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Abstract. This paper presents a procedure to minimize the cost of materials of cable-stayed bridges
with composite box girder and concrete tower. Two sets of iterations are included in the proposed
procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The
second set of iteration performs the optimization process. The design is formulated as a general
mathematical problem with the cost of the bridge as the objective function and bending forces, shear
forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on
the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform
the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function
method is used in the optimization process. The limit states design method is used to determine the
load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity
is verified by several practical-sized designs.
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1. Introduction

Traditional methods for the design of cable-stayed bridges involve a trial-and-error procedure.
A set of cross-sectional properties is first assumed with an accepted geometric layout for the
given loads. Structural analysis is then carried out to obtain stresses and displacements. These
stresses and displacements are then compared with the allowable values given by the chosen
specifications. If the stresses and displacements satisfy the requirements of the specifications, the
assumed members may be adopted. Otherwise, the cross-sectional dimensions are modified and
the structural analysis is repeated until satisfactory results are reached. The above procedure is
tedious and uncertainties exist as to whether or not the final design is either optimal or economic.

Since the introduction of the optimization technique, a lot of research has been done on the
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application of optimization in engineering. Application of optimization techniques in engineering
makes it possible to design bridge structures, even complicated bridge structures such as cable-
stayed bridges, automatically by computer. Some papers have been published on the optimal
design of bridge structures. The dynamic programming method was applied to the optimization of
continuous bridges (Busek 1971). The general geometric programming method has been applied
to get the minimum weight for multispan plate girder bridges (Adeli and Chompooping 1988) and
to the optimal design of simply supported I-beams (Burns and Ramamurthy 1988, Azad 1981).
The feasible direction method was applied to the design of continuous highway bridges (Memari
et al. 1991). A multi-level algorithm was applied to optimal design of structural concrete bridge
systems (Cohn and Lounis 1994).

Research in the optimum design of cable-stayed bridges dates back two decades. Bhatti et al.
(1985) presented a preliminary optimum design method of cable-stayed bridges based on the
linearization algorithm which solves a quadratic programming problem to arrive at the optimum
solution. Gimsing (1983) investigated the rational cable arrangement of cable-stayed bridges from
the point of structural analysis. Nakamura and Wyatt (1988) studied the method to determine the
cable's prestresses based on linear programing. Ohkubo et al. (1992) proposed a two-stage
optimum design method for steel cable-stayed bridges to determine the optimum values of design
variables based on the convex and linear approximations concept. Cable-stayed bridges are treated
as elastic linear structures in all these studies.

This paper presents a method dealing with the cost-optimal design of cable-stayed bridges with
composite superstructures. The design procedure involves two main tasks: structural analysis and
optimization. The finite element method is used to perform the structural analysis and the
nonlinearity of a cable-stayed bridge is taken into consideration. The internal penalty function
algorithm for nonlinear programming is used in the optimization procedure. The load capacity of
a cable-stayed bridge is determined based on the limit states design method.

2. General consideration of model

A cable-stayed bridge is modeled as a two-dimensional structure (Fig. 1). The finite
element method is employed to perform the structural analysis. Cable stays are treated as truss
members having no resistance to compression. The deck girder and tower are treated as beam
elements.

One distinct characteristic of a cable-stayed bridge is its nonlinearity. The nonlinear behavior of
a cable-stayed bridge can be observed in the following three aspects: the nonlinear axial force-
deformation relationship for the inclined cable stays due to sag caused by their selfweight; the
nonlinear axial and bending force-deformation due to interaction of large axial force and bending
moment in the girder and tower; and the nonlinear behavior due to the change in geometry caused

Fig. 1 Bridge model
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by large displacements in the structure. Previous studies have shown that the stresses at control
sections of a cable-stayed bridge analyzed by nonlinear theory are about 8-15 percent larger than
those analyzed by linear theory (Lazar 1972, Rajaraman et al. 1980). Thus it becomes necessary
to take into consideration the effect of nonlinearities when performing the analysis of a cable-
stayed bridge.

