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1. Introduction  
 

Membrane structures and membrane components play 

increasingly important roles in many fields. For instance, in 

the micro-electro-mechanical system, the diaphragm 

membrane is an important component of the pressure sensor 

(Molla-Alipour and Ganji 2015, Lian et al. 2017a), and in 

the thin-film-substrate system, the mechanical parameters 

of thin films are determined based on the deflection of the 

membrane (Sun et al. 2011, 2014, Todorovic et al. 2014, 

Yang et al. 2018). So, the analytical solutions of membrane 

problems are usually needed in many applications. But, in 

fact, the large deflection phenomena of membrane problem 

usually give rise to some intractable nonlinear equations 

which are difficult to be analytically solved (Chucheepsakul 

et al. 2009, Ersoy et al. 2009, Sun et al. 2010, 

Hasheminejad and Ghaheri 2015). Therefore, the analytical 

solutions of membrane problems are available in a few 

cases. 

One hundred years ago, Hencky (1915) originally dealt 

with the problem of axisymmetric deformation of Föppl-

Hencky membrane, i.e., the peripherally fixed circular 

membrane under the action of uniformly-distributed 

transverse loads (Arthurs and Clegg 1994, Sun et al. 2013), 

and presented a power series solution. A computational 

error in Hencky (1915) was corrected by Chien (1948) and 

Alekseev (1953), respectively. This solution is usually  
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called well-known Hencky solution for short, and is often 

referred to or cited in a number of related studies 

(Weinitschke 1973, Beck and Grabmuller 1992, Feng et al. 

2015, Yang et al. 2017). Sun et al. (2015) presented the 

extended Hencky solution, which is applicable to 

membranes with or without initial stress, but it is still a 

solution with the small-rotation-angle assumption of 

membrane. Recently, the well-known Hencky problem was 

resolved and its closed-form solution was presented, in 

which the so-called small-rotation-angle assumption of 

membrane, i.e., the slope angle θ of membrane is so small 

that the condition sinθ≈tanθ could approximately hold, was 

given up (Lian et al. 2016, 2017b). 

In this study, we will focus on the analytical processing 

of an interesting novel membrane problem, the problem of 

axisymmetric deformation of prestressed Föppl-Hencky 

membrane under the combined action of uniformly-

distributed transverse loads and horizontal frictionless rigid 

plate, where the case before contact between membrane and 

horizontal frictionless rigid plate is exactly the well-known 

Hencky problem, and the horizontal plate actually acts as a 

limiting deflection of membrane (constrained deflecting). 

This membrane problem comes from the touch mode 

capacitive pressure sensors. Recently, Wang et al. (2018) 

dealt with this problem, but the initial stress in membrane 

was not taken into account and the so-called small-rotation-

angle assumption of membrane was still adopted. However, 

the initial tension is very easy to be present in the initially 

flat membrane. And the so-called small-rotation-angle 

assumpt ion of  membrane  wi l l  inevi tab ly b r ing 

computational error no matter how small the slope angle θ 

of membrane is, moreover, the analytical solution obtained 

by the so-called small-rotation-angle assumption will no  
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Fig. 1 Sketch of confined deformation of the uniformly 

loaded circular membrane 

 

 

Fig. 2 The equilibrium diagram of the central portion 

(b≤r≤a) of the circular membrane 

 

 

longer apply when the applied transverse loads or the θ is 

relatively large (Lian et al. 2016). We here gave up the so-

called small-rotation-angle assumption and took into 

account the initial stress in membrane, and presented the 

closed-form solution of the problem dealt with here. The 

presented numerical examples show this closed-form 

solution has higher calculation accuracy and can be applied 

for a wider range in comparison with the existing 

approximate solution, as will be seen later. Moreover, some 

important issues were further discussed based on the 

numerical examples. 

 

 

2. Membrane equation and its solution 
 

An initially flat elastic circular membrane is extended a 

radial plane displacement u0 at the perimeter of radius a, 

and then is fixed at the perimeter of radius a. A circular 

membrane structure with initial stress is thus modelled. A 

uniformly-distributed transverse loads q is quasi-statically 

applied onto the membrane surface, and when the loads q 

reaches a large enough value the deflected membrane will 

get in contact with a frictionless rigid plate being parallel to 

the initially flat membrane, as shown in Fig. 1, where r is 

the radial coordinate, w is the transversal displacement, b is 

the radius of the membrane contacting with the horizontal 

frictionless rigid plate, and g is the gap between the 

horizontal frictionless rigid plate and the initially flat 

membrane. 

