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1. Introduction  
 

An unreinforced masonry (URM) infill wall can 

withstand out-of-plane (OOP) seismic loads by the 

development, after cracking, of internal arching thrusts. In 

fact, the inclined arching thrusts forming in the infill panel 

thickness have a resultant horizontal component that 

equilibrates the OOP external load. This resistant 

mechanism is called “arching action”. Arching thrusts can 

form only if the infill wall is adequately thick and supported 

by sufficiently stiff and resistant confining structural 

elements (ASCE/SEI 41-13 2013). Usually, infill walls are 

mortared and, so, restrained along four edges to the 

confining structural elements. This enables two-way (both 

horizontal and vertical) arching action occurring. In infill 

walls bounded only along the upper and the lower edge to 

the confining structural elements, as well as in URM walls, 

only one-way vertical arching can occur. In infills bounded 

to the confining elements along the lower and both the 

lateral edges, only one-way horizontal arching can occur.  

In the literature, different studies concerning the  
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experimental assessment and modelling of the OOP 

behaviour of URM infills and walls in which arching action 

occurs have been proposed in recent years (e.g., Agnihotri 

et al. 2013, Furtado et al. 2015, Mosalam and Günay 2015, 

Edri and Yankelevsky 2017, Di Trapani et al. 2018, 

Akhoundi et al. 2018, among many others). A detailed 

recent research on OOP strength models was proposed by 

Pasca et al. (2017). In addition, different OOP strength 

formulations have been proposed. Mechanical-based 

formulations by McDowell et al. (1959) and by Angel et al. 

(1994) were proposed to calculate the strength granted by 

one-way arching. Also, Eurocode 6 (2004) proposed a very 

simple mechanical-based formulation for the assessment of 

the lateral strength of URM walls due to one-way arching. 

A mechanical-based formulation accounting for two-way 

arching was proposed by Bashandy et al. (1995). Empirical 

formulations of the OOP strength of infills in which two-

way arching occurs were proposed by Dawe and Seah 

(1989), Flanagan and Bennett (1999) and Ricci et al. 

(2018). The effectiveness of these formulations in 

predicting the OOP strength of URM infills tested under 

lateral loading has been already checked in previous works 

by the Authors of this study (Ricci et al. 2018, Di 

Domenico et al. 2018a).  

Namely, it has been shown that, for infills in which one-

way arching occurs, Eurocode 6 formulation is quite 

effective while Angel et al. (1994)’s formulation seems to 

be significantly conservative. Clearly, the effectiveness of 

Eurocode 6 formulation has been evaluated on specimens in 

which only one-way arching occurs. For the same infills, it  
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Table 1 Construction materials’ mechanical properties 

mechanical property 
symbol 

(unit) 

boundary 

condition 

80 mm-thick 

infills 

mean value 

120 mm-thick 

infills 

mean value 

concrete compressive 

strength 
fcm (N/mm2) all 36.0 46.2 

steel rebars yielding stress fym (N/mm2) all 552 497 

masonry 

compressive strength 

(parallel to holes) 

fmh (N/mm2) 

2E 2.45 

2.79* 

3E 2.88 

4E 2.21 2.12 

masonry 

compressive strength 

(perpendicular to holes) 

fmv (N/mm2) 

2E 1.81 

2.21 

3E 2.44 

4E 1.80 1.65 

masonry 

elastic modulus 

(parallel to holes) 

Emh (N/mm2) 

2E 1255 

1752** 

3E 2502 

4E 1188 1262 

masonry 

elastic modulus 

(perpendicular to holes) 

Emv (N/mm2) 

2E 1090 

1770 

3E 1846 

4E 1517 1455 

*: This value has been obtained as the product of fmv times 

the mean of the fmh/fmv ratios of the entire dataset reported 

in the table. 
**: This value has been obtained as the product of fmh and 

the mean of the Emh/fmh ratios of the entire dataset reported 

in the table. 

 

 

Fig. 1 Construction drawings of the RC frame specimen 

 

 

was observed that Angel et al. (1994)’s formulation is 

conservative. So, it can be concluded that both Eurocode 

6’s formulation and Angel et al. (1994)’s formulations 

should be even more conservative for URM infills in which 

two-way arching occurs. For this reason, these formulations 

are adequate for a code-based approach to the seismic 

safety check of infills. Actually, no specific formulation for 

URM infills’ OOP strength can be found in Eurocodes. For 

this reason, the practitioner seems to be expected to use 

Eurocode 6’s formulation not only for URM walls (one-way 

arching) but also for URM infills (two-way arching). On the 

other hand, Angel et al. (1994)’s formulation (in some cases 

in a simplified and even more conservative version) is 

proposed by different American standards (such as FEMA  

 

Fig. 2 Picture of a specimen 

 

 

306 1998, FEMA 356 2000 and ASCE/SEI 41-13).  

For infills in which two-way arching occurs, it has been 

shown that Flanagan and Bennett’s empirical formulation, 

which is a slightly modified and simplified version of Dawe 

and Seah’s relationship, is significantly conservative. 

Therefore, also this formulation is adapt to a code-based 

safety check of URM infills and, in fact, is suggested for 

this aim by the New Zealand guidelines to the seismic 

assessment of buildings (NSZEE 2017).  

Clearly, the characterization and prediction of the OOP 

strength of URM infills is probably the first and most 

important issue that must be investigated, and further 

experimental and theoretical efforts are certainly needed on 

this topic. Consider also that URM infill walls are 

widespread in RC buildings in the Mediterranean area and 

that recent earthquakes showed that they are significantly 

prone to OOP seismic accelerations. These accelerations 

can produce their collapse, which is highly dangerous for 

human life safety.  

However, modelling the complete OOP force-

displacement response of such panels is still an open issue 

that deserves adequate attention and investigation with the 

aim of providing, in the future, increasingly complete, 

robust and reliable indications for their seismic assessment 

and safety check. In this regard, Dawe and Seah proposed i) 

an empirical formulation for the prediction of OOP 

strength, and ii) a mechanical model, based on the 

application of the Principle of Virtual Works, aimed at 

predicting the entire OOP force-displacement response. 

Dawe and Seah’s model allows accounting for the 

formation of one-way (horizontal or vertical) or two-way 

(both horizontal and vertical) arching action, as well as for 

the effective boundary conditions at the edges of the infill 

and for the effect of the confining structural elements’ 

deformability on the OOP behaviour of the confined infill 

panel. 

The first scope of this paper is defining a complete, clear 

and immediately usable framework for the application of 

Dawe and Seah’s model. To this aim, the defined 

framework is also applied to compare the predicted force-

displacement curve with the experimental response 

registered for six specimens tested in the laboratory of the 

Department of Structures for Engineering and Architecture 

of the University of Naples Federico II (DIST-UNINA).  
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The results of the comparison are used to assess the 

effectiveness of the model, to enlighten its strengths and to 

discuss its weaknesses and possible modifications.  

