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Elasticity solution and free vibrations analysis of
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Abstract. Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite
length, using three-dimensional elasticity equations are studied. The shell is simply supported at both
ends. The highly coupled partial differential equations are reduced to ordinary differential equations
(ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For
cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite
element method, In this solution, the continuity conditions between any two layer is satisfied. It is
found that the difference between elasticity solution (ES) and higher order shear deformation theory
(HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to
the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane
stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't
continuous across the interface. For free vibration analysis, through dividing each layer into thin
laminas, the variable coefficients in ODE become constants and the resulting equations can be solved
exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their
antisymmetric counterpart. Also the results are in good agreement with similar results found in
literatures.

Key words: elasticity solution; laminated; orthotropic; free vibrations; dynamic loading; cylindrical
shell.

1. Introduction

Shell structures are usually analyzed by employing approximate two-dimensional theories
based on either the classical Kirchhoff-Love hypothesis of nondeformable normals, (CST) or
refinements to it to include the effect of transverse shear deformation and normal stretch.
However, to asses the validity of these approximate theories, rigorous solutions based on the
three-dimensional theory of elasticity should be obtained for some shell problems which are
amenable to such analysis. Such benchmark elasticity solutions are very valueable, especially
for laminated composite structures, wherein the inherent anisotropy and inhomogeneity lead to
considerable warping of the normal to the middle surface of the shell, and to abrupt variations
of the stressess at the interfaces of the laminate (Bhaskar, Vardan 1993). Coupled with this,
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there has been a growing interest in three-dimensional solutions for laminates, and a number
of simple test cases have been analyzed, using the elasticity approach. Although such
benchmark results for laminated composite plates have been available for about two decades
now (Pagano 1969, 1972), three-dimensional solutions of laminated fiber-reinforced shells are
of more recent origin (Chanrashekhara and Kumar 1993, Zhou and Yang 1995).

A simple solution have been presented for cross-ply laminated shell subjected to axisymmetric
loading, by assuming that the ratio of thickness to radius is small, and hence can be neglected
with respect to unity (Li and Wang 1986). This assumption makes it possible to convert
governing differential equations with variable coefficients to the ones with constant coefficients.

Based on the aforementioned approximate elasticity approach, the free vibration problem for
homogeneous, isotropic closed cylinders and open panels of finite length with simply supported
boundary conditions was obtained (Soldatos and Hadjigeorgiou 1990). Extensive work was done
on the torsional vibrations of orthotropic closed cylinders and good agreement between
approximate results and exact elasticity solution was observed (Soldatos 1991). A similar
approach has been used to study the dynamic response of a doubly curved laminated shell
(Bhimaraddi 1991). Using the complete equations of elasticity, the weak form of the equations of
motion for laminated anisotropic cylindrical shells were solved, using the Ritz method (Heyliger
and Jilani 1993). A solution for the axisymmetric vibration problems of cross-ply laminated
closed cylinder was also obtained (Hawkes and Soldatos 1992). The solution of the problem is
achieved, using a method of successive approximation. A set of linear three-dimensional
frequency equations that describes the vibratory characteristics of elastic solid cylinders of
different supports was derived. From the displacement-based energy expression, the variational form
of the three-dimensional energy functional was minimized to yield the linear eigenvalue equation.
Frequency solutions for elastic solid cylinders of different length and end support conditions were
determined (Liew and Hung 1995).

Recently the laminated orthotropic cylindrical shell under blast and patch loads, using
elasticity approach have been considered (Shakeri and Yas 1996). The solution is achieved by
analytical and finite element solutions. Also three-dimensional axisymmetric vibrations of
orthotropic and cross-ply laminated hemispherical shells have been studied (Shakeri and Yas
1995). The solution is obtained by using power series and successive approximation method.

In this paper three-dimensional dynamic response of axisymmetric arbitrary laminated
cylindrical shells of finite lengths are studied, and the results are compared with other suitable
results found in the literatures.