It is convenient and accurate to account for the nonlinearity of a cable by modelling it as a
straight chord element with an equivalent modulus of elasticity that effectively reflects the
behavior of a sagged cable. The concept of the equivalent modulus of elasticity was first
introduced by Ernst (1965) and has been universally adopted. The equivalent modulus for a cable
can be expressed as:

M

where E.=equivalent modulus of cable stay; w=uniformly distributed cable weight; E=modulus of
elasticity of cable stay; A=cross-sectional area of cable stay, /=horizontal projected length of cable;
T=cable tensile force due to load. The stiffness matrix for cable stays can therefore be written as:
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where L=length of cable stay

The interaction of axial and flexural effects yields nonlinear load-deformation relationships.
Instead of using standard linear structural analysis methods, the nonlinearity can be taken into
consideration by introducing the concept of stability functions (Harrison 1973, Weaver and Gere
1990). The stiffness matrix of the element shown in Fig. 2 can then be expressed as:

d
5 _—7

M;;

Fig. 2 Beam element
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where A=cross-sectional area of deck girder or tower, I=moment of inertia of element, L=length of
element. E=modulus of elasticity. The stability functions can be expressed in terms of the member
axial force N (N is the average of N; and N)) and end moments M; and M;, as shown in Fig. 2, as
follows:

For a compressive axial force

s1-- 1 e WLPSOGL) 5, (LYol (4ab)
+
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where y has the same expression as in Eq. (5) and

R: =2—-2cosh (UL )+ (uL ) sink (UL ) 9
Rim =(uL )(Mi;z-"thz)[COth (UL )+ (UL ) cosech*(uL )] -2(M;; +Mji)2
+M;; M ; [1+ (UL ) coth (UL )][2(uL ) cosech (UL )] (10)

In linear structural analysis, it is assumed that the joint displacements of the structure under the
design loads are small with respect to the original joint coordinates. Therefore, the geometric
changes in the structure can be ignored and the stiffness of the structure in the deformed shape
can be assumed to equal the stiffness of the undeformed structure. However, in cable-stayed
bridges, very large displacements can occur under normal design loads and the effect of geometry
changes in the structure could be significant. Therefore, the stiffness of the bridge in the deformed
shape should be computed from the new geometry of the structure.

There are several techniques available for solving the nonlinear structures. These methods can
be classified into:

(1) incremental or stepwise procedure,

(2) iteration of the Newton-Raphson procedure and

(3) mixed procedures.

The Newton-Raphson iteration procedure is used in this study since it gives accurate results and
converges fast. In the first iteration, the problem is solved for the initial geometry and loadings.
The deformations obtained are then used to update the stiffness matrix of the structure. The
unbalance between the external loads and the internal forces is applied to the structure and solved
for the revised stiffness of the structure. The procedure is repeated until the unbalanced loads
reach a desired tolerance. The problem usually converges in 3 or 4 iterations.

Design loading, their combinations and applications, should be consistent with the appropriate
specifications such as AASHTO, AREA or CAN/CSA Design of Highway Bridges. AASHTO
specifications are applicable only to spans up to 500 feet (150 m), AREA specifications are
applicable to spans of 400 feet and shorter. The Canadian Code, Design of Highway Bridges, is
applicable only to spans up to 100m. For spans in excess of 500 feet, reductions may be used as
listed in Table 1 (Ivy et al. 1954).

It is assumed that the steel box girder is first built segment after segment and suspended to the
successive cables; then the concrete slab (precast or in-situ concrete) be put on segment after
segment. Therefore the composite superstructure resists both the dead load and superimposed dead
load together.

Table 1 Recommended live load for long bridges

Loaded length ft (m) Uniform lane live Concentrated live load kip (kN)
load k/ft (kN/m)
Minimum (1) Maximum (2) 3) For moment (4) For shear (5)
0 600 (182.88) 640 (9.4) 18 (80.06) 26 (115.65)
600 (182.88) 800 (243.84) 640 (9.4) © 9 (40.03) 13 (57.82)
800 (243.84) 1,000 (304.80) 640 (9.4) 0 0
1,000 (304.80) 1,200 (365.76) 600 (8.8) 0 0

1,200 (365.76) o 560 (8.2) 0 0
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3. Optimization formulation

The goal of optimization is to select a set of design variables in such a way that the final
design will produce the minimum cost or minimum weight. Here we consider a problem in which
the geometry of the bridge structure is first determined according to natural conditions such as
geology, clearance and traffic flow. We only deal with the selection of the cross-sectional
dimensions of the members. Mathematically, optimization of the structure can be stated as:

Minimize F(x) (11)
Subjected to  g;(x)<0.0 j=1,-,m (12)
and %20 i=1,--,n (13)

where x={x;} is the vector of design variables. F(x) is the objective function which describes the
cost, weight or volume of the system, g{x) is the constraints imposed on the structure by the
chosen specifications. Usually g/(x) is an implicit nonlinear function of design variables, therefore,
Egs. (11)-(13) represent a nonlinear optimization problem.