To achieve all these goals, the paper is structured as it 

follows. First, the experimental program carried out at 

DIST-UNINA is described and the main results obtained 

are summarized. Second, the mechanical principles on 

which Dawe and Seah’s model is based are recalled and the 

model itself is described in detail. Third, the model is 

applied with reference to the infill walls tested at DIST-

UNINA and the results of this application are compared 

with the experimental response of test specimens. Finally, 

the results of the comparison are discussed. 

 

 

2. Experimental program description and tests’ 
results 

 

This section is dedicated to the general description of 

the experimental program carried out at DIST-UNINA. The 

testing procedure is presented and test specimens’ 

characteristics and materials’ properties are described, as 

well as the instrumentation layout and the loading system 

used to carry out tests. Further details can be found in Di 

Domenico et al. (2018a). In addition, the results of tests are 

summarized. Further discussion on these results can be 

found in Di Domenico et al. (2018a, b). 

 

2.1 Experimental program general description 
 

The tests herein described were carried out on six test 

specimens equal for geometric and nominal mechanical 

properties, except for their thickness. Namely, two sets 

constituted by three 2:3 scaled URM infill walls in RC 

frames were tested. The infills of the first set (80_ 

specimens) were 80 mm thick. The infills of the second set 

(120_specimens) were 120 mm thick. As the height of the  

 

 

(a) 

 
(b) 

 
(c) 

Fig. 4 Experimental response of the specimens bounded 

along four (a) three (b) and two (c) edges 
 

 

infills was always equal to 1830 mm, the height-over-

thickness slenderness ratio for the infills of the first set was  

 

Fig. 3 Loading points’ position and instrumentation layout 
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equal to 22.9, while it was equal to 15.2 for the second set. 

For each set, three different boundary conditions at edges 

were investigated: one infill was mortared to confining 

frame along the upper and the lower edges, i.e., was 

bounded to the confining frame along two edges (OOP_2E 

specimens); one infill was bounded to the confining frame 

along the lower and both the lateral edges, i.e., was bounded 

to the confining frame along three edges (OOP_3E 

specimens); finally, one infill was bounded to the confining 

frame along all the edges (OOP_4E specimens). Clearly, in 

“2E” specimens only one-way vertical arching can occur; in 

“3E” specimens, only one-way horizontal arching can  

 

 

 

occur; in “4E” specimens, two-way horizontal and vertical 

arching can occur. Note that, for consistency with previous 

works by the Authors, the 80 mm-thick specimen bounded 

along three edges will be herein called 80_OOP_3Eb 

specimen. 

The 2:3 scaled RC frames were designed according to 

the seismic Italian building code NTC2008 (2008). 

Construction drawings of the RC frame, with geometric and 

reinforcement details are reported in Fig. 1. A picture of a 

test specimen is reported in Fig. 2. Infill walls with 80 mm 

and 120 mm thickness were realized by using 250×250 

mm2 clay hollow bricks placed with horizontal holes and 1 

TEST 80_OOP_4E TEST 80_OOP_3Eb TEST 80_OOP_2E 

   

TEST 120_OOP_4E TEST 120_OOP_3E TEST 120_OOP_2E 

   

Fig. 5 Experimental deformed shapes at the attainment of peak load for test specimens (red lines) together with their 

regularized form used for the application of Dawe and Seah’s model (black lines) 

φ φ=2dOOP/h

φ’= φ φ’=2dOOP/h

φ φ=2dOOP/h

φ’ φ’=3dOOP/w

φ φ=2dOOP/h

φ φ=2dOOP/h

φ’= φ φ’=2dOOP/h

φ φ=2dOOP/h

φ’ φ’=3dOOP/w

φ φ=2dOOP/h
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cm thick horizontal and vertical courses of class M5 mortar. 

Construction materials’ mean mechanical properties are 

reported in Table 1. The compressive strength of concrete 

was determined on 150×150×150 mm3 cubes according to 

the European standard EN 206-1 while the tensile strength 

of steel rebars was determined on 1000 mm long specimens 

according to the European standard EN 10080. Masonry 

compressive strength and elastic modulus were determined 

by vertical and horizontal compression tests on 

770×770×80 mm3 masonry wallets, according to EN 1052-

1 standard. 

OOP loads were applied on four points by means of 

spherical hinges. The loading points are placed on the 

infill’s diagonals, as shown in Fig. 3. The same loading 

system was used for similar tests by Calvi and Bolognini 

(2001) and Guidi et al. (2013). No axial load was applied 

on columns.  

As shown in Fig. 3, twelve LVDTs (Linear Variable 

Displacement Transducers) were placed along the infills’ 

edges to read OOP displacements due to a potential 

detachment of the infill from the surrounding frame. Five 

laser displacement transducers were placed to read OOP 

displacements of the infill centre and of the four loading 

points. Two LVDTs were placed at the centre of the RC 

frame upper and foundation beam, in order to read potential 

OOP translation or drifts of the RC frame during tests. Only 

for the tests on the 120 mm-thick infills, a vertical LVDT 

was placed at the centre of the upper beam upper edge to 

read potential deflections of the beam due to arching 

thrusts. The OOP load was applied in displacement control 

with OOP displacements monotonically increasing at 0.02 

mm/s velocity.  
 

2.2 General considerations on tests’ results 
 

The OOP response of specimens is compared in Fig. 4. 

As expected, for all boundary conditions, the OOP strength 

exhibited by thicker infills is greater than that observed for 

slender infills. In addition, the strength of specimens in 

which two-way arching occurs is greater than that of 

specimens in which only one-way arching occurs. It can 

also be observed that the strength of specimens in which 

one-way horizontal arching occurs is greater than that 

provided by one-way vertical arching. This is due, in this 

specific case, to masonry mechanical properties (as shown 

in Table 1), despite the infill aspect ratio. In reference to the 

general response of specimens, it can be noted that, 

independently on the specimens’ slenderness, the response 

of infills with equal boundary conditions is similar. Namely, 

infills bounded along two edges showed a load-bearing 

capacity drop soon after the attainment of peak load. This is 

due, most likely to masonry crushing due to vertical arching 

thrusts. Masonry crushing is brittle when masonry is loaded 

perpendicular to bricks’ holes (Di Domenico et al. 2018b), 

as in this case. Given that, the brittle failure of infills is also 

due to the absence of a number of restrained edges adequate 

to allow stresses redistribution after masonry vertical 

crushing. On the contrary, infills bounded along three and 

four edges showed a non-negligible post-peak displacement 

capacity. This is due to the redistribution of stresses 

occurring after peak load towards the specimens’ lateral 

edges combined with the post-peak deformation capacity of 

masonry loaded by horizontal arching thrusts parallel to 

bricks’ holes (Di Domenico et al. 2018b). 