2. The problem formulation

Consider a laminated composite cylinder made of M perfectly bonded homogeneos anisotropic
layers whose principal axes coincide with three orthogonal coordinates, 7, 6 and x as shown in Fig.
1. The r, 6 and x represent the radial, circumferential and axial coordinates respectively. Each
layer of composite has one plane of elastic symmetry perpendicular to the thickness direction. The
material axes of any layer are not necessarily aligned with the 8 and x directions, so that the shell
conforms to what is generally designated as a laminated anisotropic shell. The constitutive
equations of each layer in which 13 elastic constants are involved are stated as
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Fig. 1 Coordinates system and geometry of cylindrical shells
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The governing equations of three-dimensional boundary value problem are as follows

ao'x aTxO aTnc T_rx azux
x 16 or =P o
0Tp, N 00, 0T, 21',9 _Ju?0
ox roo or FoP or2
aTxr aTOr ao-r O _GG _ au 2 (2)

ox * roé or r P ot2

Strain-displacement relations are expressed as

_ our _ ur aue _ Oux
er—? €= rae &= ox
- ub + aue + aur 8ux aur - a_ aux (3)

Fo=m Tt 5 Y e T Tae BT o T o6

Substituting Egs. (1) and (3) into Eq. (2), the governing equations in terms of displacement for

each layer of cylindrical shell under axisymmetric load become
aur k aur a Ur aug

C% 32+C3 T +C% 32 -C%, +(C -C% 3
du,
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The simply supported boundary conditions are taken as
O-x=ur=0 at X=O,L (5)

For a laminate consisting of M laminas, the continuity conditions to be enforced at any arbitrary
interior kth interface can be written as

(O ) = (0 D (Tr e = (Ter D (To )k = (Tor Dt
(ur)e = (Ur e (Uek = W ohn (U ) = (x Y

where the suffix k£ and k+1 represents the corresponding stresses and displacements at the kth and
(k+1)th laminas. The above formulations are used to analyse a multilayered cylindrical shell as
well as the free vibrations of the shell.

3. Part I-Deformation and stress analysis of the shell

The solution which satisfies the boundary conditions (5) can be taken as
Uy = 2;;1 sin(Pmx) ur(r, t)
Ug= 2;;1 CoS(Pux) uyr,t)

mm

U = 2;;1 CoS(Pmx) ux(r,t)  where Pn= A @)
The boundary conditions on the inner and outer surfaces of the shell are taken as
or=F(x,t) Tor =T,4=0 At the inner surface

Cr =Twr =T,4=0 At the outer surface ®)

The dynamic load is uniform along the axial direction and is presented by a Fourier series with
respect to the x axis as

Fx,t)=%"_ {—sm(me)iI F() ()]

Substituting Eqgs. (7) into (4) yields

C% (?)urz +C4% aur CksPAu, - C%, = —(Cas‘c —C%) Pn Eri
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The Galerkin method is used to obtain the finite element model of shell. A Kantrovich type of
approximation for space and time domains is employed and the space domain is approx1mated by
linear shape functions. Selection of linear shape functions is based on the prior experience of the
authors with Galerkin method (Eslami, Alizadeh 1990, Eslami, Shakeri, Yas 1994).

Considering linear shape functions for the three field variables u,, u, and u, as

ur =<N;>{Ur}

ug=<N>{Ug}

ur = <N >{U:} (11)
and applying the formal Galerkin method to the governing Egs. (10), results into the following
dynamic finite element equilibrium equation for each layer

[M]{X } + [K 14X } = {0} (12)

The elements of mass and stiffness matrices are given in appendix A. For nodes which are
located at any arbitrary interior kth and (k+1)th interfaces as Fig. 2, the continuity are written as

Uk Uk +1 OJC O.k+1

rkd+1 rkl+1
k k+1 +1
U - U61d+1 Tk fkekl+1
k+1 e £51
- ka]+1 T:rkl - @'QHH (13)

Deriving Eqgs. (13) in terms of dlsplacements and expressing the derivatives in backward and
forward finite difference for kth and (k+1)th layers respectively, one can obtain

