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Out-of-plane vibration of multi-span curved beam
due to moving loads

Rong-Tyai Wangt and Yiu-Lo Sangt

Department of Engineering Science, National Cheng Kung University, Taiwan, R.O.C.

Abstract. This paper presents an analytic method of examining the out-of-plane vibration of
continuous curved beam on periodical supports. The orthogonality of two distinct sets of mode shape
functions is derived. The forced vibration of beam due to moving loads is examined. Two types of
moving loads, which are concentrated load and uniformly distributed load, are considered. The
response characteristics of beam induced by these loads are investigated as well.
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1. Introduction

The out-of-plane vibration of curved beams is broadly encountered in engineering. The curved
guideway is similar to a multi-span curved beam. Loads moving on a curved beam induce the
transverse deflection, bending slope and twist angle of the structure. The responses of a curved
beam owing to moving loads are very different from those of the same beam due to static loads.
However, the problem of loads moving on the curved beam has never been investigated. The
velocity of moving vehicles on curved guideways is more rapid than previously. Consequently,
this topic continues to be an interesting topic in structural dynamics in recent years. Volterra and
Gaines (1971) presented the static equation of out-of-plane equilibrium of curved Bernoulli-Euler
beams. Rao (1971) neglected the warping effect and included the effects of rotatory inertia and
transverse shear deformation to derive the equations of motion of curved beam. Wang et al. (1980)
adopted Rao's equations to calculate modal frequencies of continuous curved Bernoulli-Euler beam.
The Bernoulli-Euler beam theory is suitable only for examining the flexural vibration of a slender
beam within a low frequency range. The phase wave velocity predicated from the Bernoulli-Euler
beam theory is unreasonable within a higher frequency. The response of either a beam with a larger
ratio of radius of gyration of cross-sectional area to length or higher modes can be only obtained
well by the Timoshenko beam theory. According to this reason, Wang et al. (1984) extended Rao's
equations again to set up a dynamic stiffness matrix for determining the modal frequencies of a
continuously curved Timoshenko beam. Silva er al. (1988) also adopted Rao's equations to study
the dynamic response of a continuously curved Timoshenko beam.

The finite element technique is normally adopted to examine a curved beam subjected to a
static load (Lebeck 1985 and El-Amin 1978) or the problem of buckling (Yang et al. 1986). The
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modal frequencies of curved beam determined by the technique have rarely been discussed.
Moreover, even the frequencies which can be obtained by the technique are approximate values.
The modal frequencies of multi-span curved beam obtained from the method of dynamic stiffness
matrix need solving a larger determinant. In addition, the method can not be applied to examine
the general vibration of curved beam. These difficulties indicate this method is unfeasible for a
multi-span curved beam. Therefore, a more practical way towards studying the out-of-plane
vibration of curved beam needs to be investigated.

All the previously cited studies concerning the modal frequencies of curved beams are based on
Rao's equations. To examine the out-of-plane vibration of continuously curved beam in the
present study, the effects of transverse shear and rotatory inertia of cross section are also included.
The curved beam is considered to be compact solid. Therefore, the warping effect is negligible.
The curved beam has periodically simple, rigid and non-twisting supports. Furthermore, the width
is less than the initial radius of central line. The displacement fields contain bending slope,
vertical displacement and twist angle . The strain fields are derived. The stress-strain relations are
then set. The stress resultants and stress couples are obtained. The equations of motion similar to
Rao's (1971) are then obtained from the Hamilton's principle.

‘This study presents an analytic method to obtain the frequency responses of each span. The
transfer matrix of responses of each span is then established for determining the modal
frequencies and their corresponding sets of mode shape functions of the complete beam. Effects of
initial radius of central line, subtend angle of each span and span number on the modal
frequencies are investigated. The orthogonality of any two distinct sets of mode shape functions is
demonstrated. The method of modal analysis is then outlined to study the vibration of beam
induced by moving loads. A concentrated load and a uniformly distributed load are considered
herein. The response characteristics of beam owing to these loads will be investigated.