In the design of a cable-stayed bridge with the composite box girder, the width of the bridge
roadway can be pre-decided according to the traffic flow, therefore, can be assumed as constant.
The possible design variables which can be chosen are the thickness of the concrete deck; the
width and thickness of the flanges and webs of the steel box girder; the width, thickness and
spacing of longitudinal stiffeners and transverse stiffeners; the area of each cable stay and the
dimensions of the pylons. Since in practice the girder cross-section of a cable-stayed bridge is
usually prismatic, a prismatic section is assumed in this study. Figs. 3-4 show the chosen variables.

The objective of this study is to find the minimum cost of a bridge. The cost function should
only reflect the amount and cost of the superstructure. The study includes the cost of the concrete,
the steel box girder, the longitudinal and transverse stiffeners (ribs) for flanges and webs, the
cable stays and the formworks. It should be noted that the floor system and shear studs can be
dealt with separately in the design. For simplification, they are not involved in the cost function.
The objective function may be expressed as:

F =AsL psPs +V(;Pc +2A01LclpsPCl +AlsLllesp3Pls
+Ats1Ltsthslp5Pts1+Ats2LLSZNts2pSPts2+A’erSP’e +AfPf (14)

where A, is the area of steel. L is the length of the bridge. P, is the unit price of steel. V, is the
volume of concrete including the concrete slab and the concrete tower and P, is the unit price of
concrete. A, L, and P, are, respectively, the area, length and the unit price of the cable stay. A,
Ly, N, and P, are the area, length, number and the unit price of the longitudinal stiffeners for the
flanges. A, Ly, Ny and P, are the area, length, number and the unit price of transverse
stiffeners for flanges. A,,, L., N, and Py, are the area, length, number and the unit price of the
transverse stiffeners for the web. A,, and H are the reinforcement area and the height of the tower.
P, is the unit price of reinforcement. A; and P; are the concrete surface area and the average unit
price of formwork. p, and p, are, respectively, the density of steel and concrete.

As mentioned before, there are various minimization techniques which can be used to solve the
stated standard optimization problem. A simple, yet powerful, method for structural optimization
is the internal penalty function algorithm which is used here to solve the above optimization
problem. The internal penalty function method has been successfully applied to the optimum
design of engineering structures by researchers (Kavlie and Moe 1971, Metwally Abo-Hamd 1984,
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x7, xg and xg = width, thickness and spacing of longitudinal stiffeners
x10 x1; and x;, = width, thickness and spacing of transverse stiffeners for flanges

X3 x4 and x; 5 = width, thickness and spacing of transverse stiffeners for webs
Fig. 3 Design variables of composite girder

Abendroth and Salmon 1987). Fiacco and McCormic (1968) have made a great contribution to the
development of the penalty function technique. The internal penalty function method is considered
to be robust and well suited for the optimization of statically indeterminate structures (Gallagher
and Zienkiewicz 1973, Kavlie and Moe 1971). One favorite fact is that although one feasible
point is needed in order to start the internal penalty method, by means of the extended penalty-
function technique or the internal penalty function method itself, it is possible to start the internal
function algorithm from an infeasible point (Kowalik and Osborne 1968). This may be quite an
important feature since for some complicated structures a feasible point is difficult to get at the
beginning of the design.

The basic idea of the penalty function technique is that the constrained problem is transferred
into an unconstrained one by adding a penalty term which takes care of the effect of the
constraints to the objective function. There are several different forms of internal penalty functions
and one of them used in this study has the following form (Carroll 1961):

PG n)=F@)-n 3 —
j=1 &j

(15)
where r, is the response factor which should approach zero as the penalty function converges to
the minimum value. It is of great importance to properly chose the initial response factor r, for
the efficiency of the internal penalty function algorithm. The strategy is to chose the initial
response factor r; in such a way that the penalty term adds a certain percentage to the objective
function at the starting point, that is:
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where p is the selected percentage and p=50 is used in this study. The response factor r, is
reduced in such a way that the current response factor is 1/20 of the previous one.

If the initial design is not feasible, the method proposed by Fox (1971) is used to find a
feasible point. That is, suppose the k" constraint is violated under the initial design x°, then a
temporary objective function is defined and minimized as follows:

minimize &) 17
subjected to gi(x)<0 j=1,,m (18)
and 8 (x)-g;x%<0 (19)

The new point x obtained in this way will obviously satisfy the constraints. If more than one
constraint is violated, the process is repeated until a feasible design point is obtained.