U¥ Uk, - Uk
Chs (—PnUly) + Cly =1L + Cly == = ChePn Uty = CHi (- Pn Uity
Rk he
Uk+1 Uk+1 Uk+1
+C§+1 rkl+1 + Ck+1 rid +2 rkl+1 Ck+1 m(]]g;;}"-1
k+1 he
U% Uk —Ukiq_ Uk, - Uk, _
C§4— 9k1+ OKI KT -1 +C§4 xkl ku1+PmUrkk1

R K he he
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Fig. 2 Nomenclature of a subdivided cylinder
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Ui, Ugy and U,y are obtained from the above algebraic equations in terms of displacement values
of neighbouring nodes as
Uks = Uity =AUk +BUK, + CUY%q_, + DU, + EUY,, + FUKS,
Uty =Ult, =AU, +BUY, + CU%, +D'Ukt, +EU%_ +FUY,
Uk, = Ukl =A"U%_ +B'UKL, + C'U% +D'U%,, +E'Uky, +F UYL, (15)
The coefficients of A --- A, -~ A" --- F are constant and are given in Appendix.

The dynamic finite element equilibrium equations for two neighbouring at interior kth and (k+1)th
interfaces become

M {X}, + K] {X 1 = {0} (162)
M {X hert + [K ]eaadX b = {0} (16b)

where {x}/={x}51={Un-1» Unsz, Usar, Usszs Unisr1s U} The elements of mass and stiffness
matrices are also given in Appendix.

Applying traction conditions (8) and expressing the derivatives in backward and forward finite
differences for last and first elements respectively, a system of algebraic equations are obtained
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From the above algebraic equations Uy, Uay, Uan, Ui, Ua, Uy are obtained in terms of the
neighbouring nodes values. Therefore the dynamic equilibrium equations for the last and first
elements become

[M V14X hagrs + [K Dr-1{X 1 = {0} (18a)
[M]{X} + K1 {X } = {F ()} (18b)
where {xH ={U,2 Ug, U2} {x 1= {Unsr-1» U1 Unr 1}
By assembling Egs. (12), (16a, b) and (18a, b) the general dynamic finite element equilibrium
equations are obtained. ‘
Once the finite element equilibrium equation is established, different numerical method can be

employed to solve them in space and time domains. The Newmark direct integration method with ,
suitable time step is used and the equilibrium equation is solved.

4. Part lI-Free vibrations analysis of shell

To study the free vibration of the shell, the inner and outer surfaces are taken to be traction free.
Thus

G =T,9=Tr =0 (19)

The coefficients of the Eq. (4) are functions of variable  which makes the solution formidable.
To circumvent this difficulty, we make use of the following change of variable (Jing and Tzeng
1993)

1 _ 1 -
=520

1 1
-2 (1-
; Rk( ) ;
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where m=—0-1 |ne | <1

Ry

Eq. (4) in terms of the new variable become

2
Ck aur +C aur +C5 kzaur —C’ézur +Rk (C§6— C26 %
ong¢ * o, o »
2
+(C4 +C 5) ]"'(C Ct) aux +(Cls 5) aux =kak2 aa:tz'
au aur aZUQ a
Re| (2Cs +Cl) S+ (Chs +C%) +C3 +Cl 5, ~ Cla
kl: 45 +C5% ® TR 0, “ on? I e
du, 0%uy ol i p2 QU _ 2 Pty
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R (C, 4 b 5) ou, +(C3+C 5) aur +Ck, aue CkGsz ue
M ong
u du ou Pu
kp2 Ol id T |=pfR2 —X 20
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The solution to Eq. (20) which identically satisfies the boundary conditions on the two ends are
considered as

uk(x, n, t)= zm sinPmx Ar(n) e
ub(x,n,t)= zm cosPnx A (n)eie
ub(c,1M,1)=Y  cosPnx Ax(1)eie (21)

The substitution of Eq. (21) into (20) yields a system of homogeneous ordinary differential
equations, which the solution to those are

Ar (M) =uiern

Adm)=ugeh

Ax(M) = usen (22)

