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Elastic bending analysis of irregular-shaped plates

T. Sakiyama t and M. Huangt

Graduate School of Marine Science and Engineering,
Nagasaki University, Nagasaki 852, Japan

Abstract. An approximate method for analyzing the bending problems of irregular-shaped plates is
proposed. In this paper irregular-shaped plates are such plates as plate with opening, circular plate,
semi-circular plate, elliptic plate, triangular plate, skew plate, rhombic plate, trapezoidal plate or the
other polygonal plates which are not uniform rectangular plates. It is shown that these irregular-shaped
plates can be considered finally as a kind of rectangular plates with non-uniform thickness. An opening
in a plate can be considered as an extremely thin part of the plate, and a non-rectangular plate can be
translated into a circumscribed rectangular plate whose additional parts are extremely thin or thick
according to the boundary conditions of the original plate. Therefore any irregular-shaped plate can be
replaced by the equivalent rectangular plate with non-uniform thickness. For various types of irregular-
shaped plates the convergency and accuracy of numerical solution by proposed method are investigated.
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1. Introduction

The irregular-shaped plates in this paper are such plates as plate with opening, circular plate,
semi-circular plate, elliptic plate, triangular plate, skew plate, rhombic plate, trapezoidal plate or
the other polygonal plates which are not uniform rectangular plates. But these irregular-shaped
plates can be considered finally as a kind of rectangular plates with non-uniform thickness.

An opening in a plate can be considered as an extremely thin part of the plate, and a non-
rectangular plate can be translated into a circumscribed rectangular plate whose additional parts
are extremely thin or thick according to the boundary conditions of the original plate. Namely, the
additional part connected with a fixed edge is considered as extremely thick, and the additional part
connected with a free edge is considered as extremely thin. Therefore any irregular-shaped plate
can be replaced by the equivalent rectangular plate with non-uniform thickness.

Timoshenko and Krieger (1959) presented the analytical solutions for fixed circular plate, semi-
circular plate, elliptic plate or simple-free skew plate. Fletcher (1959) analyzed isosceles right
triangular plates with a fixed or simply supported diagonal edge and the other two simply
supported edges. Conway (1962) analyzed triangular plates by point matching. Iwahara (1980)
investigated the bending problem of square plate with central square opening hole by applying the
mapping method. Ohta et al. (1962) analyzed fixed rhombic plates on the basis of the energy
method, Saito ef al. (1958) analyzed elliptic plates subjected to a concentrated load at an arbitrary
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point.

In this paper an approximate method is proposed for analyzing the bending problem of
various types of irregular-shaped plates by applying the discrete general solution obtained by
Sakiyama and Matsuda (1983) for the rectangular plate with non-uniform thickness, and the
convergency and accuracy of numerical solution by proposed method are investigated. The
discrete general solution of a differential equation is obtained by applying the numerical
integration method, and theoretically it can be considered as a discrete-type expression of an
analytical solution of differential equation. Therefore the numerical solutions by proposed method
always approach to the values corresponding with the analytical solution by increasing the nymber
of discrete points, and moreover they can be directly obtained without using the assumed
displacement function in FEM or the fundamental solution in BEM.

2. Fundamental differential equation of plate with variable thickness and point
supports

The fundamental differential equations of plate with variable thickness and point supports at
each discrete points (x,, y,) as shown in Fig. 1 are given by following equations.
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where Q,, Q, the shearing forces, M,, the twisting moment, M,, M, the bending moments, 6, 6,
the slopes, w the deflection, D=EK’/12(1-v?): the bending rigidity, E, G: modulus, shear
modulus of elasticity, v: Poisson's ratio, h=h(x, y): the thickness of plate, £=h/1.2, q =9 (x_y):
distributed load, 1 » = x(x, ), 1 y = y(x, y): distributed moment loads around x-, y-axes, P,
vertical reaction of point support at (x., Ya), Paa, Pt moment reactions around x-, y-axes of
point support at (x., y,), 8(x-x), (y-y,): Dirac's delta functions.

By introducing the following non-dimensional expressions,

X, X,)= BXETZ)[Q” 0.1, [Xa X, Xs] =

a
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[Xs,Xsz] =[6y, 6, w/a],

the differential Eqs. (1-a)~(1-h) can be rewritten as follows.