2. Equations of motion

A continuously curved beam resting on periodically n+1 hinge supports is depicted in Fig. 1.
These supports are rigid and non-twisting. The radius of curved beam is R. The angle measured
from the bisector of angle between any two adjacent supports is . A distributed load (6, ) on
the n-span curved beam is illustrated in Fig. 2. The beam is homogeneous and isotropic with mass
density p, Young's modulus E, shear modulus G, shear coefficient x and Poisson's ratio p. The
Cartesian coordinates x, y and z system and the cylindrical coordinates r, 8 and z system for a
typical span are depicted in Fig. 3(a). The x and the z axes coincide with the principal centroidal
axes of the beam, while the y axis is tangent to the curved axis of the beam. The coordinates r, 6

Fig. 1 A continuous curved rested on n+l non-twisting and hinge supports
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Fig. 3 Geometry, forces and displacements of a typical span of curved beam

and z are taken at the center of curvature of beam. Each span of the beam has width a, thickness
h, uniform cross-sectional area A, polar moment J about the y axis, second moment of area /
about the direction of the radius. The transverse deflection, bending slope, twist angle of the cross
section of beam at the centroidal axes are denoted as w, @ and ¢, respectively. The width is
assumed to be less than the radius of curved beam.

The displacement fields of the cross section along these principal axes in the Cartesian
coordinates are

U =Z @, Uy=—2¢Q, U:=w-—-x¢ (1a)
or in the cylindrical coordinates are
Ur=2¢, ug=—z¢@, u,=w—(r-R)¢ (1b)
The strain components in the cylindrical coordinates are
_ aUr _ l % u_r _ auz
T TT R T BT
dug 1 ou Ug ou ou dug 1 du,
-_Y = r -, fr = r + Z s =-_ Y + il 2
reE o T e T PR T T YT e @

By using the geometric relations y=R6 and r=R+x, the strain components in the Cartesian
coordinates are expressed as

Ex = aux syy = g (—auy + u—x], &z = auz

ox’ d R 0z



364 Rong-Tyai Wang and Yiu-Lo Sang

_Ouy  R(Ju: u _ Oux | ou; _Ou R ou 3
%y‘axJ’r(ay R} “= % T P az+"8y @)

Substituting Eq. (1a) into Eq. (3) yields the displacement-strain relations

Sn::O, &y = ?(%" %], &: =0

ZR ( 0¢ Q _ _R(_reo __ 0¢
T§+7), =0, %=1 |- 7+ = x—} 4)

Yo =

N

Employing the relation

2
B = R = 1 = 1 _ i + i + .-
r R+x 4% R R
R
into Eq. (4) and neglecting the terms O(x/R) yield the strain components

&:=0, gy=z [ﬂ—a—q)], &z =0,

R oy
_, (00, @ - -2 T - )
) R LU U I

The transverse shearing force g (Timoshenko, 1955), bending moment m and twist moment 7 of
the beam about these principal axes ( Fig. 3b) are

qzxﬂGyzycM=KGA(%v— ):xGA&g—’;— J | (6a)
m=[Eeyzn = &L [ - aa—gJ (6b)
1=[[G@w —xp)dA =C [T(p+%)=%(<p+ —g%] (6¢)

in which C=x;Gah’ and x; denotes the torsion coefficient (Timoshenko and Goodier 1970). The
equations of motion of the entire beam, as obtained from the Hamilton's principle, are

_19g Pw _ _lom_z_ 3¢

Roo M 52 =T -5 o= 5 (72, b)
1ot _m_ 0 , o
Roo R P oa 0=0-ne (7¢)

Egs. (7a)-(7c) resemble to those obtained by Rao (1971).