Where u,’, u, and u,” are the unknown coefficients. Upon inserting solutions (22), we arrive at a
system of homogeneous algebraic equations, which may be written in matrix form as

AU} =A{0}
where {UY ={uw", u}, w} (23)

The conditions of Eq. (23) to have nontrival solution is that the determinate of matrix A should
vanish. This leads to the sixth following order algebraic equation
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AN +BV+CA+DARP+EAX+FA+G =0 (24)

The displacement components may be obtained which are functions of natural frequency w.
Substituting the roots of Eq. (24) into (21) yields

ube, m,1)=3 Z;K,’,‘,]- eMsinPpx eie
ub(e, n,0)=3, 3" PhKyjeMcosPnx eio
u’éc(x’ n, t)ZZmZ]G:lQ'l’CUK']:‘] elnCOSme ei“ (25)

where P,; and Q) are function of w. Substituting (25) into the traction free condition (19) and
continuity requirements (6) leads to a system of 6M homogeneous algebraic equations, which can
be represented in the following matrix form

[HKK} = {0} (26)

The vector {K} is the mode shape. The component of [H] which is a 6M % 6M matrix are
function of natural frequency. From Eq. (26) we have

|H|=0 27)

Egs. (27) and (24) should be solved simultaneously by the successive approximation procedure to
obtain the first few natural frequencies of the shell.

5. Numerical results and discussion

As a first example cylindrical shells of graphite/epoxy materials are analyzed under dynamic
loads. For this purpose closed cylindrical shells composed of two unsymmetric layers [45/0] and
symmetric angle-ply layer [45/— 45/45] are studied. The loading configuration is shown in Fig. 3.

The loading equation can be expressed as

F(x,t)=Y Fo(1-e-13190)sinPyx

The positive sign of the fiber denote counterclockwise direction with respect to the positive
Fa

Fo

Fig. 3 Dynamic load
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Table 1 Effect of At for a [45/0] angle-ply

At u, O, o,
1.5E-3 5.2841 1.9832 —1.1347
6E-4 6.0377 2.3495 -1.1873
3E-4 6.2502 2.6274 -1.3701
1E-4 6.2530 2.6311 -1.3763
All the values are given at the middle of length and ¢=0.5
Msec, N=200.

Table 2 Effect of number of elements for a [45/0] angle-ply

N U, 6’9 [0
25 5.1912 1.8312 -1.1294
50 5.9305 2.3015 -1.1763
100 6.2473 2.6269 -1.3699
200 6.2530 2.6311 -1.3763
All the values are given at the middle of length and r=0.5
Msec, Ar=1E-4.

direction of the x axis. Material properties and nondimensionalized deformations and stresses are
considered as follows

E
By Sz —05  Ym_g2 Vir =025 v =049
E; E; E;
R_s L_y
h R
o Erh
Ur,U U x)=——(10u,, 20u 4 uy
( o Ux) FORZ( o Ur)

- = = = = = 1
(O-”0-9’O-x>Tr97Txr’Tx9):F_(o-’sGe’o-xaTerTxr’TxB)
o

The layers are of equal thickness. As a first step, the efficiency of the method is studied. For this
purpose in Table 1 and 2 effect of time increment A¢ and the number of elements on the results
and computational times are shown. In Table 1 four different Az from 1.5E-3 up to 1E-4 and in
Table 2 four different element number (25, 50, 100, 200) are considered. It is noticed that Ar=1E-4
and N=200 are suitable for computation and with respect to these values, the calculation require
less time.