Z[Flte oXe +F e —— oXe +F3teXe]+Z[pf +Z ZPfcd6(n N:)6(5—84)16, =0 @

a c=0 d=0

where t=1~8, [py, p, ps]=[qa, mx, —myua’/Dy(1 - v*), u=bja
n=x/a, {=y/b, Dy=Ehy’/12(1 - V’): standard bending rigidity
hq: standard thickness of plate, a,b: breadth, length of rectangular plate
[Pred> Pra> Pscal=[Picst, Pra, — PsoaliDo(1- V), 8;: Kronecker's delta
F,., F,., Fs,: Appendix 1

3. Discrete solution of fundamental differential equation

With a rectangular plate divided vertically into m equal-length parts and horizontally n equal-
length parts as shown in Fig. 2, the plate can be considered as a group of discrete points which
are the intersections of the (m+1)-vertical and (n+1)-horizontal dividing lines. In this paper, the
rectangular area, 0<n<n, 0<{<{, corresponding to the arbitrary intersection (i, j) as shown in
Fig. 2 is denoted as the area [i, j] the intersection (i, j) denoted by © is called the main point of
the area [i, j], the intersections denoted by O are called the inner dependent points of the area,
and the intersections denoted by @ are called the boundary dependent points of the area.

By integrating the Eq. (2) over the area [, j], the following integral equation is obtained.
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Fig. 1 Position of point support Fig. 2 Discrete points on plate
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where u(n, - n.)=0(i<c), 0.5(i=c), 1(i>c), w(§ - £)=0(j<d), 0.5(j=d), 1(j>d).
t=1~8, i=1~m, j=1~n.

Next, by applying the numerical integration method the simultaneous equation for the unknown
quantities X,,=X,(n,, {)) at the main point (3, j) of the area [i, j] is obtained as follows.

8
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where By=0y/m, B=0y/n, t=1~8, i=l~m, j=1~n,

0 (i<c) 0 (j<d) 0.5(k =0, i) 0.5( =0, j)
we =10.5G =¢), uy =405(j =d), o0& =1 *=0,iy %=1 (=0,j)°
1 (i>c) 1 (j>d)

The solution X,,; of the simultaneous Eq. (4) is obtained as follows.
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where p=1, 2, -+, 8, i=1, 2, -=-, m, j=1, 2, -, n, Ape, Bjey Cpenr Y2 Appendix I1
In the Eq. (5), the quantity X,; at the main point (i,j) of the area [i, j] is related to the quantities
X0 and X,,, at the boundary dependent points of the area and the quantities Xy, X.; and X,y at the
inner dependent points of the area. With the spreading of the area [i, j] according to the regular
order as [1’ 1]’ [1’ 2], " [1a n]a [27 1]s [29 2], ) [2’ n]’ ) [m’ 1]’ [m9 2]’ T [’n) n], a main
point of smaller area becomes one of the inner dependent points of the following larger areas.
Whenever the quantity X,; at the main point (i j) is obtained by using the Eq. (5) in above
mentioned order, the quantities X,,, X,; and X, at the inner dependent points of the following
larger areas can be eliminated by substituting the obtained results into the corresponding terms of
the right side of Eq. (5). By repeating this process, the equation X,; at the main point is related to
only the quantities X, (=1, 3, 4, 6, 7, 8) and X, (s=2, 3,5, 6, 7, 8) which are six independent
quantities at the each boundary dependent points along the horizontal axis and the vertical axis in
Fig. 2 respectively. The result is as follows.
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The Eq. (6) gives the discrete solution of the fundamental differential Eq. (2) of plate bending
problem.

4. Integral constant and boundary condition of rectangular plate

The integral constants (Q)w, Modo 5 Whos (Qos M)a ***, (W)y being involved in the
discrete solution (6) are to be evaluated by the boundary conditions of a rectangular plate. The
combinations of the integral constants and the boundary conditions for some cases are shown in
Fig. 3~Fig. 6, in which the integral constants and the boundary conditions at the four corners are
shown in the boxes. The integral constants and the boundary conditions along the four edges are
given at the each equally-spaced discrete points. In this paper simply supported, fixed and free
edges are denoted by solid line ——, thick solid line and dotted line -------- .

