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Abstract.  In this study, the problem of axisymmetric deformation of prestressed Foppl-Hencky membrane under constrained
deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually
adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this
closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing
approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the
errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-
rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the
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numerical examples.
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1. Introduction

Membrane structures and membrane components play
increasingly important roles in many fields. For instance, in
the micro-electro-mechanical system, the diaphragm
membrane is an important component of the pressure sensor
(Molla-Alipour and Ganji 2015, Lian et al. 2017a), and in
the thin-film-substrate system, the mechanical parameters
of thin films are determined based on the deflection of the
membrane (Sun et al. 2011, 2014, Todorovic et al. 2014,
Yang et al. 2018). So, the analytical solutions of membrane
problems are usually needed in many applications. But, in
fact, the large deflection phenomena of membrane problem
usually give rise to some intractable nonlinear equations
which are difficult to be analytically solved (Chucheepsakul
et al. 2009, Ersoy et al. 2009, Sun et al. 2010,
Hasheminejad and Ghaheri 2015). Therefore, the analytical
solutions of membrane problems are available in a few
cases.

One hundred years ago, Hencky (1915) originally dealt
with the problem of axisymmetric deformation of Foppl-
Hencky membrane, i.e., the peripherally fixed circular
membrane under the action of uniformly-distributed
transverse loads (Arthurs and Clegg 1994, Sun et al. 2013),
and presented a power series solution. A computational
error in Hencky (1915) was corrected by Chien (1948) and
Alekseev (1953), respectively. This solution is usually
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called well-known Hencky solution for short, and is often
referred to or cited in a number of related studies
(Weinitschke 1973, Beck and Grabmuller 1992, Feng et al.
2015, Yang et al. 2017). Sun et al. (2015) presented the
extended Hencky solution, which is applicable to
membranes with or without initial stress, but it is still a
solution with the small-rotation-angle assumption of
membrane. Recently, the well-known Hencky problem was
resolved and its closed-form solution was presented, in
which the so-called small-rotation-angle assumption of
membrane, i.e., the slope angle 6 of membrane is so small
that the condition sinf=tand could approximately hold, was
given up (Lian et al. 2016, 2017b).

In this study, we will focus on the analytical processing
of an interesting novel membrane problem, the problem of
axisymmetric deformation of prestressed Foppl-Hencky
membrane under the combined action of uniformly-
distributed transverse loads and horizontal frictionless rigid
plate, where the case before contact between membrane and
horizontal frictionless rigid plate is exactly the well-known
Hencky problem, and the horizontal plate actually acts as a
limiting deflection of membrane (constrained deflecting).
This membrane problem comes from the touch mode
capacitive pressure sensors. Recently, Wang et al. (2018)
dealt with this problem, but the initial stress in membrane
was not taken into account and the so-called small-rotation-
angle assumption of membrane was still adopted. However,
the initial tension is very easy to be present in the initially
flat membrane. And the so-called small-rotation-angle
assumption of membrane will inevitably bring
computational error no matter how small the slope angle 6
of membrane is, moreover, the analytical solution obtained
by the so-called small-rotation-angle assumption will no
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Frictionless rigid plate M a 1
Fig. 1 Sketch of confined deformation of the uniformly
loaded circular membrane

q "w(r)

Fig. 2 The equilibrium diagram of the central portion
(b<r<a) of the circular membrane

longer apply when the applied transverse loads or the 6 is
relatively large (Lian et al. 2016). We here gave up the so-
called small-rotation-angle assumption and took into
account the initial stress in membrane, and presented the
closed-form solution of the problem dealt with here. The
presented numerical examples show this closed-form
solution has higher calculation accuracy and can be applied
for a wider range in comparison with the existing
approximate solution, as will be seen later. Moreover, some
important issues were further discussed based on the
numerical examples.

2. Membrane equation and its solution

An initially flat elastic circular membrane is extended a
radial plane displacement ug at the perimeter of radius a,
and then is fixed at the perimeter of radius a. A circular
membrane structure with initial stress is thus modelled. A
uniformly-distributed transverse loads g is quasi-statically
applied onto the membrane surface, and when the loads q
reaches a large enough value the deflected membrane will
get in contact with a frictionless rigid plate being parallel to
the initially flat membrane, as shown in Fig. 1, where r is
the radial coordinate, w is the transversal displacement, b is
the radius of the membrane contacting with the horizontal
frictionless rigid plate, and g is the gap between the
horizontal frictionless rigid plate and the initially flat
membrane.

Such a problem can be viewed as consisting of two local
membrane problems in the central portion of 0<r<b and in
the annular portion of b<r<a, which are connected by the
continuity conditions at 7=b. The problem in 0<r<b may be
simplified as a plane tension problem of membrane, while
the problem in b<r<a is still the one of membrane
deflection. As for the case before contact between the
deformed membrane and the horizontal frictionless rigid
plate, the well-known Hencky problem, it has been dealt
with and its solution may be found in Lian et al. (2016).