The radial displacement history at =R for the middle length of the shell is shown in Fig. 4 and
is compared with HSD results (Eslami, Shakeri, Yas, Barzekar under review) for both stacking
sequences, unsymmetric [45/0] and symmetric [45/—45/45]. As it is observed the radial
displacement of symmetric angle-ply is generally lower than its unsymmetric counterpart. That is
due to the effect of bending-streching coupling that characterize symmetric laminate. It is also
seen that for symmetric angle-ply the difference between ES and HSD results become higher. In
Figs. 5 to 8 the axial variations of inplane stresses at inner and outer surfaces are shown for [45/-
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Fig. 4 History of radial displacement

45/45] lamination. The distribution of in-plane stresses along the axial direction is uniform. Some
variations can be seen near the edge region due to the edge effects, just as the case of isotropic
shells (Eslami, Shakeri, Yas 1994). From these figures it is noticed that CST (classical shell
theory) solution shows considerable disagreement when compared with the ES solution. The
reason of this difference has been suggested to be due to the initial curvature effect combined
with the effect of material properties (Jing and Tzeng 1993). In another word this effect can be

45/-45/45 t=0.5 Msec.
<ES +HSD ¥ FSD #CST

-8
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

XL
Fig. 5 Axial variation of longitudinal stress on the inner surface
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45/-45/45 t=0.5 Msec.
<ES +HSD XFSD ®CST

0o o1 02 03 04 05 06 07 08 09 1
XiL
Fig. 6 Axial variation of circumferential stress on the inner surface

Al

45/-45/45 t=0.5 Msec.
<ES +HSD XFSD ®CST

o o1 02 03 04 05 08 07 08 09 1
Xt
Fig. 7 Axial variation of longitudinal stress on the outer surface

explained in terms of thickness. In calculating G;, Gy, Tx6, the hoop strain g, is involved as well
as the radius of curvature. The radius of curvature is smaller on the inner surface than the mean
radius and larger on the outer surface. Furthermore as shown by constitutive equation under this
stacking sequence, the corresponding material constant e.g., C;, for G is comparable to the major
constant, e.g., C;;. The influence of & on Gx, G4, and 7,4 is then obvious. The FSD (first order
shear deformation theory) fall between those for CST and HSD. Fig. 9 shows the variations of
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XL

Fig. 8 Axial variation of circumferential stress on the outer surface
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0.
0.2 T
-04 [
45/-45/45 t=0.5Msec.
< ES +HSD X FSD ®CST
06

0 01 02 03 04 05 06 07 08 09 1
XL
Fig. 9 Axial variation of transverse shear stress (7,) on the middle surfac

transverse shear stress 7.,. It can be seen that 7. is zero on the middle surface in central region,
reaching higher values at the edges. In this figure the HSD result is compared with ES solution,
and maximum deviation is found to be about 1%. The through-thickness distribution of transverse
normal stress of three-layer angle-ply [45/-45/45] which has close relation with delamination
failure of composite laminates, is shown for four different time values in Fig. 10. In this figure o,
is compression in the top and then changes to tension on downward. Corresponding behavior has
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Fig. 10 Through-thickness distribution of transverse normal stress
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[+} 0.1 0.2 0.3 0.4

Thickness
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Fig. 11 Through-thickness distribution of transverse shear stress
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Table 3 Convergency of the results

M o o,
2 7.163 8.917
4 7215 9.014
6 7.362 9.165
8 7.401 9.225

10 7.420 9.233

been reported previously (Ren 1987).

It can be said the change of sign of transverse normal stress is mainly due to the curvature of
the shell. It is also noticed that the slope of transverse normal stress is not continuous across the
interface. The reason is due to the discontinuity of inplane stresses at the interface as well as the
initial curvature.

Fig. 11 shows the variations of transverse shear (7,,) with respect to the thickness of the shell
for four different time values. Basically the distribution of transverse shear stress in each layer is
very close to parabola. Also due to initial curvature, the distribution is not symmetric.
Discontinuity of the slope of transverse shear stress across the interface is noticed.

In second example, free vibrations is considered. It is assumed that the layers of laminated
cylinder are constructed by graphite/epoxy material, having the following orthotropic properties.

EL GLT GTT

— =15 = =0.428 Vir =V =04
E, E, E, LT = Vrr

The convergence of two first natural frequency parameter, @ =awL(p/E,)**/h of two layer [45/0]
laminated hollow cylinder is shown in Table 3. The cylinder has middle radius to thickness ratio -

20

10

- 45/-45 Deg. 1 45/-45/45 Deg.