5. Equivalent rectangular plate of irregular-shaped plate

Such irregular-shaped plates as plate with opening, circular plate, semi-circular plate, triangular

(Mzy  My=6=w=0  |0y=0xr=w=0 v G=Or=w=0 |O=6=w=0
QX M x—; 0 QX 0y=0

M, xy 6, Iy 0 Mxy 6:=0

0] W= 0 MX W=0

My @ Myo, My Mo @ My M, My

Fig. 3 Simply supported plate Fig. 4 Fixed plate
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Fig. 5 Plate with simple edges and fixed edges Fig. 6 Plate with simple edges and free edges

plate, skew plate, rthombic plate, trapezoidal plate or the other polygonal plate are quite different
from uniform rectangular plates, but they can be considered as a kind of rectangular plate by
translating them into the equivalent rectangular plate with non-uniform thickness.

An opening in an original irregular-shaped plate can be considered as an extremely thin part of
the equivalent rectangular plate, and a non-rectangular plate can be translated into the
circumscribed equivalent rectangular plate whose additional parts are extremely thin or thick
according to the boundary condition of the original plate.

The thickness of the actual part of original irregular-shaped plates is expressed by h,, and the
thickness of additional parts of each equivalent rectangular plates is expressed by & in this paper.
And the thickness at a point on the border line between the actual part and the additional part of
the equivalent rectangular plate is taken as (hy+h)/2.

A typical translation from an original irregular-shaped plate to its equivalent rectangular plate is
shown in Fig. 7, in which the inclined simply-supported edge of original plate is translated into
many point supports along the edge. The values of three reactions P, P, P at each point
support of the equivalent plate are determined by following three conditions, M,=0, 6,=0, w=0.

@ ------
"2
®-1°:
@ /"\\ .
/
= (@) -
\\_/I o
\ .
\\ .
@-2(D1 Z
®: Simple support ®-1: Point supports
’ ppe ®-2: Thin overhang
@-1: Opening )
@-2: Free edge @: Thin part
®: Fixed support ®-1: Thick part

®-2: Fixed support

Fig. 7 Irregular-shaped plate and its equivalent rectangular plate
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Fig. 8 Fﬁed circular plate, semi-circular plate and elliptic plate

The first condition means that the bending moment around the tangential axis of the line of point
supports is zero at each point support. The second condition means that the slope around the
normal axis of the line of point supports is zero, and the third condition means zero deflection at
point support.

6. Numerical works

The convergency and accuracy of numerical solutions have been investigated for some
irregular-shaped plates with uniform load ¢, or a concentrated load P such as circular plate, semi-
circular plate, triangular plates, rectangular plates with opening, skew plate, thombic plate and
trapezoidal plate.

The numerical solutions for these irregular-shaped plates have been obtained by using Richardson's
extrapolation formula for two case of combinations of divisional numbers m and n.

6.1. Circular plate, semi-circular plate and elliptic plate

Numerical solutions for deflections of a fixed circular plate, a semi-circular plate and elliptic
plate shown in Fig. 8 are given in Table 1 for two cases of external load of uniform load and
concentrated load. The numerical solutions were obtained by using Richardson's extrapolation
formula for the two case of divisional numbers m(=n) of 8 and 12 for the one fourth part or a half
part of each equivalent rectangular plate. Table 1 involves the theoretical values by Timoshenko
and Krieger (1959) or Saito et al. (1958), and it shows the good convergency and satisfiable
accuracy of the numerical solutions by present method.

6.2. Isosceles right triangular plates

Numerical solutions for deflections of the right triangular plates with three type of boundary
conditions shown in Fig. 9 are given in Table 2. The numerical solutions were obtained by using
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Table 1 Fixed circular plate, semi-circular plate and elliptic plate (v=0.3)

Cirucular plate

Semi-circular plate

Elliptic plate (b/a=0.5)

W w.Dy/goa’" x 10° w.Dy/goa’ x 10* w.Dy/goa’ % 10°
° Nu. Ref. m Nu. Ref m Nu. Ref.
8 12 Sol. [1] 8 12 Solu. [1] 8 12 Solu. [1]
4 796 873 935 1.06 116 1.24 116 124 130
6 754 858 9.42 1.05 115 123 115 123 1.29
8 732 854 952 1.04 114 122 115 123 129
10 720 852 959 977 104 114 122 126* 114 123 129 132
12 712 852 9.63 1.04 114 122 114 122 129
20 698 851 9.73 1.04 114 122 114 123 129
Circular plate Semi-circular plate Elliptic plate (b/a=0.5)
W wDy/Pa’x 10’ wDy/Pa’x 10°* wDy/Pa’* % 10’
0 Nu. Ref. m Nu. Ref. m Nu. Ref.
8 12 Solu. [1] 8 12 Solu. [1] 8 12 Solu. [2]
4 415 452 482 644 743 823 145 159 1.70
6 404 449 484 640 741 821 145 159 1.70
8 398 447 487 639 740 821 1.44 158 1.70
10 395 447 489 497 638 739 820 - 144 158 170 171
12 393 447 490 638 739 820 144 158 1.70
20 389 447 493 637 739 820 1.44 158 1.70