The transverse deflection, bending slope, twist angle, transverse shearing force, bending
moment and twist moment of the ith span are denoted respectively as w;, @, @, g, m; and 7, which
are

(wi’ (Pi’ ¢i7 qi-m;, Tl)(e’ t)=(W, (P’ ¢’ q.m, T)[0+(l _1)a’ t]7 OSOS(Z (8)
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The displacement conditions at both ends of the span are

w; (0, 1)=w; (e, £)=0, ¢,(0,¢)=¢,(c ¢)=0 &)
The bending slope continuity and zero moment at the ith support between two adjacent spans are
(06 8)=0 (0, 2), my_(0;t)+m;(0,£)=0 (10)

Furthermore, the boundary conditions at both ends of the entire beam are

wl(O’ t):w”(a’ t)=0a ¢1(Oa t)=¢"(aa t)=0
m (0, 1)=ma (0, £)=0 (11)

3. Modal frequency

To calculate the modal frequencies of the curved beam, the transverse deflection w, bending
slope @, twist angle ¢, transverse shearing force g, bending moment m and twist moment 7 of the
entire structure are expressed as

W Qg m 76, t)=(W ¥ dQ M T)6)sin(cx). (12)

in which @ denotes the circular frequency. Substituting Eq. (12) into Egs. (7a)-(7c), then omitting
the term {6, £) yields

1 d0 1dM | T
_——_— = = Aa)ZW, - —_——t == (021?, 13 ,b
R d6 P C*R e TRP (132, b)
1dlr M
-= —+ —=pa’] D 13
Ra " RP (139
in which
1 dw EI d¥v C dd
= 22 _y| M=Z|o-2 | 7=L|p 42 14a, b,
e KGA(R 49 J R[ de] R( dGJ (142,b,
Substituting Q of Eq. (14a) into Eq. (13a) and arranging the result yield the form
d¥ 1 d?
—_—= R?+ kG — |W 15
d6 KGR[”“’2 « d(-)zj (13)
Substituting O, M and T of Egs. (14a, b, ¢) into Eq. (13b) and solving & in terms of W and ¥ yield
dod 1 dw d?
— = GAR —— — | kGAR?*+C —pa*R* —-EI — |¥ 16
a0 EI+C | 7" 48 (K P d@?J {19

Differentiating Eq. (16) with respect to 6 and substituting Eq. (15) into the result yield

a’d _ 1 KGEI %= 4 [paPRIEI + G (pa?RI —C)] 2
d¢  kGR(EI+C) a6 a6

+pa?RparR - C - xGARZ)} W. 17)

Substituting M and T of Egs. (14b, c) into Eq. (13c) and differentiating the result twice with
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respect to 6 yield

d¥ d? d*®
C +EI C — —EI +pa’RY =0 18
( ) (d(-)) ( deé? p ] de (18)
Substituting Eqgs. (15) and (17) into Eq. (18) yields
d*w d‘w dw
W"‘CI(R,CO)W'FCz(R,w)W+C3(R,w)W=O (193)

where

2 P S
(R, ®)=2+pR a)z[ z KGJ

cR, )=1- pRZ(oz( i—_z_ EI] p2 [ J +L+_J_)

C EI «xG kGC «xGE CE

exR, )= pR2 L_G+ _] _ . ARY )+ PRCGST

( KGC K‘GEI CEI KkGEC

Similarly, two following equations can be obtained

{j@ﬁ +e R, a)) +c2(R co) = +es(R, w)}(cb ¥)=(0, 0) (19b, ¢)
The solutions for W, @ and ¥ of the jth span to satisfy Eqs. (19a)-(19¢c) and Eqgs. (15)-(17) are
W;0)={D(0)}x;> ¥;(O)={DAO}x;, P;i(O)={D:(O)}%; (20a, b, )

where y; is a 6 by 1 column vector, the 1 by 6 row vector {D,()} is listed in Appendix, and two
1 by 6 row vectors {D,(6)} and {D3(0)} are

{DAO)} = —— (prRZ J{D.(6)} db+xG —= {D 1<e)}]

{Dy(0)}=

EI - (KGAR{DI(O)} (KGAR?+C —pa?RY) | {DA6)) d6+EI — {DZ(O)})

The corresponding transverse shear force Q;, moment M; and torque T; are

Cen(Ld o |
0,(6)=KxGA (R 4 1D,(@) - 2(9)}]9(; 20d)
M, 6)=EL ({D -4 2(9)}) (20¢)
T~(e>=9({02(9)}+i{03(e)}]x (20)
J R do ]