Once the constrained optimization problem is transferred into an unconstrained one, the direct
search method (Powell 1964) or the Davidon-Fletcher-Powell (Fletcher and Powell 1963) method
can be employed to solve it. The Powell method is called a direct method because it does not
calculate the derivatives of the functions. The Davidon-Fletcher-Powell method, which is
sometimes referred to as the variable metric method or quasi-Newton-Raphson method, is a
modification of the steepest descent method and involves obtaining a matrix that approximates the
inverse of the matrix of partial second derivatives of the function being minimized. Powell's
method is used here to take advantage of the fact that the derivatives of the functions do not need
to be calculated.
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4. Design constraints

All design criteria have to be converted into constraints in order to perform optimum design.
Except for those mentioned, all constraints are derived based on the design criteria of the
Canadian standard: Design of Highway Bridges (Design 1988).

Cables are treated as truss elements that can resist only tension forces. Only axial tensile
constraints are imposed. The allowable design load should be one-third of the ultimate breaking
strength of the strand. Where fatigue effects may occur, the allowable load of the cable may be
reduced to one-fifth of its ultimate strength (Task Committee 1977, Troitsky 1988). The material
and cross-sectional dimensions of the cables should satisfy the equation:

T- % T, <00 (20)

where T=factored tensile force in the cable. T,=allowable design load.

The cable stay's ultimate strength depends on its diameter. Strand and rope are two types of
stays used in practice. The ultimate strengths of different types of cable stays can be obtained by
interpolating. For different diameters, the following formulas can be derived:

For strand:

T, =73.56d - 826.88 (21)
For rope:
T, =56.44d —491.20 (22)

where d=diameter of the cable stay.

There exists a big positive moment at the center of the bridge and big negative moments at the
sections over the intermediate supports and cable anchor places. During the optimization
process, the locations of the biggest positive moment and the biggest negative moment may be
changed as the design variables are changed. Therefore, the biggest positive and negative
moment should be determined in each iteration. These moments must not exceed their
corresponding limits. The moment resistance constraint can take the form:

M -M, <00 (23)

where M is the factored moment due to loads. M, is the factored moment resistance of the
composite section.

For non-compact sections, in the positive moment region, where the depth of the compression
portion of the web of the steel in the composite section does not exceed 685xyNF,, the factored
moment resistance of the composite section can be calculated using a full plastic stress
distribution. The position of the neutral axis of the section, measured from the top of the section,
can be calculated as:

_ QAF - ASfy
=T 0.850. fbe ; @4

if a,<x,, The moment resistance can be calculated as:
M, =Cc e +Cses (25)
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where ¢=0.95, ¢.=0.70, and ¢,=0.85 are capacity reduction factors for structural steel, concrete and
reinforcement, respectively. F,, f., and f,' are specified yield strengths for steel, concrete, and
reinforcement, respectively. A, is the area of steel, A, is the area of reinforcement steel within the
effective width of the concrete slab, and b, is the effective width of the concrete slab. C, and e,
are the factored compressive resistance and the lever arm of concrete, C, and e, are the factored
compressive resistanceand the lever arm of reinforcing steel.

If a, > x,, we have

C’'=0.5(¢AsFy —Cs —C.) (26)
If C'<¢A F,=¢xx,F,, then the neutral axis lies in the flange of the steel section. Therefore,
C
ax = +x 27
fooFy

If C'> A F,=¢xx,F,, then the neutral axis stays in the web of the steel section. Therefore, the
location of the neutral axis can be shown as:

_C =gy

ax —— +x1+X3 (28)

4goc sFy

The moment resistance can be obtained as:
M, =Cce. +Cses +C'e’ (29)

where C' and e’ are the factored compressive resistance and the lever arm of the compression
portion of steel.

When the compressive portion of the steel web exceeds 685x;/NF, but the steel section
satisfies the limit ratio of width to thickness, the factored moment resistance of the composite
section is calculated by assuming a linear stress distribution in the steel section at first yielding of
the steel section and a plastic stress distribution in the concrete slab. The following constraints
should also be applied:

My +M,, + M,
Sa, Sn

—¢F, <0.0 (30)

where M,, M., and M, are factored moments due to dead load, superimposed dead load and live
load, respectively. S, and S,, are the composite section modulus with elastic modulus ratio » and
3n, respectively.