In the annular portion, let us take a piece of the central
portion of the annular membrane whose radius is r (b<r<a)
to study the static problem of equilibrium of this membrane,
as shown in Fig. 2, where oy is the radial stress, h is the
thickness and @ is the slope angle of membrane. Right here
there are three vertical forces, i.e., total force z%q (in which
b<r<a) of the uniformly-distributed loads g, total reaction
force zb?q from the rigid plate, and total vertical force
2zrovhsing produced by the membrane force o¢h. The out-
plane equilibrium equation is

2ara,hsin@ = (w? — xb*)q, (1)

where

sin@ =1/ [1+1/tan® @ = 1/y/1 + 1/(—dw/dr)2. 2
Substituting Eq. (2) into Eq. (1), one has

2ra,h = q(r? — b*)y/1+ 1/(—dw/dr)?. ®)

The in-plane equilibrium equation is
d
—(ro,h) —oh =0, 4
dr

where oz is the circumferential stress. The relations of strain
and displacement of the large deflection problem are

du 1 7dwy\> u

=4 _(= =_ (5a, b)
e dr+2(dr) e =

where e, is the radial strain, e, is the circumferential strain,

and u is the radial displacement. The relations of stress and

strain are

(6a, b)

"=1°2 (e, +ve),0,=——= (e, +ve),

1 1—?

where E and v denote the Young’s modulus of elasticity and
Poisson’s ratio of membrane, respectively. Substituting Eq. (5)
into Eq. (6),

_ E du+1(dw>2+ u
O-'ﬁ_l—v2 dr 2\dr i

(7a,b)
_E |u 4 du 4 v (dw)2
AR PRI A Y |
By means of Egs. (4) and (7), one has
u 1 1r1d
_—= - —_ = —|— — 8
~=Z (o, — vo,) z [ T (ro,) va,]. (8)

If we substitute the u of Eq. (8) into Eq. (7a), the compatibility
equation may be written as

e ldi(rzg,)] +§(d—w)2 — 0, ©

dr; r dr

In the central portion (0<r<b), noting that dw/dr=0, from
Eq. (5) it may be found that

du u
a’ e = ; (103., b)

Substituting Eq. (10) into Eq. (6),

e, =
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E /du u E (u du
_ 2,2 =— (—+v—). (11ab
or 1—v2<dr+vr)’at 1—v2<r+vdr) ( )

Substituting Eq. (11) into Eq. (4), one has
Pu du u

4+ __Z=0. (12)

"ar + dr r 0

Under the conditions

u=0atr=0 and u=u(b) at r =b, (13a, b)
the solution of Eq. (12) may be written as
b
u@r) = ”; ), (14)
So, substituting Eq. (14) into Egs. (10) and (11), it is found that
u(b) E u(b)
e,=¢=——ando, =0, = —
b 1—v b (15a, b)
in 0 <r<b.

So, the boundary conditions and continuous conditions are

u uy 1-=v

w=0and - =—= opatr =a (163, b)
rooa
and
u u u(b)
R
u(b) (17a, b, ¢)
and (0,)5 = (0,)4 = 1=y p dr=b

where oy is the initial stress in membrane, the subscript A and
B denote the values of various variables on two sides of the
inter-connecting circle, the side of region (A) is the section
whose deflection is restricted, and the side of region (B) is not.
Let us introduce the following nondimensional variables

Q_qa W—WS O',S U,S )
_Fa - > r=Ea t=Ea O=E’
h a . A (18)
XxX=—,a=-—,
a a
and transform Eqgs. (3), (9), (8), (16a, b) and (17a, b, ¢) into
dPA2 202 2\2
(&) = e @9
dx 43287 — 0" (x% — 02)?
d’s, _ ds, 1 /dm’
2_ T o () = 20
xdx2+3xdx+2(dx) 0, (20)
u ds,
Z=(1= . 21
r (1 v)S,+xdx, (21)
W =0and = = (1 —)S, atx = 1, 22)
r
and
g oqu\ _ qu _u(b)
w=2 (;)B—(;)A— b
1 u) (233, b, ¢)
and (S)p=(S)y=— atx = a.
1—v b

Letting 5=(1+a)/2 and expanding Sy and W into the power
series in powers of x—4, i.e., letting

[ee]

S =) a—py (24)
i=0
and
W= d@-p (25)
i=0

After substituting Egs. (24) and (25) into Egs. (19) and (20),
the coefficients ci(i=2,3,4...) and di(i=1,2,3...) can be
expressed by the polynomial of ¢y and ¢, which are shown in
Appendixes A and B, respectively. The coefficients co, ¢; and
do are left as undetermined constants and they can be
determined by using the boundary conditions and continuous
conditions as follows.
From Eq (25), Eqgs. (22a) and (23a) give

Daa-p=0 (26)
i=0

and
Y da-py=5 (27)
i=0

From Egs. (21) and (24), Egs. (22b) and (23b) give

a- v);c,»(l —py +Z ic;(1 = ) o8

=(1-=v)S,
and

[oe]

(=0 ala=p+a) icla—p
i=0

i=1 (29)
B u(b)
From Eq. (24), Eq. (23c) gives
c 1 u
N e@-pi=t"2 (30)

i=0
Eliminating the u(b) from Eqgs. (29) and (30), one has

[ee]

Z ic(a— B~ =0. (31)
i=1
Hence, for the given problem where a, h, g, E, v, q and oo
are known in advance, the contact radius b and the
undetermined constants, co, ¢1 and dyp can be determined by
Egs. (26), (27), (28) and (31), consequently the coefficients
ci(i=2,3,4...) and di(i=1,2,3...) can be determined. Finally, the
problem considered here can thus be dealt with.