Arranging Egs. (20a)-(20f) into the vector form of
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{(WoQ T ¥M} (=[SO (21)
from which the constant vector y; can be solved in terms of {W @ Q T ¥ M}, (0) as
2 =[SOF{W @Q T ¥M}/(0) (22)
Therefore, the response relations at both ends of the span are
{(WoQT¥YM} ()=[uususususud {W @Q T ¥M}(0) (23)
in which u; is the ith column vector of the following matrix
[uiususususug=[S@][SO)]*

By adopting the condition of both twist angle and transverse displacement being zeros at
6=0, Eq. (23) will be reduced to the form

{WoQT ¥YM}/(@)=[usususu{Q T ¥M}(0) (24)
which can be expressed as
Ull U12
{(W@QT ¥M}/(d)=|Uy Up|{Q T ¥M} (0) (25)
U31 U32
or
{W @} (@)=[Uy]{Q T} O+[Up]{¥M}] (0) (262)
{Q T} (@D=[Unl{Q T} (0)+[Un]{¥M}; (0) (26b)
{¥M} (@)=[U]{Q T} O)+[Uxl{¥M} () (26¢)

where [U;] represents a 2 by 2 matrix. Further, the condition of both twist angle and transverse
displacement being zeros at 6=cimplies that Eq. (26a) can be written as the form

{Q T} O=-[UnI"[U]{¥M}](©0) 27)

which indicates that the transverse shear force and torque are related with the bending slope and
moment at the end 6=0. Substituting Eq. (27) into Eq. (26c) yields

(FMY(@)=IN1{¥M}T(©) 28)
where
N]=[Us]-[Uu][Un]* U

Employing the conditions of bending slope continuity and moment balance of two adjacent spans
at the jth support into Eq. (28) yields

{¥M}],(0)=[Z]1{¥M}]©0) 29)

j+1

where the transfer matrix [Z] is
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10
[Z]=[0 _1] [N]

The ith modal frequency @ and the corresponding set of mode shape functions {W @ Q T ¥
M}®(6), 0<0<na, of the entire beam can be obtained by performing calculations similar to that
described by Wang and Lin (1997).

4. Orthogonality

The ith modal frequency and its corresponding set of mode shape functions satisfy the
following equations

@ ) ) @) @) .
- % dgg =pA @’W®, -QO+ % dlzg + T? =pl 0’ (30a, b)
@) @) .
S sl (300

Multiplying Eq. (30a) by W? Eq. (30b) by Y% and Eq. (30c) by @, respectively, and
integrating their summation from 6=0 to f=na yields

o? I" “PAWOWD +] POPD + ] dOGD) Y
0
n OOM  TOTH) OM)

=j"‘(Q Q’+TT’+MM’Jde (31)
0

KGA C EI

Similarly, the following equation is obtained for the jth modal frequency and its corresponding set
of mode shape functions

w}? jnap(AW<i)W(f)+ [POPD+] OB 4o
0
n O  TOTH) OMO)

=I“£Q Q’+TT’+MM’)de (32)
0

KkGA C EI
Eqgs. (31) and (32) imply that two distinct sets of mode shape functions are orthogonal , i.e.,
j: PAWOWD+T POPD+] @OBI)dO=0,  i#] (33a)

n ®o W OTG OMD
J-aQQJ+TTJ+MM]
0 KGA C EI

Jd():O, i#j (33b)

or

J-na Wi dQ®

i) (i) ) @)
1 dM¢ T & J dar
0 R de

W —oW 4+ = 2 MO de=0
¥ [Q "R a0 TR R|™ de )

for i#j. (33¢)
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5. Forced vibration

While examining the forced vibration, the responses of the curved beam can be expanded into
the forms of mode superposition as

(%, 9, 8)6.0)=3 B,EOYWO, PO, DOY6) (342)
(@, m, D6, 1)= b,EXQ®, MO, TOX®) (34b)
i=1

in which b{(f) denotes the ith modal amplitude. By performing calculations similar to that
described by Wang and Lin (1997), the governing equation of b(?) is obtained as

d’b,
@ =8(0) (39)

in which the ith modal excitation g(r) is

g(®)=R [ £(6,1)WOde/D;, (36)
0
where the ith modal mass D, is

D;=R [ pAWOWO+] POPO 1] SODO) do (37
0

6. Moving loads

Two types of loads moving at a constant velocity v on the multi-span curved beam are
considered in this section.