Such a problem can be viewed as consisting of two local 

membrane problems in the central portion of 0<r≤b and in 

the annular portion of b≤r≤a, which are connected by the 

continuity conditions at r=b. The problem in 0<r≤b may be 

simplified as a plane tension problem of membrane, while 

the problem in b<r≤a is still the one of membrane 

deflection. As for the case before contact between the 

deformed membrane and the horizontal frictionless rigid 

plate, the well-known Hencky problem, it has been dealt 

with and its solution may be found in Lian et al. (2016). 

In the annular portion, let us take a piece of the central 

portion of the annular membrane whose radius is r (b≤r≤a) 

to study the static problem of equilibrium of this membrane, 

as shown in Fig. 2, where σr is the radial stress, h is the 

thickness and θ is the slope angle of membrane. Right here 

there are three vertical forces, i.e., total force πr2q (in which 

b≤r≤a) of the uniformly-distributed loads q, total reaction 

force πb2q from the rigid plate, and total vertical force 

2πrσrhsinθ produced by the membrane force σrh. The out-

plane equilibrium equation is 

2πrσrh sin θ = (πr2 − πb
2)q, (1) 

where 

sin θ = 1 √1+ 1 tan2 θ⁄⁄ = 1 √1 + 1 (−dw/dr)2⁄⁄ . (2) 

Substituting Eq. (2) into Eq. (1), one has 

2rσrh = q(r2 − b
2)√1 + 1 (−dw/dr)2⁄ . (3) 

The in-plane equilibrium equation is 

d

dr
(rσrh) − σth = 0, (4) 

where σt is the circumferential stress. The relations of strain 

and displacement of the large deflection problem are 

er =
du

dr
+

1

2
(
dw

dr
)

2

, et =
u

r
, (5a, b) 

where er is the radial strain, et is the circumferential strain, 

and u is the radial displacement. The relations of stress and 

strain are 

σr =
E

1 − ν2
(er + νet), σt =

E

1 − ν2
(et + νer), (6a, b) 

where E and v denote the Young’s modulus of elasticity and 

Poisson’s ratio of membrane, respectively. Substituting Eq. (5) 

into Eq. (6), 

σr =
E

1 − ν2
[
du

dr
+

1

2
(
dw

dr
)

2

+ ν
u

r
] , 

σt =
E

1 − ν2
[
u

r
+ ν

du

dr
+

ν

2
(
dw

dr
)

2

]. 

(7a, b) 

By means of Eqs. (4) and (7), one has 

u

r
=

1

E
(σt − νσr) =

1

E
[

d

dr
(rσr) − νσr]. (8) 

If we substitute the u of Eq. (8) into Eq. (7a), the compatibility 

equation may be written as 

𝑟
d

dr
[
1

r

d

dr
(r2σr)] +

E

2
(
dw

dr
)

2

= 0. (9) 

In the central portion (0<r≤b), noting that dw/dr=0, from 

Eq. (5) it may be found that 

er =
du

dr
, et =

u

r
. (10a, b) 

Substituting Eq. (10) into Eq. (6), 
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σr =
E

1 − ν2
(
du

dr
+ ν

u

r
) , σt =

E

1 − ν2
(

u

r
+ ν

du

dr
). (11a, b) 

Substituting Eq. (11) into Eq. (4), one has 

r
d

2
u

dr2
+

du

dr
−

u

r
= 0. (12) 

Under the conditions 

u = 0 at 𝑟 = 0 and 𝑢 = u(b) at 𝑟 = b, (13a, b) 

the solution of Eq. (12) may be written as 

𝑢(r) =
𝑢(b)

b
r. (14) 

So, substituting Eq. (14) into Eqs. (10) and (11), it is found that 

er = et =
u(b)

b
 and σr = σt =

E

1 − ν

u(b)

b
 

in 0 ≤ r ≤ b. 