As it will be useful for Dawe and Seah’s model 

application, the deformed shapes of test specimens at the 

attainment of peak load are shown in Fig. 5. Such deformed 

shapes, represented along some vertical and horizontal 

alignments, are obtained through the displacements read by 

instruments placed as shown in Fig. 3. The experimental 

deformed shapes, with displacements normalized with 

respect to the OOP displacement of the infill centre, dOOP, 

are represented with red lines.  

As will be described in detail in section 3, it is necessary 

for the application of Dawe and Seah’s model to define a 

regularized “reference” deformed shape for each specimen. 

The abovementioned regularized and idealized deformed 

shapes have been defined based on the experimental ones 

shown in Fig. 3 and are represented, together with the 

experimental ones, in the same figure with a black line. 

Further details on this topic are provided in section 3. 

 

 

3. Dawe and Seah’s OOP response model 

 

In this section, Dawe and Seah’s model is applied to 

obtain theoretical predictions of the entire force-

displacement response for all specimens and compare them 

to their experimental response. The model is based on the 

application, for increasing values of the infill OOP central 

displacement, of the equation of virtual works by means of 

fracture line analysis.  

A fracture line is a large crack that defines, together 

with other large cracks, a cracking pattern that allows 

considering the infill as constituted by separate parts rigidly 

rotating around them. Note that the “effective” cracking 

pattern considered in the application of Dawe and Seah’s 

stripe procedure is not necessarily consistent with the entire 

“actual” cracking pattern observed during experimental 

tests. In fact, the “effective” cracking pattern that is 

considered and idealized must be consistent with the 

deformed shape shown by the infill wall under lateral OOP 

load. This is a fundamental point, as moments that work for 

the rigid rotations of the infill parts defined by the 

“effective” cracking pattern are calculated, step-by-step, 

based on the deformed shape of the infill. If moments 

associated with masonry flexural strength are considered 

when calculating the internal virtual work, the OOP 

strength of the infill can be highly underestimated (Brincker 

1984).  

However, if arching action occurs, moments acting 

along fracture lines overcome those associated with 

masonry flexural strength, which depends on masonry 

tensile strength, and their value is defined by masonry 

compressive strength. Namely, moments associated with 

arching action depend on the compressive stresses acting in 

the infill thickness due to arching thrusts formed in the wall 

thickness and on their lever arm, as will be shown in the 

following. As this lever arm depends on the deformed shape 

of the infill, the moment acting along fracture lines varies at 

increasing OOP central displacement, as well as along  
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fracture lines themselves. To account for this double 

variation, fracture line analysis is usually applied by 

discretizing infill walls into vertical and horizontal non-

interacting stripes. Vertical stripes allow accounting for 

vertical thrusts and moments along fracture lines associated 

with them; horizontal stripes allow accounting for 

horizontal thrusts and moments along fracture lines 

associated with them. 

In this section, first, the main principles and hypotheses 

of Dawe and Seah’s stripe method are recalled briefly. 

Then, the deformed shape of test specimens is described 

and fixed, separately for each one, as “reference deformed 

shape” for the application of the method. 

 

3.1 Recall on Dawe and Seah’s model fundamentals 
 

Consider an infill wall divided in unit-width stripes with 

length equal to L and subjected to lateral loading. Given an 

“effective” cracking pattern, each stripe is crossed by one or 

more fracture lines. As shown in Fig. 6, it is usual 

considering two types of stripes, as also done in this study. 

A “type A” stripe is crossed by one fracture line at its 

centre. Such fracture line separates type A stripes in two 

equal length parts rigidly rotating around their ends. A 

“type B” stripe is crossed by two fracture lines, both of 

them at the same distance from the stripe nearer end. The 

two fracture lines separate type B stipes in three parts, with 

the two exterior parts rigidly rotating around their ends. 

Clearly, if dOOP is the OOP central displacement of the 

infill, e.g., the central and maximum displacement of a type 

A stripes, type B stripes have a maximum displacement z 

which is different from dOOP due to geometric compatibility. 

Hence, as the infill will be considered as divided in separate 

parts rigidly rotating around fracture lines, the reference 

deformed shape defined for the application of the method is 

a linear relation among z (OOP maximum displacement of 

the generic stripe) and dOOP (OOP central displacement of 

the infill).  

 

 

At a certain value of z, a certain rotation φ is defined for 

each stripe, as reported in Eq. (1). 

φ =
2z

L
 (1) 

At increasing dOOP (and, therefore, for each stripe, at 

increasing z and φ), increasing compressive stresses 

develop at the ends of each stripe part. Such compressive 

stresses produce arching thrusts opposite in their horizontal 

component to the external load. The compressive stresses 

develop along the contact length between the masonry 

segment and the confining elements. The contact length (or 

neutral axis depth), c, is calculated as reported in Eq. (2), 

which has been derived by Dawe and Seah based on 

compatibility and equilibrium conditions. 

c =
2t tanφ − L(1 − cosφ)

4tanφ + (k1k2fmL/tEm)cosφ
 (2) 

In Eq. (2), k1 and k2 are stress block parameters both set 

to 0.85, fm and Em are masonry compressive strength and 

elastic modulus, respectively, in the direction examined. 

According to Dawe and Seah, the resultant of 

compressive stresses acting, per unit length, in the depth of 

contact is equal to N, which is calculated as reported in Eq. 

(3). 

N = k1k2fmc (3) 

This force acts at a distance equal to 0.5c from the 

outermost compressed fibre of the stripe cross-section. Note 

that, through c, N depends only on the rotation, which is 

equal for all stripes, and on the infill geometric and 

mechanical properties. As shown in Fig. 6, N generates a 

moment with respect to the stripe cross section centroid 

which is calculated as reported in Eq. (4).  

M = 0.5N(t − c − z) (4) 

Note that the moment depends on the OOP maximum 

displacement of the considered stripe, so it varies for each 

 

Fig. 6 Deformed shape of a type A and type B stripes divided by fracture lines in separate parts rigidly rotating about their 

ends. On the right, a particular of a stripe single part 
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stripe, as already stated. For each value of dOOP, z can be 

calculated for all stripes as a reference deformed shape has 

been defined, φ can be calculated through Eq. (1), c through 

Eq. (2), N through Eq. (3) and M through Eq. (4). The 

internal work for each infill stripe is calculated as reported 

in Eq. (5). 