6.1. Moving concentrated load

A concentrated load of magnitude of F, moving at a constant velocity v on the curved beam is
displayed in Fig. 4. The form of the load is

Fy(6—vt/R) 0<t<nT
f(e’t)={ 0 nT <t (38)

where nT(=nRoy/v) denotes the duration of load acting on the beam. The respective histories of the
ith modal excitation g(f), amplitude b(f) and velocity b(f) of the curved beam can be obtained as
those forms described by Wang and Lin (1997).

6.2. Moving uniformly distributed load

The curved beam subjected to a uniformly distributed load f, with a constant velocity v is
depicted in Fig. 5. The equation of the load is
f(0,t)=fo{H[6—-(vt —d)/R]} —H(6-vt/R)} (39)

in which H represents the unit step function and d(< Re) is the distributed length. The respective
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Fig. 5 A uniformly distributed load moves on the curved beam

histories of the ith modal excitation g(¢), amplitude b(f) and velocity b(t) of the curved beam can
be also obtained as those forms described by Wang and Lin (1997).

7. lllustrative examples and discussion

In this section, the properties of beam are E=30 Gpa, p=2300 kg/m’, y=0.2, x=0.833, a=10 m,
h=1 m and x;=0.312. Both length and mass of the curved beam increase as « increases. Therefore,
results listed in Table 1 show that the fundamental four modal frequencies of a three-span curved
beam (R=100 m) decrease as o increases. Table 2 lists the comparisons of span number effect on
the fundamental four modal frequencies of a curved beam (R=100 m, =30°). All curved beam
have the same first mode shape function. Therefore, the first modal frequency is independent on
the span number. The second modal frequency of a one-span beam is the (j+1)th modal
frequency of a j-span beam.

Table 3 compares four one-span length effects on the lowest three modal frequencies of a
curved beam with total length 157.08 m. Results of the Table indicate that the smaller length of a
span implies a larger modal frequencies of the beam. Table 4 compares five radius of curvature R
effects on the fundamental four modal frequencies of a three-span beam with a total length of 50
m. The larger R of beam means the less coupling effect between bending moment and twist.
Therefore, the modal frequencies of a straight Timoshenko beam are the upper bound of those
corresponding modes of a curved beam. The above table reveals that the more coupling of
bending and twist cause the less modal frequencies of beam.

Results obtained by the modal analysis method converge rather fast. It is sufficient to employ
the first sixteen modal frequencies and their corresponding sets of mode shape functions of the
beam in the study of forced vibration of the structure induced by moving loads. The magnitude of
F,=50 kN is considered in this section.

The following parameters are defined to illustrate the numerical results: velocity of the bending
wave of the first mode v=m,L / m; maximum deflection of the beams during the motion of load,
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Table 1 Comparisons of «a (degree) effects on the
fundamental four modal frequencies (rad/s)
of a three-span curved beam (R=100 m)

o @ @, L] Wy
20 8.28 10.67 15.63 33.42
30 3.61 4.68 6.91 14.82
50 1.22 1.62 244 5.26

Table 2 The span number effects on the comparisons
of the fundamental four modal frequencies
(rad/s) of a curved beam (R=100 m, a=30°)

span o w, @, ay
1 3.61 1482 3342  59.28
2 3.61 575 1482 1879
3 3.61 4.69 681  14.82
4 3.61 425 575 7.43

Table 3 The one-span length L (m) effects on the
comparisons of the fundamental three modal
frequencies (rad/s) of a curved beam (R=
100 m) with total length 157.08 m