(15a, b) 

So, the boundary conditions and continuous conditions are 

w = 0 and 
u

r
=

u0

a
=

1 − ν

E
σ0 at r = a (16a, b) 

and 

𝑤 = g, (
u

r
)

B

= (
u

r
)

A

=
u(b)

b
 

and (σr)B = (σr)A =
E

1 − ν

u(b)

b
 at r = b, 

(17a, b, c) 

where σ0 is the initial stress in membrane, the subscript A and 

B denote the values of various variables on two sides of the 

inter-connecting circle, the side of region (A) is the section 

whose deflection is restricted, and the side of region (B) is not. 

Let us introduce the following nondimensional variables 

Q =
qa

Eh
, W =

w

a
, Sr =

σr

E
, St =

σt

E
, S0 =

σ0

E
,  

x =
r

a
, α =

b

a
, 

(18) 

and transform Eqs. (3), (9), (8), (16a, b) and (17a, b, c) into 

(
dW

dx
)

2

=
Q2(x2 − α2)2

4x2Sr
2 − Q2(x2 − α2)2

, (19) 

x2
d

2
Sr

dx2
+ 3x

dSr

dx
+

1

2
(
dW

dx
)

2

= 0, (20) 

u

r
= (1 − ν)Sr + x

dSr

dx
, (21) 

𝑊 = 0 and 
u

r
= (1 − ν)S0 at x = 1, (22) 

and 

𝑊 =
g

a
, (

u

r
)

B

= (
u

r
)

A

=
u(b)

b
 

and (Sr)B = (Sr)A =
1

1 − ν

u(b)

b
 at x = α. 

(23a, b, c) 

Letting β=(1+α)/2 and expanding Sr and W into the power 

series in powers of x−β, i.e., letting 

Sr = ∑ ci(x − β)i

∞

i=0

 (24) 

and 

𝑊 = ∑ di(x − β)i

∞

i=0

. (25) 

After substituting Eqs. (24) and (25) into Eqs. (19) and (20), 

the coefficients ci(i=2,3,4…) and di(i=1,2,3…) can be 

expressed by the polynomial of c0 and c1, which are shown in 

Appendixes A and B, respectively. The coefficients c0, c1 and 

d0 are left as undetermined constants and they can be 

determined by using the boundary conditions and continuous 

conditions as follows. 

From Eq (25), Eqs. (22a) and (23a) give 

∑ di(1 − β)i = 0

∞

i=0

 (26) 

and 

∑ di(α − β)i =
g

a

∞

i=0

. (27) 

From Eqs. (21) and (24), Eqs. (22b) and (23b) give 

(1 − ν) ∑ ci(1 − β)i

∞

i=0

+ ∑ ici(1 − β)i−1

∞

i=1

 

= (1 − ν)S0 

(28) 

and 

(1 − ν) ∑ ci(α − β)i

∞

i=0

+ α ∑ ici(α − β)i−1

∞

i=1

 

=
u(b)

b
. 

(29) 

From Eq. (24), Eq. (23c) gives 

∑ ci(α − β)i

∞

i=0

=
1

1 − ν

u(b)

b
. (30) 

Eliminating the u(b) from Eqs. (29) and (30), one has 

∑ ici(α − β)i−1

∞

i=1

= 0. (31) 

Hence, for the given problem where a, h, g, E, ν, q and σ0 

are known in advance, the contact radius b and the 

undetermined constants, c0, c1 and d0 can be determined by 

Eqs. (26), (27), (28) and (31), consequently the coefficients 

ci(i=2,3,4…) and di(i=1,2,3…) can be determined. Finally, the 

problem considered here can thus be dealt with. 

 

 

3. Results and discussions 
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Fig. 3 Variation of w with r when q takes 0.214 MPa 

 

 

Fig. 4 Variation of w with r when g takes 1 mm and 4 mm 

 

 

Fig. 5 Variation of σr with r when g takes 1 mm and 4 mm 

 

 

By giving up the small-rotation-angle assumption and 

taking into account the initial stress, the closed-form 

solution presented above has higher calculation accuracy 

and wider application range in comparison with the existing 

approximate solution. Now, let us consider a circular rubber 

film with a=10 mm, h=1 mm, E=7.84 MPa, and v=0.47 to 

demonstrate the validity of the solution presented here and 

discuss the influence of the small-rotation-angle assumption 

and the initial stress based on the results of numerical 

calculations. 