1.26*; deflection at neighboring point, which is maximum deflection of the plate
Ref. [1]: Timoshenko and Krieger (1959), Ref.[2]: Saito Shimazaki and Kimura (1958)

the two case of divisional numbers m (=n) of 8 and 12 for the whole part of the equivalent plate.
Table 2 involves the theoretical values by Fletcher (1959), and it also shows the good
convergency and satisfiable accuracy of the numerical solutions by present method.

al2 .
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al2 XWe e :
N e
N R
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\\ . \\ H
ho . ho . ho i
N . : N
Fixed diagonal = Simply supported  Free diagonal
agon

Fig. 9 Isosceles right triangular plates
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Table 2 Isosceles right triangular plates with fixed, simply supported or free diagonal edge and the other
simply supported two edges (v=0.3)

Fixed diagonal

Simply supported diagonal

Free diagonal

Wh wDy/qoa’ X 10" w.Dy/qoa’ x 10° wiDy/goa’ X 107
’ Nu.  Ref. h/h . Nu  Ref m Nu.
8 12 Solu. [3] 8 12 Solu.  [3] 8 12  Soluw
4 374 397 416 1/4 478 542 593 261 204 195
6 318 354 382 1/6 480 542 592 220 207 197
8 302 341 372 369 1/8 481 542 591 607 223 208 1.97
10 295 335 3.66 1/10 481 542 591 225 209 196
12 291 331 362 1712 481 542 591 227 209 195
Ref.[3]: Fletcher (1959)
Table 3 Simply supported square plate with square opening (v=0.3)
wiDy/qea’ % 10° wrDy/goa’ X 10° M,,/qoa’ % 10 M,/qea’ X 10°
h/hy  Nu. Ref.[4] Nu. Ref.[4] Nu Ref.[4] Nu. Ref.[4]
Solu. Map. FEM Solu. Map. FEM Solu. Map. FEM Solu. Map. FEM
1/4 3.21 2.29 2.22 2.75
1/6 3.27 2.33 2.23 2.81
1/8 329 314 323 234 228 234 224 223 222 282 - -
1710  3.29 234 224 2.83
1712 3.29 234 2.24 2.83

Ref.[4]: Iwahara (1980), Map.: Mapping function method
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Table 4 Fixed square plate with square opening (v=0)

wiDy/goa’ X 10* waDy/gea’ x 10°* M,/qa" % 10° ~ M,3/ga” X 10°

hihy  Nu. Ref.[4] Nu. Ref.[4] Nu. Ref.[4] Nu. Ref.[4]

Solu. Map. FEM Solu. Map. FEM Solu. Map. FEM Solu. Map. FEM
1/4 3.68 2.55 3.01 2.73
1/6 3.70 2.56 3.00 2.74
1/8 370 356 380 256 250 267 300 360 27 274 276 275
1/10  3.70 2.56 3.00 2.74
1712 3.70 2.56 3.00 2.74

Ref.[4]: Iwahara (1980), Map.: Mapping function method

6.3. Square plate with square opening

Numerical solutions for deflections and bending moments of rectangular plates with square
opening at the center and two type of boundary conditions shown in Fig. 10 are given in Table 3
and 4. The numerical solutions were obtained by using the two case of divisional numbers m (=n)
of 8 and 12 for the one fourth part of the equivalent plate. Tables 3 and 4 involve the theoretical

values by Iwahara (1980), and they show the good convergency and satisfiable accuracy of the
numerical solutions for deflections and bending moments by present method.