L ! @, Wy
157.08 0.29 1.53 3.61
78.54 1.53 2.50 6.52
52.36 3.61 4.69 6.91
39.27 6.52 7.63 10.29

Table 4 The radius of curvature R (m) effects on the
comparisons the fundamental four modal
frequencies (rad/s) of a three-span curved
beam with total length 50 m

R ! Wy a3 @,

50 3.57 4.81 7.31 15.80
100 3.93 5.15 7.59 16.24
400 4.10 5.26 7.68 16.41
800 4.11 527 7.69 16.42

o0 4.11 527 7.69 16.42

Wiy maximum bending slope of the beams during the motion of load, ¢@,,,; maximum twist angle
of the beams during the motion of load, ¢,,; maximum transverse shear force of the beams during
the motion of load, g,,.; maximum bending moment of the beams during the motion of load, m,,;
maximum torque of the beams during the motion of load, 7,

The comparisons of two different effects of velocity on the histories of deflection, bending
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Fig. 6 Comparisons of two velocity effects of a moving concentrated load on (a) the deflection history,
(b) the bending slope history and (c) the twist angle history of the mid-point of the second span
of a three-span curved beam (R=100 m, @=30°)

slope and twist angle at the mid-point of the second span of a three-span curved beam (R=100 m,
@=30°) induced by a concentrated moving load are displayed in Figs. 6(a)-(c), respectively. These
results show that a faster speed of the moving load causes a larger deflection, a larger bending
slope and a larger twist angle of the beam. A less speed (<v,) of the moving load results in a
longer duration of forced vibration of the beam. These maximum values, therefore, appear during
the load moving on the beam at a subcritical velocity.

A three-span curved beam (R=100 m, a=30°) taken is an example to examine the effect of two
types of loads on the responses of structure. A concentrated load and a uniformly distributed load
(d=10 m) are considered. Further, these loads have the same magnitude of 50 kN. Comparisons of
these loads on the w,,, — v distribution, the @, — v distribution and the ¢, — v distribution of the
curved beam are displayed in Figs. 7(a)-(c), respectively. The corresponding g, — v distribution,
My~ v distribution and 7, —v distribution of the curved beam are depicted in Figs. 8(a)-(c),
respectively. These results in Figs. 7(a)-8(c) indicate that the concentrated load induces the
absolute maximum responses among these loads. Therefore, only the effects of a moving
concentrated load on the dynamic responses of curved beams are considered in the following
discussions.

The reaction moments are zeros at the first hinge and the fourth hinge of a three-span beam (R=
100 m, &=30°). Consequently, the maximum deflection always appears at the mid-point of either
the first span or the third span. Further, the maximum bending slope always occurs at the hinge
supports. The non-twisting supports cause that the maximum twist angle always happens at the mid-

15
o)
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E qaé 10
2 ¥ 5
S
0 | | ! | | | 0 i ] { i | | 0 1 1 ] | ] ]
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
(a) v(m/s) (b) v(m/s) {c) v(mls)

Fig. 7 Comparisons of load types on: (a) Wy —V, (b) @uy—v and (c) @, — v distributions of a three-
span curved beam (R=100 m, a=30°)
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Fig. 8 Comparisons of load types on: (a) ¢, — v, (b) m,..—v and (¢) %, — v distributions of a three-span
curved beam (R=100 m, o=30°)

point of one span. The maximum transverse shear force of the beam appears at either the second
hinge or the third hinge where the deflection is zero. The maximum moment occurs at the mid-
point of either the first span or the third span of the beam. The maximum torque appears at the
fourth non-twisting support where the twist angle is zero.