3. Results and discussions
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Fig. 5 Variation of o with r when g takes 1 mm and 4 mm

By giving up the small-rotation-angle assumption and
taking into account the initial stress, the closed-form
solution presented above has higher calculation accuracy
and wider application range in comparison with the existing
approximate solution. Now, let us consider a circular rubber
film with =10 mm, A=1 mm, E=7.84 MPa, and v=0.47 to
demonstrate the validity of the solution presented here and
discuss the influence of the small-rotation-angle assumption
and the initial stress based on the results of numerical
calculations.

We here use the existing mature theory (solution in Lian
et al. 2017) to examine the reliability of the closed-form
solution presented here. Apparently, when ¢,=0 MPa and
b—0, the numerical calculation results obtained by the
solution presented here should be close to the results
obtained by the solution presented in Lian et al. (2017). Fig.
3 shows the variation of w with r while g=4 mm, 60=0 MPa
and ¢=0.214 MPa, where the solid line represents the results
obtained by the solution presented here (the corresponding
b is 0.001 mm), and the dashed line by the solution
presented in Lian et al. (2017). From Fig. 3 it may be seen
that the two profiles w(r) are very close to each other, which
shows that, to some extent, the closed-form solution
presented here is reliable.
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Fig. 6 Variation of b with q when o, takes 0 MPa, 1 MPa
and 2 MPa

Let us show the effect of giving up the small-rotation-
angle assumption by comparing the results obtained by the
solution without the small-rotation-angle assumption
(presented here) and the solution with the small-rotation-
angle assumption (presented in Wang et al. 2018). Figs. 4
and 5 show the variation of w and o with r when g=1 mm
(¢=0.007 MPa) and g=4 mm (¢=0.402 MPa), respectively,
where the solid line represents the results obtained by the
solution presented here (in which go=0 MPa), and the dot
and dash line by the solution presented in Wang et al.
(2018). From Figs. 4 and 5 it can be seen that, when the
slope angle 6 of membrane is relatively small (i.e., when
g=1 mm), the solid lines are very close to the dot and dash
lines, which also shows that the closed-form solution
presented here is reliable. But when the slope angle 6 of
membrane is relatively large (i.e., when g=4 mm), the
contact radius b of the solid line is 3 mm but the dot and
dash line is 2.68 mm, moreover, the difference between the
solid lines and the dot and dash lines is also obvious. These
differences are mainly caused by the small-rotation-angle
assumption adopted in Wang et al. (2018).

Fig. 6 shows the variation of b with g when a9 takes 0
MPa, 1 MPa and 2 MPa, respectively, where the solid lines
represent the results obtained by the solution presented
here, and the dot and dash line by the solution presented in
Wang et al. (2018). From Fig. 6 it may be seen that, under
the same applied loads g, the initial stress oo will reduce the
contact radius b, and that is to say, to achieve the same
contact radius, greater applied loads is required with the
increases of the initial stress. In addition, when gy takes
OMPa, the difference between the dot and dash line and the
solid line increases with the increase of the applied loads,
which is also caused by the small-rotation-angle assumption
adopted in Wang et al. (2018).

4. Conclusions

In this study, we analytically solved the problem of
axisymmetric deformation of prestressed Foppl-Hencky
membrane under constrained deflecting, in which the small-
rotation-angle assumption usually adopted in membrane
problems was given up and the initial stress in membrane
was considered. The comparisons with existing solutions
verified the validity of this work. The following main
conclusions can be drawn:
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(i) When the deformation of the membrane increases
further, the error due to the adoption of small-rotation-angle
assumption will increase accordingly, this makes the
solution presented in our study more competitive.

(if) The introduction of initial stress has effect on the
contact radius in such a constrained deflecting problem.
Under the same magnitude of applied loads, the greater the
initial stress, the smaller the contact radius.

(iii) There is no doubt that, by giving up small-rotation-
angle assumption and also incorporating the initial stress,
the application scope of solution obtained here has been
improved further.

This work will be helpful in the design of the touch
mode capacitive pressure sensors, and in the synchronous
characterization of the mechanical properties of thin films.
Especially, when the thin film is very flexible, the large-
rotation-angle deformations will inevitable be introduced,
which makes the influence of the initial stress on
deformation has to be further considered in this case.
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