LI,stripe = 2N(t − c − z)φ = 4N(t − c − z)
dOOP

L
 (5) 

Given a certain value of the OOP central displacement 

dOOP, the sum of the internal works calculated for both 

horizontal and vertical stripes must be calculated and 

equated to the external work. This equation provides the 

OOP force corresponding to the fixed OOP central 

displacement dOOP and, so, the OOP force-displacement 

curve for the considered infill. 

All the above described approach can be applied also 

when considering the presence of a gap g between the infill 

confining elements and the infill edges (as for “3E” and 

“2E” specimens) To account for this, only Eq. (2) should be 

modified as reported in Eq. (6). 

c =
2t tanφ − L(1 − cosφ) − g

4tanφ + (k1k2fmL/tEm)cosφ
 (6) 

Note that g is assumed as a constant, i.e., is equal to the 

initial gap existing between the infill wall and the confining 

elements. 

Eq. (6) can be modified to consider also the 

deformability of the confining frame elements. In fact, due 

to arching thrusts, the structural elements that support infills 

deform and it is possible to associate with each stripe the 

total outward displacement of the confining elements (i.e., 

the sum of the outward displacements calculated at each 

end of the stripe), f, in correspondence with the considered 

stripe. To account for this, only Eq. (6) should be modified 

as reported in Eq. (7). 

c =
2t tanφ − L(1 − cosφ) − g − f

4tanφ + (k1k2fmL/tEm)cosφ
 (7) 

Differently from g, f is a function of dOOP, as at 

increasing OOP central displacement arching thrusts vary 

and, so, also the outward displacement of the confining 

frame elements, which is subjected to arching thrusts 

applied by the infill, varies. Note that, as f is different for 

each stripe, when the deformability of the confining frame 

is considered, the depth of contact c is different for each 

stripe, and, therefore, also N is different for each stripe. In 

other words, when the infill is confined by stiff elements, 

the vertical and/or horizontal arching thrusts are uniformly 

distributed along its width/height. On the contrary, if the 

confining elements are deformable, such thrusts are no 

more uniformly distributed and are lower where the 

confining elements maximum deflections are expected. 

 

3.2 Evaluation of the reference deformed shape of 
test specimens 
 

As already stated and shown through Eqs. (4)-(5), a 

reference deformed shape has to be defined to apply Dawe 

and Seah’s stripe method. In other words, a linear 

relationship between the OOP central displacement, dOOP,  

 

Fig. 7 Reference deformed shape for specimens 

80_OOP_2E and 120_OOP_2E  
 

 

Fig. 8 Reference deformed shape for specimens 

80_OOP_3Eb and 120_OOP_3E 

 

 

and the OOP displacement at a generic point of the infill 

wall, z, must be chosen. In the application of the procedure, 

i.e., at increasing values of dOOP, this relation cannot vary, 

even if this is not perfectly consistent with reality and 

experimental evidences.  

For the applications herein proposed, a regularized 

reference deformed shape will be defined for all specimens, 

based on the experimental data read by instruments in 

correspondence of the peak load point. This is an 

assumption and is based on the predominant significance, of 

course, of the peak load point among all the force-

displacement couples that define the OOP response of 

specimens. 

A very simple assumption can be made when dealing 

with 80_OOP_2E and 120_OOP_2E specimens. In fact, in 

these cases, the deformed shape at peak load reported in 

Fig. 5 can be idealized and regularized in accordance with 

the deformed shape shown in Fig. 7. Both vertical and 

horizontal stripes are considered. However, in this case, the 

value of c calculated by means of Eq. (6) for horizontal 

stripes is always negative. This means that arching action in 

the horizontal direction cannot occur, as expected. So, 

horizontal stripes do not contribute to the definition of the 

internal work and only vertical stripes (i.e., vertical arching) 

should be considered. 

The total external work, based on the reference 

deformed shape shown in Fig. 7, is reported in Eq. (8). 

LE =
F

4

2dOOP

3
+

F

4

2dOOP

3
+
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4

2dOOP
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+
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=
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3
FdOOP 
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Fig. 9 Reference deformed shape for specimens 

80_OOP_4E and 120_OOP_4E  
 

 

Fig. 10 Comparison between the OOP force-displacement 

relationship predicted by Dawe and Seah under the 

hypothesis of stiff confining elements with the experimental 

response for specimens 80_OOP_2E and 120_OOP_2E 

 

 

120_OOP_3E and their deformed shapes at peak load 

shown in Fig. 6. Remembering that the reference deformed 

shape is somehow idealized and regularized, it seems 

reasonable to assume for both specimens that points B1, C1, 

D1, the loading points B2 and D2 and the central point C3 

(see the instruments layout in Fig. 3) have the same 

displacement. The reference deformed shape shown in Fig. 

8 is considered. In this case, both vertical and horizontal 

stripe are considered and Eq. (6) is applied for the 

calculation of the compression depth c for vertical stripes. 

However, the presence of a top gap g neutralizes the 

contribution of the internal work associated with vertical 

stripes. Hence, actually, only horizontal arching occurs and 

contributes to the specimens’ OOP load-bearing capacity. 

The total external work, based on the reference 

deformed shape shown in Fig. 8, is reported in Eq. (9). 

LE =
F

4
dOOP +

F

4
dOOP +

F

4

2dOOP

3
+

F

4

2dOOP

3

=
5

6
FdOOP 

(9) 

For specimens 80_OOP_4E and 120_OOP_4E, the 

deformed shapes at peak load are shown in Fig. 5. 

Remembering that the reference deformed shape is 

somehow idealized and regularized, it seems reasonable to 

assume for both specimens that the four loading points have 

the same displacement while the central point has a higher 

displacement. In addition, considering the slope of the 

dashed lines in Fig. 5, it seems reasonable to assume that 

the deformed shape is provided of a horizontal “ridge line”, 

as shown in Fig. 9 that reports the reference deformed shape 

for both specimens. In this case, both vertical and horizontal 

stripes are considered and Eq. (2) is applied for the 

calculation of the compression depth c. Both vertical and 

horizontal arching occur and contribute to the specimens’ 

OOP load-bearing capacity. 

The total external work, based on the reference 

deformed shape shown in Fig. 9, is reported in Eq. (10). 

LE =
F

4

2dOOP

3
+

F

4

2dOOP

3
+

F

4

2dOOP

3
+

F

4

2dOOP

3

=
2

3
FdOOP 

(10) 

 

 

4. Application of Dawe and Seah’s model on test 
specimens under the hypothesis of stiff boundary 
elements 

 

First, Dawe and Seah’s stripe method is applied under 

the hypothesis of stiff confining elements. This means that 

the procedure described in section 3 is applied by 

calculating the compression-bearing width, c, by means of 

Eq. (6).  