The effects of span number on the w,, — v distribution, the ¢, — v distribution and the ¢, —v
distribution of a multi-span curved beam (R=100 m, o=30°) are displayed in Figs. 9(a)-(c),
respectively. The moving load can be regarded as a quasi-static load within the velocity range 0<
v<20 m/s. The reactions of transverse shear force, bending moment and torque at each rigid,
hinge and non-twisting support produce a negative effect on the transverse deflection, bending
slope and twist angle of a curved beam. Therefore, the more span number implies the less
responses of curved beam within the velocity range 0<v<20 m/s. A rapidly traveling load
induces a disturbance propagation in a periodically curved beam. The disturbance contains free
waves and non-propagating parts, which decay spatially. Consequently, the free waves on the
vibration of multi-span curved beam are more significant as the span number increases. The first
modal frequency and its corresponding set of mode shape functions dominate the vibration of
beam. The first mode of beam is a bending mode. The results in Figs. 9(a)-(c) demonstrate that
the higher span number implies the more absolute maximum responses constrained within the
neighborhood of the phase velocity of bending wave of the first mode.

The comparisons of two different L effects of a span length on the w,,, — v distribution, the ¢@,,.,
— v distribution and the @,,, —v distribution of a curved beam (R=100 m) with total length 157.08 m
are displayed in Figs. 10(a)-(c), respectively. The less length of a span suggests that the curved

2.2 '
———. 2spans ——~—. 2spans
4 spans 4 spans
3 1.3 ‘ ~~ A7 T
H ’
By / /
4 i1
04 aas 1 1 1 ] 1 i f i 1
0 20 40 60 . 40 60
(a) v(m/s) (b) v(m/s) (¢) v(mis)

Fig. 9 Span number effect on: (a) w,, — v, (b) @,..— v and (c) ¢, — v distributions of a multi-span
curved beam (R=100 m, =30°) due to a concentrated load
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— L=52.36m
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Fig. 10 Comparisons of one-span length (L) effect on: (a) w,..—v, (b) @, —v and (¢) ¢,.—v dis-
tributions of a curved beam (R=100 m) with total length 157.08 m due to a concentrated load

beam has more support number. Therefore, the less length of a span implies the less responses of
the curved beam.

8. Conclusions

This paper presents the derivation of equations of motion of a multi-span curved beam in detail.
Based on the present modal analysis for the vibration of multi-span curved beams, the following
conclusions can be made: (1) the first modal frequency is independent on the span number; (2) the
larger the radius of curved beam causes the less coupling effect between the bending and twist; (3)
the responses of a multi-span curved beam caused by a constant-velocity moving load are greater
than those by the load in a static situation; (4) a critical velocity exists at which the responses of
the curved beam become absolutely large; (5) the lowest bending wave velocity in the curved beam
is the upper bound of the critical velocity of the beam; and (6) higher span numbers result in
higher absolute responses and critical velocity.
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Appendix: list of the vector function

The vector function {D(6)} depends on the roots A(i=1, 2, 3) of the equation

Al+e R, A +c,R, @) AT+ R, ©)=0 (a)
There are six kinds of {D(6)}:
DA <A<A<0
{D (6)} = {cos(B, 6) sin(p3, 6) cos(B,6) sin(B,6) cos(B;6) sin(B;6)} ®)
where B, = 4], i =1-3.
D A<Ah<0<A,
{D ()} = {cos(B, ) sin(3,6) cos(,6) sin(B,6) cosh(f3,6) sinh(B;6)} ()
34 <0<h<Ay
{D ()} ={cos(B,6) sin(3,6) cosh(}3,6) sinh(B,6) cosh(3;6) sinh(3;6)} (d)
where B, =+[ 4], i =1-3.
H0<hh<A<h
{D ()} ={cosh(f, 6) sinh(B, 6) cosh(f3,6) sinh(3,6) cosh(3;6) sinh(;6)} (e)

5) A, <0, two conjugate A, and 4,
{D (8)} ={cos(p; 6) sin(B, 6) cos(u6) cosh(x6) cos(ib) sinh(}6)
sin(16) cosh(x6) sin(u6) sinh(x6)} ®
where 1= | 4,| ¥* cos(0.5arg(A,)) and = | 4,| ¥ sin(0.5arg(1,)
6) A, >0, two conjugate Az.and R
{D (6)} ={cosh(B, 6) sinh(B,; 6) cos(116) cosh(y6) cos(u6) sinh(x6)
sin(16) cosh(x6) sin(u6) sinh(x6)} ®