In the negative moment region, the contribution of concrete to the moment resistance M, is
neglected, therefore,

M, = ¢SF, (1)

where S=section modulus of the steel box girder.
The maximum deflection of the bridge deck under the live load should satisfy the deflection
criterion suggested by AASHTO. The constraint imposed on deflection can be expressed as:

% ~1.0<0.0 (32)

where A, is the calculated maximum deflection due to live load. L/800 is the allowable
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deflection prescribed by AASHTO.

In addition to the constraints discussed above, constraints converted from the design criteria
such as fatigue, interaction of compression and moment, shear force, and buckling should be
imposed. Similar constraints should be imposed on the tower as well.

5. Design algorithm and application

Based on the foregoing method, a computer program has been developed which integrates the
nonlinear structural analysis of a cable-stayed bridge with the nonlinear optimization technique.
The overall flowchart of the program is shown in Fig. 5. An initial design is first estimated to
start the program and the structural analysis is performed. If the initial design is feasible, the
optimization procedure is then commenced. If the initial design is not feasible, one feasible design
point is then determined by the above mentioned method. The procedure is repeated until the

Initial design
X1

=I Structural analysis‘
Is initial design™~No
feasible ?
0

k=1,2,..

reate a feasible
esign
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Optimize penalty function
for r,
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Fre1 < r,,/20

Objective function
convergence 7
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Fig. 5 Overall flowchart
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Table 2 Optimum results

Design Lower bound Upper bound Initial design Optimal design
variables (m) (m) (m) (m)
X 0.160 0.260 0.200 0.1600
X 1.000 7.500 1.500 1.0000
X 0.008 0.060 0.040 0.0317
X 0.800 5.000 2.500 1.9261
Xs 0.006 0.020 0.008 0.0087
X 0.008 0.080 0.022 0.0171
x; 0.020 0.400 0.180 0.1482
Xg 0.006 0.040 0.020 0.0149
X, 0.200 1.000 0.300 0.3999
X1 0.020 0.400 0.210 0.1129
X1y 0.006 0.040 0.022 0.0114
Xi 0.500 5.000 1.000 1.5998
X3 0.020 0.400 0.100 0.0468
Xi4 0.006 0.040 0.012 0.0091
Xis 0.500 5.000 1.000 3.8521
Xi6 1.500 6.000 3.500 3.6154
X1y 1.500 6.000 2.500 2.7964
Xig 0.000 (mm’) - 150000 (mm’) 102300 (mm’)
X1 1000 (mm’) 1000000 (mm°) 30000 (mm’) 9723.581 (mm)
Xz 1000 (mm’) 1000000 (mm’) 30000 (mm?) 8762.250 (mm’)
X 1000 (mm’) 1000000 (mm’) 30000 (mm’) 11624.84 (mm’)
X 1000 (mm’) 1000000 (mm’) 30000 (mm’) 12983.38 (mm’)
Xo 1000 (mm) 1000000 (mm’) 30000 (mm’) 3282.093 (mm’)
Yo 1000 (mm’) 1000000 (mm’) 30000 (mm’) 3312.603 (mm’)
Xs 1000 (mm) 1000000 (mm’) 30000 (mm’) 3259.472 (mm’)
Xog 1000 (mm’) 1000000 (mm’) 30000 (mm’) 6105.155 (mm
Xy 1000 (mm’) 1000000 (mm’) 30000 (mm’) 13927.420 (mm
Xog 1000 (mm’) 1000000 (mm’) 30000 (mm’) 18893.420 (mm’)
Xz9 1000 (mm’) 1000000 (mm’) 30000 (mm’) 16632.800 (mm’)
" X0 1000 (mm°) 1000000 (mm’) 30000 (mm’) 2742.956 (mm’)
X34 1000 (mm’) 1000000 (mm’) 30000 (mm’) 3381.941 (mm’)
X3 1000 (mm’) 1000000 (mm’) 30000 (mm’) 8761.671 (mm’)
X3 1000 (mm’) 1000000 (mm’) 30000 (mm)) 9158.220 (mm))
X 1000 (mm’) 1000000 (mm’) - 30000 (mm’) 2873.630 (mm))
X3s 1000 (mm’) 1000000 (mm’) 30000 (mm?) 3096.786 (mm’)
X3 1000 (mm’) 1000000 (mm’) 30000 (mm’) 3641.061 (mm’)
X3 1000 (mm’) 1000000 (mm’) 30000 (mm)) 3057.19 (mm>)
X3¢ 1000 (mm’) 1000000 (mm’) 30000 (mm’) 3053.26 (mm’)
COST (3) - - 24,817,716 8,290,233

optimum design is achieved. All the sectional properties and the resistance capacities of a cable-
stayed bridge are obtained by the program.