The application is very simple for “2E” specimens. In 

that case, the total internal work associated only with 

vertical stripes and obtained by integrating Eq. (5) on the 

entire infill width is reported in Eq. (11). 

LI = 4NvdOOP(t − cv − dOOP)
w

h
 (11) 

In Eq. (11), the v subscript indicates that the arching 

thrust N and the contact depth c are calculated with 

reference to vertical arching. By equating the total internal 

work (Eq. (11)) and the external work (Eq. (8)), the 

relationship between the OOP four-point load, F, with the 

OOP central displacement, dOOP, is obtained. This 

relationship, indicated as F(dOOP), is reported in Eq. (12). 

F(dOOP) = 6Nv(t − cv − dOOP)
w

h
 (12) 

The results of Eq. (12) are compared with the 

experimental force-displacement response of specimens 

80_OOP_2E and 120_OOP_2E in Fig. 10. 

For specimen 80_OOP_2E, the OOP strength is 

underestimated (10.9 kN vs an observed strength equal to 

14.6 kN), while for specimen 120_OOP_2E the strength is 

significantly overestimated (35.6 kN vs an observed value 

of 24.0 kN). In addition, the theoretical model fails in 

predicting the entire post-peak behaviour of specimens and 

their sudden failure. 

For “3E” specimens in stiff RC members, the total 

internal work associated only with horizontal stripes is 

reported in Eq. (13b), which has been obtained by 

integrating Eq. (13a) on the entire infill height. Note that the 

internal work associated with vertical stripes is null due to 

the gap g between the infill upper edge and the RC frame  

central point

loading point

h/2 w-h h/2

h
/2

h
/2
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Fig. 11 Comparison between the OOP force-displacement 

relationship predicted by Dawe and Seah under the 

hypothesis of stiff confining elements and the experimental 

response for specimens 80_OOP_3Eb and 120_OOP_3E 

 

 

Fig. 12 Comparison between the OOP force-displacement 

relationship predicted by Dawe and Seah under the 

hypothesis of stiff confining elements and the experimental 

response for specimens 80_OOP_4E and 120_OOP_4E 

 

 

upper beam. 

LI,stripe = 6Nh(t − ch − z)
dOOP

w
 (13a) 

LI = [6Nh

h

w
(t − ch) −

9

2
Nh

h

w
dOOP] dOOP (13b) 

 

In Eqs. (13a)-(13b), the h subscript indicates that the 

arching thrust N and the contact depth c are calculated with 

reference to horizontal arching. By equating the total 

internal work reported in Eq. (13b) with the external work 

reported in Eq. (9), the relationship between the OOP four-

point load F with the OOP central displacement dOOP is 

obtained and reported in Eq. (14). 

F(dOOP) =
9

5
Nh

h

w
[4(t − ch) − 3dOOP] (14) 

The results of Eq. (14) are compared with the 

experimental force-displacement response of specimens 

80_OOP_3Eb and 120_OOP_3E in Fig. 11. 

For specimen 80_OOP_3Eb, the OOP strength is 

significantly underestimated (12.7 kN vs an observed  

 

Fig. 13 Conventions on the reference global and local axes 

and signs adopted 

 

 

Fig. 14 Partitioned deformability matrix 

 

 

strength equal to 18.4 kN), while for specimen 

120_OOP_3E the strength is slightly underestimated (30.2 

kN vs an observed value of 33.6 kN). 

Consider now “4E” specimens. In this case, the total 

internal work is reported in Eq. (15). 

LI = 8dOOP[Nv(t − cv) − NvdOOP] (
w − h

h
) dOOP

+ [4Nv(t − cv) − 2Nvd]dOOP

+ [2Nh(t − ch) − NhdOOP] 
(15) 

By equating the total internal work (Eq. (15)) and the 

external work (Eq. (10)), the relationship between the OOP 

load, F, with the OOP central displacement is obtained. The 

relationship is reported in Eq. (16). 

F(dOOP) = 6Nv(t − cv)
w

h
− 6Nv (

w

h
− 1) d

− 3NvdOOP + 6Nh(t − ch)
− 3NhdOOP 

(16) 

The results of Eq. (16) are compared with the 

experimental force-displacement response of specimens  
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80_OOP_4E and 120_OOP_4E in Fig. 12. 

For specimen 80_OOP_2E, the OOP strength is 

perfectly caught (22.3 kN vs an observed strength equal to 

22.0 kN), while for specimen 120_OOP_2E the strength is 

significantly overestimated (55.0 kN vs an observed value 

of 41.9 kN). 

Prior to whichever consideration on the quality of the 

performances of Dawe and Seah’s model, it is worth to 

remember that the model itself allows accounting for the 

deformability of the surrounding elements and for its 

influence on the entity of arching thrusts and, so, on the 

OOP strength/response of specimens. This issue is 

investigated in the following section. Clearly, as pointed out 

by Flanagan and Bennett, the effect of the frame elements 

deformability can be neglected when dealing with infill 

walls in a real building. In fact, in this case, the outward 

deflection of the structural elements confining a certain 

infill wall is prevented by the presence of other infill walls. 

However, it will be shown in the next section that the effect 

of frame elements’ deformability cannot be neglected when 

interpreting experimental tests’ results in which the frame 

elements are not surrounded and “confined” by other infills. 
 

 

5. Application of Dawe and Seah’s model on test  

 
 
specimens under the hypothesis of deformable 
boundary elements 
 

In this section, Dawe and Seah’s model is applied under 

the hypothesis of deformable confining elements. This 

means that the procedure described in section 3 is applied 

by calculating the compression-bearing width, c, by means 

of Eq. (7). 

Remember that, in this case, the contact length c 

depends, for each stripe, on the total outward displacement 

of the RC frame beam and columns. In other words, cv 

depends on the outward displacement of the upper beam, 

while ch depends on the summation of the outward 

displacements of both columns. The beam outward 

displacement is assumed as positive when it has the same 

direction of vertical thrusts, while columns’ outward 

displacements are assumed as positive when they have the 

same direction of horizontal thrusts acting on each element, 

as shown in Fig. 13.  