~
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N r ]
< = >
Fig. 11 Simple-free skew plate
Table 5 Simple-free skew plates (v=0.3)
' 0=75 6=60° 0=45"
Wi ch(,/qoa4 x 10° wCDO/qu4 x 10° ch(,/q(,a4 x 10°
0 Nu. Ref. m Nu. Ref. m Nu. Ref.
12 14 Solu. [1] 12 14  Solu. [1] 12 14 Solu. [1]
4 696 7.08 742 656 6.61 6.77 353 349 338
6 718 740 8.00 693 7.02 727 373 3.69 3.56
8 727 751 8.18 - 708 723 766 791 376 375 373 393
10 730 756 8.29 714 725 757 3.80 3.78 3.73
12 732 758 832 717 729 7.65 382 380 374

Ref.[1]: Timoshenko and Krieger (1959)
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6.4. Skew plate
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Numerical solutions for deflections of skew plates with two simply and freely supported
opposite sides shown in Fig. 11 are given in Table 5. The numerical solutions for three case of
aspect angles were obtained by using the two case of divisional numbers m (=n) of 12 and 14 for
the whole part of the equivalent plate. Table 5 involves the theoretical values by Timoshenko and
Krieger (1959), and it also shows the satisfiable convergency and accuracy of the numerical

solutions by present method.

6.5. Rhombic plate

Numerical solutions for deflections of fixed rhombic plates with three case of aspect angles
shown in Fig. 12 are given in Table 6. The numerical solutions were obtained by using the two
case of divisional numbers m (=n) of 8 and 12 for the one fourth part of the equivalent plate.

Table 6 Fixed rhombic plates (v=0.3)

6=45 6=60 6=75°
W w.Do/goa’ X 10° wDy/goa’ x 10° w.Dy/goa’ X 10

0 m Nu. Ref. m Nu. Ref. m Nu. Ref.
8 12 Solu. [5] 8 12 Solu. [5] 8 12 Solu. [5]

4 3.05 3.25 3.40 8.21 8.69 9.08 1.74 1.83 1.91

6 2.89 3.12 3.30 7.62 8.18 8.64 1.58 1.70 1.79
8 2.83 3.07 3.26 3.24 7.41 8.02 8.50 8.54 1.53 1.65 1.75 1.77

10 2.80 3.05 3.25 7.31 7.94 8.45 1.51 1.63 1.74

12 2.78 3.04 3.25 7.25 7.90 8.42 1.49 1.62 1.73

Ref.[5]: Ota, Hamada, Sagijima, Nishimura and Masui (1962)
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Table 7 Fixed triangular, trapezoidal and rectangular plates (v=0.3)

0=0.5; regular triangular plate

Wi wiDy/goa’ x 10 waDy/goa’ x 10°* wiDy/goa’ X 10*
’ m Nu.  Ref. m Nu.  Ref. m Nu.  Ref.
8 12 Solu. [6] 8 12 Solu. [6] 8 12 Solu. [6]
4 428 508 571 1.15 133 1.47 1.62 177 1.90
6 244 331 401 861 107 1.24 137 156 171
8 189 279 352 - 766 991 1.17 - 128 149 1.66 1.67
10 166 258 332 726 957 1.14 125 146 1.64
12 A55 248 322 05 940 113 123 145 1.63
a=0.25; symmetric trapezoidal plate
hih wiDy/goa’ X 10* waDy/goa’ < 10°* wiDy/gea’ X 10*
’ m Nu.  Ref. m Nu.  Ref. m Nu.  Ref.
8 12 Solu. 8 12 Solu. 8 12 Solu.
4 314 344 368 417 459 492 377 409 435
6 288 324 352 384 436 477 352 393 427
8 280 317 347 - 374 429 472 - 344 388 424 -
10 277 314 344 370 426 4.70 340 386 4.23
12 276 313 343 3.67 424 469 338 385 423
0a=0; rectangular plate
wiDy/goa’ x 10° waDy/gea’ x 10* wsDy/goa’ X 10
m Nu. Ref. m Nu. Ref. m Nu. Ref.

8 12 Solu. [7] 8 12 Solu. [7] 8 12 Solu. [7]

739 745 749 747 939 925 929 926 739 745 749 747
Ref.[6]: Conway (1962), Ref.[7]: Sakiyama and Matsuda (1983)

Table 6 involves the theoretical values by Ota et al. (1962), and it also shows the good
convergency and satisfiable accuracy of the numerical solutions by present method.