We here use the existing mature theory (solution in Lian 

et al. 2017) to examine the reliability of the closed-form 

solution presented here. Apparently, when σ0=0 MPa and 

b→0, the numerical calculation results obtained by the 

solution presented here should be close to the results 

obtained by the solution presented in Lian et al. (2017). Fig. 

3 shows the variation of w with r while g=4 mm, σ0=0 MPa 

and q=0.214 MPa, where the solid line represents the results 

obtained by the solution presented here (the corresponding 

b is 0.001 mm), and the dashed line by the solution 

presented in Lian et al. (2017). From Fig. 3 it may be seen 

that the two profiles w(r) are very close to each other, which 

shows that, to some extent, the closed-form solution 

presented here is reliable. 

 

Fig. 6 Variation of b with q when σ0 takes 0 MPa, 1 MPa 

and 2 MPa 

 

 

Let us show the effect of giving up the small-rotation-

angle assumption by comparing the results obtained by the 

solution without the small-rotation-angle assumption 

(presented here) and the solution with the small-rotation-

angle assumption (presented in Wang et al. 2018). Figs. 4 

and 5 show the variation of w and σr with r when g=1 mm 

(q=0.007 MPa) and g=4 mm (q=0.402 MPa), respectively, 

where the solid line represents the results obtained by the 

solution presented here (in which σ0=0 MPa), and the dot 

and dash line by the solution presented in Wang et al. 

(2018). From Figs. 4 and 5 it can be seen that, when the 

slope angle θ of membrane is relatively small (i.e., when 

g=1 mm), the solid lines are very close to the dot and dash 

lines, which also shows that the closed-form solution 

presented here is reliable. But when the slope angle θ of 

membrane is relatively large (i.e., when g=4 mm), the 

contact radius b of the solid line is 3 mm but the dot and 

dash line is 2.68 mm, moreover, the difference between the 

solid lines and the dot and dash lines is also obvious. These 

differences are mainly caused by the small-rotation-angle 

assumption adopted in Wang et al. (2018). 

Fig. 6 shows the variation of b with q when σ0 takes 0 

MPa, 1 MPa and 2 MPa, respectively, where the solid lines 

represent the results obtained by the solution presented 

here, and the dot and dash line by the solution presented in 

Wang et al. (2018). From Fig. 6 it may be seen that, under 

the same applied loads q, the initial stress σ0 will reduce the 

contact radius b, and that is to say, to achieve the same 

contact radius, greater applied loads is required with the 

increases of the initial stress. In addition, when σ0 takes 

0MPa, the difference between the dot and dash line and the 

solid line increases with the increase of the applied loads, 

which is also caused by the small-rotation-angle assumption 

adopted in Wang et al. (2018). 
 

 

4. Conclusions 
 

In this study, we analytically solved the problem of 

axisymmetric deformation of prestressed Föppl-Hencky 

membrane under constrained deflecting, in which the small-

rotation-angle assumption usually adopted in membrane 

problems was given up and the initial stress in membrane 

was considered. The comparisons with existing solutions 

verified the validity of this work. The following main 

conclusions can be drawn: 
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(i) When the deformation of the membrane increases 

further, the error due to the adoption of small-rotation-angle 

assumption will increase accordingly, this makes the 

solution presented in our study more competitive. 

(ii) The introduction of initial stress has effect on the 

contact radius in such a constrained deflecting problem. 

Under the same magnitude of applied loads, the greater the 

initial stress, the smaller the contact radius. 

(iii) There is no doubt that, by giving up small-rotation-

angle assumption and also incorporating the initial stress, 

the application scope of solution obtained here has been 

improved further. 

This work will be helpful in the design of the touch 

mode capacitive pressure sensors, and in the synchronous 

characterization of the mechanical properties of thin films. 

Especially, when the thin film is very flexible, the large-

rotation-angle deformations will inevitable be introduced, 

which makes the influence of the initial stress on 

deformation has to be further considered in this case. 
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