Remember that outward displacements evolves at 

increasing OOP central displacement. In addition, they are 

different for each stripe. This means that the compression-

bearing width, which is calculated by means of Eq. (7), is 

different for each stripe, as the f term is different for each 

stripe. As explained by Dawe and Seah themselves and 

Table 2 Values of δij for the deformability matrix. In the following Equations, a=EIb/EIc and b=w/h. EIb and EIc are the 

flexural stiffness of the beam and of the columns’ cross sections, respectively 

submatrix 1.1 

(xi
2(−2(6a + b)(a + 2b)h3xi + 6(6a + b)(a + 2b)h3xj + 3h(−(15a2 + 26ab + 3b2)h + (a + b)(6a + b)xi)xj

2 + (6a + b)(3(a + b)h − (2a + b)xi)xj
3))

(12(6a + b)(a + 2b)EIch3)
 xi ≤ xj (18) 

(xj
2(3hxi(2(6a + b)(a + 2b)h2 − (15a2 + 26ab + 3b2)hxi + (a + b)(6a + b)xi

2) − (6a + b)(2(a + 2b)h3 − 3(a + b)hxi
2 + (2a + b)xi

3)xj))

(12(6a + b)(a + 2b)EIch3)
 xi > xj (19) 

submatrix 1.2 

xi
2(bh − xj)xj(b(b(h + xi) + a(−5h + 6xi)) − 2(a + 2b)xj)

4b(6a + b)(a + 2b)EIch2
 (20) 

submatrix 1.3 

(xi
2xj

2(3h(−(9a2 + 14ab + 3b2)h + (a + b)(6a + b)xi) + (6a + b)(3(a + b)h − (2a + b)xi)xj))

(12(6a + b)(a + 2b)EIch3)
 (21) 

submatrix 2.1 

(bh − xi)xixj
2(a(−5bh − 2xi + 6bxj) + b(−4xi + b(h + xj)))

4b(6a + b)(a + 2b)EIch2
 (22) 

submatrix 2.2 

−(xi(bh − xj)(2b(6a + b)(a + 2b)h2xi
2 − bh(3ab(8a + 5b)h2 + 3b(13a + 4b)hxi − 2(a + 2b)xi

2)xj + 2(a + 2b)(6abh2 + (3bh − 2xi)xi)xj
2))

(12ab2(6a + b)(a + 2b)EIch3)
 xi ≤ xj (23) 

((bh − xi)xj(3abh2xi(b(8a + 5b)h − 4(a + 2b)xi) + 3bhxi(b(13a + 4b)h − 2(a + 2b)xi)xj − 2(a + 2b)(b(6a + b)h2 + bhxi − 2xi
2)xj

2))

(12ab2(6a + b)(a + 2b)EIch3)
 xi > xj (24) 

submatrix 2.3 

−(bh − xi)xixj
2(7abh + 3b2h − 2axi − 4bxi − b(6a + b)xj)

4b(6a + b)(a + 2b)EIch2  (25) 

submatrix 3.1 

(xi
2xj

2(3h(−(9a2 + 14ab + 3b2)h + (a + b)(6a + b)xi) + (6a + b)(3(a + b)h − (2a + b)xi)xj))

(12(6a + b)(a + 2b)EIch3)
 (26) 

submatrix 3.2 

(xi
2(bh − xj)xj(a(−7bh + 6bxi + 2xj) + b(b(−3h + xi) + 4xj)))

(4b(6a + b)(a + 2b)EIch2)
 (27) 

submatrix 3.3 

(xi
2(−2(6a + b)(a + 2b)h3xi + 6(6a + b)(a + 2b)h3xj + 3h(−(15a2 + 26ab + 3b2)h + (a + b)(6a + b)xi)xj

2 + (6a + b)(3(a + b)h − (2a + b)xi)xj
3))

(12(6a + b)(a + 2b)EIch3)
 xi ≤ xj (28) 

(xj
2(3hxi(2(6a + b)(a + 2b)h2 − (15a2 + 26ab + 3b2)hxi + (a + b)(6a + b)xi

2) − (6a + b)(2(a + 2b)h3 − 3(a + b)hxi
2 + (2a + b)xi

3)xj))

(12(6a + b)(a + 2b)EIch3)
 xi > xj (29) 
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herein recalled, when introducing the frame deformability 

in the model, it is necessary to implement an iterative 

procedure to calculate, for each stripe, the correct value of c 

corresponding to a certain value of dOOP.  

The steps of the iterative procedure are the following: 

i. The OOP force-displacement must be calculated under 

the hypothesis of stiff confining elements. For a specific 

value of dOOP, this leads to a distribution of arching thrusts 

N acting on the confining structural elements. As already 

stated, at this stage N is equal for all stripes with the same 

direction. Therefore, a uniformly distributed outward load 

acts on the RC frame structural elements.  

ii. To introduce the frame deformability in the OOP 

response model, it is necessary to calculate the frame 

deformed shape under the load distribution evaluated at the 

first step. This leads to the definition of a value of f for each 

stripe.  

iii. A new compression-bearing width value must be 

calculated for each stripe by means of Eq. (7). Clearly, this 

leads to a new distribution of arching thrusts, which is no 

more uniform even when associated with stripes with the 

same direction. 

iv. The new outward load distribution leads to a new 

deformed shape of the confining frame, which leads to a 

new value of c for all stripes and, so, to a new distribution 

of arching thrusts.  

Steps iii. and iv. should be reiterated until no significant 

variation in the value of arching thrusts is observed between 

successive iterations. As this iterative procedure must be 

performed for each value of dOOP, when accounting for the 

frame deformability it is not possible to provide a closed-

form final relationship between the OOP force and the OOP 

central displacement. So, in this case, the OOP force-

displacement relationship is found numerically: the higher 

the number of vertical and horizontal stripes, the lower the 

error made in the discretization of the infill wall in stripes.  
 

5.1 Definition of the confining frame deformability 
matrix 
 

To achieve all these goals, it is necessary to introduce in 

the routine a matrix containing the deformability 

coefficients of the RC frame, Δ. If n is the number of 

horizontal stripes and m is the number of vertical stripes, 

the RC frame elements’ outward displacements must be 

calculated in n control sections of each column and in m 

control sections in the upper beam. Each control section 

corresponds to the centre of a stripe. For all these reasons, 

the deformability matrix that must be implemented is a 

square matrix with (2n+m) rows and (2n+m) columns. The 

value of n and m can be set by the analyst at will. The 

generic term of the Δ matrix, δij, represents the outward 

displacement in the i-th control section when a unit-force 

with the direction of arching thrusts is applied in the j-th 

control section. For each value of dOOP, for each iteration, 

the trial value of the arching thrust acting in the j-th stripe, 

Nj, must be multiplied for the j-th column of Δ to obtain the 

outward displacement of all control sections due to Nj.  

When this has been done for all columns of Δ, the actual 

outward displacement in the i-th control section, fi, which 

enters Eq. (7), is provided by the sum of all Njδij products, 

as reported in Eq. (17). 

fi = ∑ Nj

2n+m

j=1

δij (17) 

To express in a closed form all the δij terms, it is 

convenient to divide Δ in sub-matrices, as shown in Fig. 14. 