5 10 15 20 25 30 35 40 45 50
L/h
Fig. 12 Variation of first natural frequency parameter
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wy
60
50
40
30
204
10
-=- 45/-45 Deg. + 45/-45/45 Deg.
0
5 10 15 20 25 30 35 40 45 50

Lh
Fig. 13 Variation of second natural frequency parameter

Table 4 Comparison of the lowest

% Present Heyliger

5 2.752 2.797
10 4.511 4.585
20 8.047 8.166
50 19.113 19.464

R/h=2 and mR/L=1. The two layers of cylinder is divided in M/2 mathematical layers. As it is
observed, the convergency is fast.

Figs. 12 and 13 exhibit the variation of the two first natural frequency parameter of
antisymmetric [45/—45] and symmetric [45/—45/45] angle-ply with respect to the length to
thickness ratio (L/A). The radius to thickness ratio is R/h=2. As it is noticed the natural frequency
of symmetric angle-ply is generally higher than their antisymmetric counterpart in the entire range
of L/h considered and that the corresponding curves have stiffer slopes, especially in the thicker
shell regime. This is due to the effect of bending-streching coupling.

As a check on the accuracy of the computational scheme, two layer cross-ply cylindrical shell
composed of graphite/epoxy with the properties

E, =206.84GPa. E;=5171GPa.  v;; =025 Gy =2.585 GPa.
T 0416 ==
E h

is considered. The shell in this example has a [0/90] stacking sequence, which implies that the
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fiber in the outer layer run in the circumferential direction and that the fiber in the inner layer run
in the axial direction. The results are compared with similar ones found in the literatures based on
Ritz method (Heyliger and Jilani 1993) in Table 4. The frequencies are tabulated in terms of the
frequency parameter @ which is defined as
0.5
o = a)L—2 p where D=

1+E, /E; h3
n?| Dy

2 192

As it is observed, there is good agreement between the results.

6. Conclusions

In this paper three-dimensional layerwise solution of dynamic response of composite cylindrical
shell is studied. A Kantrovich type of approximation for space and time domain is approximated
by a simple finite element model. The innovation of this model is that the continuity conditions
between any two layer, as well as traction conditions are satisfied. The method provides good
prediction of dynamic response of composite cylindrical shell, while requiring short computer time.
The results show that difference between HSD and ES become higher for symmetric angle-ply
due to the effect of bending-streching coupling. It is found that the general behaviour of laminated
shell under dynamic load is similar to that of isotropic shells, e.g., uniform variations of inplane
stresses along the axial direction and some variations near the edge regions. It is also concluded
that HSD can be used as a good alternative to rigorous three-dimensional analysis. It is observed
that due to discontinuity of inplane stresses at the interface and initial curvature, the slope of
transverse normal and shear stresses aren't continuous across the interface. Also the through
thickness distribution of transverse shear stress in each layer is very close to a parabola and due to
initial curvature, this distribution is not symmetric.

For free vibration analysis, the solution is based on the assumption which was made by Li and
Wang (Li and Wang 1986). In fact the method of solution is the extension of approach which
have been used by Hawkes and Soldatos previously (Hawkes and Soldatos 1992). It is shown that
the results are well compared with the similar ones which has been obtained by Heyliger
(Heyliger and Jilani 1993), through using Ritz method. In addition the convergenc of the method
is fast. The results show that the natural frequency of symmetric angle-ply are generally higher
than their antisymmetric counterpart in the entire range of L/h considered and the corresponding
curves have stiffer slopes, especially in the thicker shell regime. In another words for thick shell
the difference of natural frequency between symmetric and antisymmetric angle-ply is low, while
in the thin shell regime, this difference is considerable.
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Notations

h : thickness of cylindrical shell
h, : thickness of element

h : thickness of kth layer

m : axial half-wave number

t : time

u, : radial displacement

U, : axial displacement

Uy : circumferential displacement
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Appendix

: stiffness elastic constants
: length of cylindrical shell
: number of layers

: mean radius of cylindrical shell
: inner radius

: outer radius

: mean radius of Kth layer
: strain components

: density of Kth layer

: stress components

: natural frequency
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