/90°/0°) laminates

A rectangular laminate is constructed from four equal thickness layers oriented at (0°/90°/90°/0%),
and subjected to a uniform temperature rise. The thickness of the plate is 4, the side lengths are a
in the x direction and b in the y direction. The four edges of the plate are hinged and immovable
in all the inplane directions. Therefore, the prebuckling deformation is restrained and the initial
thermal stresses can be evaluated from Eq. (3) with all the strains being equal to zero.

In the analysis, the entire plate is divided into four strips parallel to the longer sides. One
longitudinal harmonics is taken for b/a=1, and two for b/a>1. Further increasing the number of
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strips and series terms makes only little improvement.

The resulting dimensionless critical temperature is shown in Table 1 as the function of the
length-to-thickness ratio a/kh and the aspect ratio b/a. The results show that the transverse shear
deformation reduces the critical temperature significantly. As the length-to-thickness ratio a/h
changes from 50 to 4, the dimensionless critical temperature reduces about 70 percent. By contrast,
the aspect ratio b/a has only little influence on the critical temperature. For a given a/h, only 5
percent fluctuation can be detected within the range of 1.0<b/a<2.0.

5.2. Simply supported antisymmetric angle-ply laminates

A square laminate of side length a and thickness /4 is made up of even number of equal
thickness layers oriented at (6°/-6° ---), and subjected to a uniform temperature rise. Its four edges
are hinged and free in the tangential inplane direction but immovable in the normal inplane
direction. It can be proved that in this case there is no prebuckling deformation, and the initial
inplane thermal stresses can be computed using Eq. (3) with all the strain components assumed to
be zero (see Wu and Tauchert 1980).

In the analysis, the entire plate is divided into four strips, and only one longitudinal harmonic is
required.

The resulting dimensionless critical temperature is shown in Table 2 as the function of the
length-to-thickness ratio, the number of plies and the angle 6. For 6=45°, the effect of the plate
thickness is depicted in Fig. 2 in comparison with the solutions based on the first order shear
deformation theory (FSDT) and the classical thin plate theory (CPT) (FSDT and CPT results are
simply scaled off Fig. 3 of Tauchert 1987). It can be seen from this figure that the classical thin
plate theory overestimates the critical temperature for thick and moderately thick plates, the
significant error can be detected for the laminates with a/h<25. The first order shear deformation
theory yields the satisfactory results for the thin and moderately thick laminates. However, for the
thick laminates with a/h=4, that theory also overestimates the critical temperature. For instance,
for eight-ply laminate of a/h=4, FSDT solution is 0.323 but the present result is 0.272. This
means that for thick plates the error of the first order shear deformation theory may reach eighteen
percent in comparison with the higher order theory.

5.3. Simply supported symmetric angle-ply square laminates
A square laminate of side length a and thickness 4 is made up of odd number of equal

thickness layers oriented at (8°/-8° ---), and subjected to a uniform temperature rise. Its four edges
are hinged and fixed in all the inplane directions. Because the prebuckling deformation is

Table 1 Critical temperature of rectangular (0/90/90/0) laminate

o, .a'/h
alh = = = = —
bla=1.0 b/a=125 b/a=1.5 bja=1.75 b/a=2.0
4 0.1841 0.1826 0.1859 0.1891 0.1841
10 0.4303 0.4458 0.4496 0.4322 0.4303
20 0.5553 0.5818 0.5716 0.5534 0.5553

50 0.6071 0.6382 0.6219 0.6035 0.6071
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Table 2 Critical temperature of square (6/-6---) laminate

a/h No. of o, T4 /K
Plies 6=0° 6=15° 6=30° 6=45°
2 0.2164 0.2013 0.1984 0.2022
4 4 0.2164 0.2273 0.2472 0.2550
8 0.2164 0.2369 0.2627 02717
2 0.4705 0.3848 0.3490 0.3541
10 4 0.4705 0.5019 0.5871 0.6296
8 0.4705 0.5321 0.6444 0.6948
2 0.5727 0.4486 03967 0.4025
20 4 0.5727 0.6133 0.7388 0.8068
8 0.5727 0.6547 0.8229 0.9056
2 0.6105 0.4711 0.4130 0.4190
50 4 0.6105 0.6547 0.7974 0.8770
8 0.6105 0.7006 0.8932 0.9910

restrained, the initial inplane thermal stresses can be obtained in the same methods as in the
previous examples.