Namely, both rows and columns of the matrix are divided in 

three groups. The first group is constituted by n matrix rows 

and by n matrix columns and is related to the RC frame left 

column. The second group is constituted by m matrix rows 

and by m matrix columns and is related to the RC frame 

upper beam. The third group is constituted by n matrix rows 

and by n matrix columns and is related to the RC frame 

right column. Therefore, a total of 9 submatrices is defined. 

For the sake of clarity, they are numbered in Fig. 14. The 

generic submatrix carries the outward displacement of a 

control section belonging to the left column/upper 

beam/right column when a unit-force is applied, in the 

direction of arching thrusts, to a control section belonging 

to the left column/upper beam/right column. 

The value of δij calculated for each submatrix is 

formulated in Eqs. (18)-(29), which are reported in Table 2. 

In these Equations, xi is the abscissa, in local coordinates, of 

the frame section in which the displacement is calculated; xj 

is the abscissa, in local coordinates, of the frame section in 

which the thrust force is applied. 
 

5.2 Some modelling issues 
 

Dawe and Seah’s model has been defined for URM 

infills in steel frames. So, when dealing with confining 

elements’ deformability issues, they considered the 

extensional, flexural and torsional deformability of such 

elements. In the application herein presented, the 

extensional and torsional deformability of the confining 

members has been neglected, as shown also through Eqs. 

(18)-(29). This is due to two main reasons: first, Flanagan 

and Bennett demonstrated empirically that, even for URM 

infills in steel frames, the effect of the extensional and 

torsional deformability of the confining members can be 

neglected; second, the axial and torsional deformability of 

RC members is certainly lower than that of steel members, 

as it is well-known. 

A second issue should be considered when dealing with 

RC elements deformability. Clearly, for steel members, it is 

possible to assume a constant value of the flexural 

deformability coefficients up to yielding. However, the 

deformation of RC elements depends on their initial elastic 

stiffness only at low load levels. If the non-linear behaviour 

of concrete and steel rebars is not explicitly modelled, as in 

the present case, an effective deformability of members 

should be defined to obtain a realistic evaluation of the 

frame displacements given that a linear elastic behaviour is 

assumed for them.  

In the next section, the comparison between the 

experimental response of test specimens and that predicted 

by means of Dawe and Seah’s model under the hypothesis 

of stiff confining elements are shown, together with that 

calculated by accounting for the frame deformability with 

deformability of the RC elements equal to the initial elastic  
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one. As already stated in section 2, an LVDT was used to 

measure the upper beam outward deflection due to arching 

thrusts during tests 120_OOP_4E and 120_OOP_2E. These 

measures are used to calibrate the RC elements’ effective 

deformability. The effective or “equivalent” deformability 

of RC elements is the one that allows predicting a 

maximum beam deflection equal to that observed during 

tests. For specimens 120_OOP_4E and 120_OOP_2E, the 

predictions obtained by using these values of the effective 

deformability are also shown. 
 

5.3 Experimental vs predicted OOP response of 
specimens accounting for the frame deformability 
 

In Fig. 15, the experimental response of specimens 

(black continuous line) in compared to the prediction 

obtained by applying Dawe and Seah’s model 

• with the hypothesis of stiff structural elements (black 

dashed line); 

• with the hypothesis of deformable confining elements, 

by assuming a flexural stiffness of the RC elements’ cross-

sections equal to their gross elastic stiffness (blue dashed 

line). 

Only for specimens 120_OOP_2E and 120_OOP_4E, a 

third blue continuous line is represented. Such a prediction  

 

 

 

is obtained by reducing the flexural stiffness of the RC 

confining elements with a certain coefficient lower than the 

unit, equal to 0.50 for specimen 120_OOP_2E and to 0.30 

for specimen 120_OOP_4E. The reducing coefficient has 

been calibrated to have a predicted maximum outward 

displacement for the upper RC beam equal to that registered 

by the vertical LVDT shown in Fig. 3. For these two 

specimens, the experimental and predicted OOP central 

displacement-maximum outward beam deflection diagrams 

are shown and compared in Fig. 16. The experimental and 

predicted OOP strength values for all specimens are shown 

and compared in Table 3. 

From Fig. 15, the following considerations can be 

drawn. The peak load displacement is well caught for 2E 

specimens, while it is underestimated for 3E specimens and 

slightly overestimated for 4E specimens. These trends are 

even more visible when introducing the confining frame 

deformability. For 2E specimens, it is clear that the model 

does not allow reproducing the load-bearing capacity drop 

at the attainment of peak load. This is observed also for 4E 

specimens. In this case, a small reduction of the OOP force 

was registered at peak load. This load reduction is most 

likely due to vertical crushing and is not reproduced by the 

predictive model. This is also shown in Fig. 16, in which it  

specimen 80_OOP_2E specimen 80_OOP_3Eb specimen 80_OOP_4E 

   

Fig. 15(a) Comparison of the experimental and theoretical response of the 80 mm-thick specimens. Experimental response: 

black continuous line; predicted response with stiff elements: black dashed line; predicted response with deformable elements 

provided of an initial elastic flexural stiffness: blue dashed line; predicted response with deformable elements provided of a 

reduced effective flexural stiffness: blue continuous line 

specimen 120_OOP_2E specimen 120_OOP_3E specimen 120_OOP_4E 

   

Fig. 15(b) Comparison of the experimental and theoretical response of the 120 mm-thick specimens. Experimental response: 

black continuous line; predicted response with stiff elements: black dashed line; predicted response with deformable elements 

provided of an initial elastic flexural stiffness: blue dashed line; predicted response with deformable elements provided of a 

reduced effective flexural stiffness: blue continuous line 
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Table 3 Comparison of the experimental and predicted 

values of the OOP strength of test specimens. “CoV” is for 

Coefficient of Variation; “stiff” is for stiff supporting 

elements; “deformable elastic” is for deformable supporting 

elements with elastic stiffness; “deformable effective” is for 

deformable supporting elements with effective stiffness 

specimen 

OOP strength (kN) 

exp. 

predicted 

exp./pred. 

predicted 

exp./pred. 

predicted 

exp./pred. 

(stiff) 
(deformable 

elastic) 

(deformable 

effective) 

80_ OOP_2E 14.6 10.9 1.34 9.9 1.47 - - 

120_OOP_2E 24.0 36.0 0.67 31.8 0.75 28.9 0.83 

80_ 

OOP_3Eb 
18.4 12.7 1.45 10.0 1.84 - - 

120_OOP_3E 33.6 30.2 1.11 24.1 1.39 - - 

80_ OOP_4E 22.0 22.3 0.99 21.4 1.03 - - 

120_OOP_4E 41.9 55.0 0.76 51.9 0.81 46.2 0.91 

 mean 1.05 mean 1.22   

 median 1.05 median 1.21   

 CoV 29% CoV 35%   

 

 

can be observed that the OOP central displacement-beam 

deflection relationship is well caught by the model up to the 

attainment of peak load: after that, the reduction of the 

beam deflection due to the reduction of the OOP load is not 

reproduced. Most likely, this occurs due to the assumption 

of a stress-block as masonry constitutive law, which does 

not allow accounting for the load-bearing capacity drop that 

occurs, at the attainment of masonry compressive strength, 

even at the material level (as shown in Di Domenico et al. 