At each iteration of the optimization, the design variables are modified slightly. Consequently,
the sectional properties of the bridge are changed. Theoretically, any modification in sectional
properties will cause some changes in the design forces for a statically indeterminate structure.
This means that a detailed finite-element structural analysis would be needed for each iteration.
Some approximate concepts have been developed in order to reduce the number of structural
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analyses (Schmit and Farshi 1974). However, calculations indicate that small change in sectional
properties does not result in large variations in the maximum moments, shears and axial forces in
cable-stayed bridges. In other words, the critical section forces are not too sensitive to small
changes in design variables. Therefore, instead of performing the time-consuming structural
nonlinear analysis during each iteration, the cable-stayed bridge is analyzed only when the design
variables have been changed by a relatively large amount from the previous structural analysis.
The number of structural analyses can be reduced significantly in this way.

In order to test the validity and effectiveness of the algorithm, several practical-sized cable-
stayed bridges with composite box girders have been designed and the optimum solutions are
obtained using the developed program.

One of these designs is shown in Fig. 4. A cable-stayed bridge with side-spans of 130 m and a
center span of 300 m is designed. Parameters used in the design are as follows: steel elastic
modulus E=200 GPa, specified steel minimum yield point F,=400 MPa, concrete elastic modulus
E.=27.4 GPa, specified concrete compressive strength f.'=30 MPa. The unit prices are as follows:
P.=110 $/m’, P=2.1 $/kg, P,=10 $/kg, P.=1.0 $/kg, P,=P.,=P.,=6.6 $/kg. P=27 $/m’.

The dead load applied to the structure includes the material self-weight, an estimated floor
system of 10.5 kN/m, and an estimated superimposed dead load of 33.71 kN/m from asphalt
paving, curb, paraphet and railing.

A uniformly distributed load of 9.4 kN/m is specified as live loading. Therefore for 4 lanes,
the live load applied to the bridge is 4 X 9.4 kN/m=37.6 kN/m.

The variables' lower bounds, upper bounds, initial design, along with their optimum results are
listed in Table 2. The comparison of the initial design with the optimum design indicates that the
optimum design is much cheaper than the initial design. The optimum design saves as much as
67% in price. The cost reduction history of the objective function with response factor 7, is shown
in Fig. 6. It can be seen that most of the cost reduction takes place in 6 response surfaces. Fig. 7

Cost (x$10%)
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20.0 ¢
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Fig. 6 Cost reduction history
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Fig. 7 Moment diagram of composite girder under dead load, superimposed dead load and live load

shows the girder's moment diagram before and after optimization. It is obvious that after
optimization the girder's moment become more uniform along the bridge.

6. Conclusions

A procedure for the optimum design of cable-stayed bridge with composite box girder and
concrete towers has been presented. The structural analysis and the optimization technique are
integrated together. The finite element method is employed to perform the structural analysis and
the nonlinearities of the cable-stayed bridges are taken into consideration. The problem is
formulated as a general mathematical algorithm which uses the cost of a bridge as the objective
function with bending forces, shear forces, fatigue, buckling and deflection as constraints. The
design is based on the limit states design method. The design constraints are transferred from the
design criteria of Canadian specifications. The optimization method used is the internal penalty
function method.

The developed program has been applied to the design of several practice-sized cable-stayed
bridges and its validity has been verified. It may be concluded that the proposed method provides
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an effective and efficient way of designing of cable-stayed bridges with composite box girders,
offering saving in cost and design time. The proposed method is general and can be applied to the
design of other types of cable-stayed bridges with minimal modification.
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Notations

The following symbols are used in this paper:

= area of cross section of member

= effective length of concrete slab

= compressive resistance of steel

= Euler buckling force

modulus of elasticity

lever arm

objective function

ultimate strength of cables
specified minimum yield point of steel
inequality constraint

= member stiffness matrix

= length of member

= horizontal projected length of cable
= axial compression force in girder and tower, or number of stiffeners
= moment

= unit price

= response factor

= section modulus

= cable tensile force

= shear force

= uniformly distributed cable weight
= material density

= deflection

= resistance factor

LY

=

MMM mAQS >

~

DTV I INLY R E N

Subscripts

c = concrete
cl = cable

dd = dead load
eq = equivalent
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= factor

= longitudinal stiffener

live load

member

elastic modulus ratio of steel and concrete
reinforcement

resistance

steel

superimposed dead load

transverse stiffener
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