A variety of strip divisions combined with different numbers of series terms is employed for the
analysis. The convergency is presented in Table 3 for (45°/-45°/45°) laminate of a/h=10. It can be
observed that the resulting critical temperature is reduced drastically at beginning and becomes
steady later on as the number of strips and the number of series terms both increase

2 2
a,T_a"/h
[=]

e eeeeeeeieeooo oo B Plies

""""""""" i ”““““-“""_;’_’;;*.4 Plies

——————— PRESENT
o e o FSDT

0.0

-
0.0 10.0 20.0 30.0 10.0 50.0
s=a/h

Fig. 2 Square antisymmetric laminates 6=45°
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simultaneously. It can also be seen that dividing the entire plate into eight equal strips and using
eight series terms will yield reasonably accurate solutions. The consequent values for dimensionless
critical temperature are documented in Table 4 as the function of the length-to-thickness ratio, the
number of plies and the angle 6. The results based on the classical plate theory (CPT) (scaled off
Fig. 4 of Tauchert and Huang 1987) are also listed in the same table for comparison. It can be
noticed that the present method and the thin plate theory yield almost the same results for the thin
laminates (a/h=100). However, the thin plate theory overestimates the critical temperature for
moderately thick and thick laminates. The error reaches more than thirty percent for a/h=10 and
more than seventy percent for a/h=4 in comparison with the present analysis.

6. Conclusions

In the present study, the thermal buckling analysis of thick anisotropic laminated composite
plates is carried out using the finite strip method based on the higher-order shear deformation
theory. This theory accounts for the parabolic distribution of the transverse shear strains through
the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore,
this theory yields improved results over the Mindlin plate theory and eliminates the need for shear

Table 3 Convergency for (45/-45/45) laminate of a/h=10
No. of strips 2 3 4 S 6 7 8 9
No. of terms 2 3 4 5 6 7 8 9
o, .a’lh’ 0.5572  0.4812 04686  0.4614 04561 04533 04500  0.4487

Table 4 critical temperature of square (6/-8---) laminate

h No. of of ,a’/l
a .

Plies 6=0° 0=11.25"  6=22.5"  6=33.75° 6=45"
1 0.1245 0.1260 0.1256 0.1252 0.1241
4 3 0.1245 0.1323 0.1535 0.1845 0.1964
9 0.1245 0.1375 0.1733 0.2310 0.2592
1 0.2935 0.3023 0.3217 0.3172 0.3160
10 3 0.2935 0.3166 0.3840 0.4383 0.4500
9 0.2935 0.3563 0.5195 0.6544 0.6815
1 0.3654 0.3823 0.4222 0.4052 0.4073
20 3 0.3654 0.4021 0.5078 0.5493 0.5674
9 0.3654 0.4609 0.7314 0.8492 0.8956
1 0.3976 0.4193 0.4716 0.4465 0.4534
100 3 0.3976 0.4421 0.5710 0.6015 0.6264
9 0.3976 0.5106 0.8036 0.9409 0.9988
1 0.400 0.422 0.489 0.477 0.479
CPT 3 0.400 0.442 0.593 0.629 0.654
o 0.400 0.521 0.888 0.984 1.050
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correction factors in calculating the transverse shear stiffness.

The effects of some structural parameters such as aspect ratio, length-to-thickness ratio, number
of plies, fibre orientation and stacking sequence on critical temperature are investigated. It is
found that for the very thick laminates of a/h=4, the transverse shear deformation reduces the
critical temperature about seventy percent. For such the laminates the first order shear deformation
theory also overestimates the critical temperature. In some cases the error reaches eighteen percent
in comparison with the higher order shear deformation analysis.
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