2018b). 

In reference to the OOP strength, it is observed from 

Table 3 that the model is not able to reproduce the strength 

of 3E specimens as it systematically and significantly 

underestimates it (mean observed-over-predicted ratio of 

the subset equal to 1.28 for stiff confining frame and to 1.62 

for deformable confining frame). Most likely, this occurs 

because the model does not account for strength sources 

different from arching action (e.g., masonry flexural 

strength). Such sources seem to be not negligible in 3E  

 

 

specimens, especially when considering vertical stripes.  

With the exclusion of 3E specimens, focusing on 2E and 

4E specimens, the prediction of the OOP strength 

significantly benefits from the introduction of the frame 

deformability with the assessment of the RC elements 

effective stiffness (mean observed-over-predicted ratio of 

the subset equal to 1.15 for 2E specimens and to 0.97 for 4E 

specimens). However, on the subset constituted by the 80 

mm- and 120 mm-thick 2E and 4E specimens, the simple 

introduction of the frame deformability with initial elastic 

stiffness of the RC members produces satisfactory 

predictions, with a mean of the experimental-over-predicted 

ratios very close to the unit and equal to 1.02. Based on 

these evidences, it seems that Dawe and Seah’s model can 

well predict the OOP strength of 2E and 4E specimens. 

In addition, it seems that their complete force 

displacement response can be well predicted, too, provided 

that some modifications to the model itself are performed 

(i.e., the introduction of the real stress-strain relationship for 

masonry).  

 

 

6. Conclusions 

 

In this paper, the experimental OOP response of URM 

infill walls with different height-over-thickness slenderness 

ratio and boundary conditions at edges has been compared 

with the theoretical prediction obtained by applying Dawe 

and Seah’s mechanical model, which is based on the 

application of the Principle of Virtual Works. 

The experimental program described was dedicated to 

the characterization of the OOP response of URM infill 

walls. Six specimens equal for nominal mechanical 

properties and geometry, except for their thickness, were 

tested. Three specimens were 80 mm-thick, while the other 

three specimens were 120 mm-thick. For each one of these 

two sets, three different boundary conditions were 

considered. One infill was bounded on two sides, along the 

upper and lower edges, to the confining RC frame (2E 

specimens). A second infill was bounded on three sides, 

along the lower and lateral edges, to the confining RC 

  

(a)  (b) 

Fig. 16 Comparison of the experimental and theoretical OOP central displacement-outward upper RC beam deflection 

diagrams obtained for specimens 120_OOP_2E (a) and 120_OOP_4E (b). The black lines refers to the experimental 

observation. The blue dashed lines refer to the prediction obtained by assigning an initial elastic flexural stiffness for the RC 

elements. The blue continuous lines refer to the prediction obtained by assigning a reduced effective flexural stiffness to the 

RC elements 
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frame (3E specimens). A third infill was bounded along all 

sides to the confining RC frame (4E specimens). 

After the description of tests’ results, Dawe and Seah’s 

model is presented in detail. The mechanical principles of 

the model are introduced and its application is described 

and explained step-by-step. In addition, the introduction in 

the model of the confining RC frame elements’ 

deformability is described in detail. Namely, explicit 

formulations, which were missing in Dawe and Seah’s 

research, for the calculation of the RC frame deformability 

coefficients were presented. This detailed description of the 

model allows its complete and straightforward application 

to whichever potential user. 

Finally, the model is applied and its predictions are 

compared with the experimental response of test specimens. 

It was found that the model does not predict a behaviour for 

3E specimens consistent with the experimental evidences. 

Namely, the OOP strength of such specimens is 

systematically and significantly underestimated. On the 

contrary, especially when the RC elements’ deformability is 

considered, the overall response of 2E and 4E specimens 

seems to be sufficiently well caught, as the mean of the 

experimental-over-predicted strength ratios is very close to 

the unit.  

Based on this study, it seems that Dawe and Seah’s 

model performs sufficiently well even in its original form 

for 2E and 4E specimens. In addition, it seems sufficiently 

flexible to be modified, in future works, by introducing 

different issues that can improve its predictive capacity for 

both the OOP strength and the overall OOP force-

displacement relationship. Namely, the model can be 

modified by introducing a specific stress-strain relationship 

for masonry, instead of the stress-block proposed by the 

authors. This can allow the reproduction of certain 

phenomena currently not well caught, such as the load-

bearing capacity drop-significant, for 2E specimens, or 

small, for 4E specimens-that occurs due to masonry vertical 

crushing at the attainment of the OOP strength. To improve 

the predictive capacity for 3E specimens, strength sources 

different from arching action (e.g., masonry flexural 

strength) can be introduced. In addition, a further extension 

of the model may be focused on the prediction of the 

potential switch from two-way to one-way arching during 

the OOP loading (a phenomenon observed, e.g., by 

Akhoundi et al. 2018). 

Based on the results of this study, Dawe and Seah’s 

model seems to deserve efforts in further investigation. The 

model, in fact, seems to be suitable for the proposal of a 

robust approach for the prediction of the OOP response and 

strength of URM infills. 
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Notation 

 

The following symbols are used in this paper. 

c contact length 

dOOP OOP displacement of the infill centre 

Em masonry elastic modulus 

Fmax OOP strength 

F(dOOP) 
OOP force (F) as a function of the OOP central 

displacement (dOOP) 

f 
outward displacement of the confining 

elements 

fb brick compressive strength 

fcm concrete mean compressive strength 

fj mortar compressive strength 

fm masonry compressive strength 

fmv masonry compressive strength (vertical direction) 

fmh 
masonry compressive strength (horizontal 

direction) 

fym steel rebars’ mean yielding stress 

g 
gap between the infill and the confining 

structural elements 

h infill height 

k1 stress block factor 

k2 stress block factor 

L 

infill length  

in the direction of arching thrust 

LE external virtual work 

LI internal virtual work 

M moment due to arching thrusts 

N arching thrust 

t infill thickness 

w infill width 

z 

maximum OOP displacement of the 

generic stripe 

φ rotation of infill parts 

Subscripts 

h referred to the horizontal direction 

v referred to the vertical direction 
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