6.6. Trapezoidal plate and regular triangular plate

Numerical solutions for deflections of a fixed trapezoidal plates and a fixed regular triangular
plates as one of the special case of trapezoidal plate shown in Fig. 13 are given in Table 7 with a
fixed rectangular plate as the other special case of trapezoidal plate. The numerical solutions are
obtained by using the two case of divisional numbers m (=r) of 8 and 12 for the half part of the
equivalent plate. Table 7 involves the theoretical values by Conway (1962) or Sakiyama and

Matsuda (1983), and it shows the good convergency and satisfiable accuracy of the numerical
solutions by present method.

7. Conclusions

Under the concept that the irregular-shaped plates such as plate with opening, circular plate,
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semi-circular plate, elliptic plate, triangular plate, skew plate, rhombic plate, trapezoidal plate or
the other polygonal plates can be considered finally as a kind of rectangular plates with
nonuniform thickness, an approximate method was proposed for analyzing the bending problem of
various types of irregular-shaped plates by using the discrete general solution for the equivalent
rectangular plate with non-uniform thickness.

As a result of numerical works, it was shown that the numerical solutions by proposed method
had the good convergency and satisfiable accuracy for various types of irregular-shaped plates.

In this paper the results of numerical works were shown mainly for the case of uniform load,
because the main purpose of this paper was to investigate the propriety of the equivalent
rectangular plate. Naturally numerical solutions for the other cases of external loads such as
concentrated loads or non-uniform loads can be obtained similarly by proposed method.
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Appendix |

Fin=Fip3=F34=Fy=Fi15=F13=F158=1, Fpy=Fps=Fp3=Fy53=Fyss=1
Fiss=V, Foy=VU, Fyp=Fyy=—t, F3u=F3s5=—1, Fyp3=—-J, Fyp=—K
Fyp=1, Fag=—jK, Fage=p, other Fy,,Fy,,Fy, =0

I=u(1-vihyh), J=2u1+VWhyh), x=Q/10(E/G)hy/a)hy'h)

Appendix Il

A1=hr Ap2=0 Aps=%3=%2 Au=%s Aps=0, Ae=TutVls A=
Ay 1=%n» Bp1=0,B =1y, Byy=UY3 Byy=0, B,s=UY, B,s=UYs
B, =1(Vhhat+Yps) Bos=Ys Coun =M%3+Ku¥r)s Cpoum =HlprtKulps

Cosw =Jutpe Coar =IuYpar Cosu =IuVps Coet =— M%7 Com =—Ys
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Cosu =0, [ka]=[77pk]_1, Y1 =By 7712=ﬂﬂjj’ 7722=—l-lﬁij, Y23="D;> ?725=ﬂﬁjj
Ya=—tBj, Yu=uBj Y34=Bs> Yaa=—1; Bijs Ya6=Bi» 7’47=ﬂ".3jj, Yss=—1;; ﬁij
Ys6=VBi» Ys1=UB;j» '}763=—Jijﬁij’ ?766=I~l[3j,~,7’67=/3iis 771=—#K'ijﬂija Y76 =HB;j
Y5u=Bi> Y2=—K;Bj> Yr=B;j, Yss=B;;, other ¥, =0, ﬁij=ﬁiiﬂjj

Appendix lll

aq1i00 = Q1302 = @14i0i3 = @ 16i0i4 = 417i0i5 = A18i0i6 = 1, @15i0i3=V
A20jj1 = A230jj2 = A250jj3 = B 260jj4 = A270jj5 = A 280jj6 = 1, ayj;3=Vs Axp002=0

i i
ZﬁikApe [@hek0uv— Bhekju L1 — )] +2ﬂleP€ [@heotuv—Bheins L1 = 8;)]
k=0 =0

e +zi’ 2 Bit Bj1 C et Akt L1 — 84 615

k=0 1=0
where h = 1; 2, p=1,2,-.8, i=1,2,m, j=1,2,-,n, v=1,2,6 ’
u=01-,ith=1), 0,1,-,j(h=2)
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k=0 20

+zi‘, i BBt Cpen et (1 ‘5551,')

k=0 1=0

L
i J
~%r 2, 2 PuBupm
k=01=0
where f=1,2,3
'

8
Qi = )
e=1

N

8
4 fpijod =2< i J 3
e=1 +22ﬂikﬁjlcpek1qfeklcd(1—6ld61j)

k=0 1=0

i J
ZﬁikApe (9 fek0ca — 4 fekjca (1-8)] +ZﬁleP€ (9 e 0tca — 4 feirca(1 - 51,' )
k=0 =0

i J
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where

_ 0: not existing point support
¥ = | 1: existing point support

















