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1. Introduction  
 

Many types of research have paid attention to stress 

distribution around holes in a perforated plate and different 

methods were utilized. The complex variable method is one 

of the most useful techniques for solving a problem. (Motok 

1997) studied the effect of bluntness on stress distribution 

around various holes in the infinite plate under axial 

loading. 

(Louhghalam et al. 2011) showed how the complex 

variable approach can be numerically coupled with the 

finite element method to analyze stress distribution in plates 

with rectangular holes; in this case, cracks (Banh and Lee 

2018) may be also common to treat stress concentration. 

(Batista 2011) investigated stress distribution around 

polygonal cutouts with complex geometries and Schwarz-

Christoffel mapping function. (Banerjee et al. 2013) studied 

stress distribution around circular cutout on isotropic and 

orthotropic plates under transverse loading using a 

numerical method. 

Meta-heuristic optimization methods have gained 

significant attention in various engineering applications 

since they have simple conceptions and cool to implement, 

without any gradient info, may evade local optimum and 

may be used in an extensive range of issues. Thus, 

numerous scientists have endeavored to employ them into 

various issues in different fields including Ant Colony 

Optimization (ACO), artificial bee colony (ABC), Genetic 

Algorithm (GA) (Dashti et al. 2018), Simulated Annealing  
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(SA) (Rezakazemi et al. 2011), Particle Swarm 

Optimization (PSO) (Rezakazemi et al. 2017, Dashti et al. 

2018), and etc. to the design of composite structures. Based 

on complex variable method, (Jafari et al. 2018) used an 

analytical method to optimize the symmetrical composite 

laminates with non-circular cutouts and failure strength of 

infinite orthotropic plates by means of GA. To find the 

minimum of stress around a quasi-triangular cutout, the 

Dragonfly Algorithm (DA) technique was used by (Jafari 

and Bayati Chaleshtari 2017). They achieved the best 

conditions of factor influencing the minimum normalized 

stress around the quasi-triangular cutout. Rotation angle, 

load angle, bluntness, fiber angle, and the material of the 

plate were considered as the design variables. Moreover, 

(Jafari and Bayati Chaleshtari 2017) used gray wolf 

optimization algorithm (GWO) to investigated the impact of 

various factors on the stress of infinite orthotropic plates 

with central polygonal cutout. The curvature radius of the 

corner of the cutout, load angle, cutout orientation and fiber 

angle for orthotropic materials was considered as the 

effective factors on stress distribution around cutouts.  

Ant Lion Optimizer (ALO) has been recently used as a 

bio-inspired algorithm. This algorithm mimics the manners 

of ant lion hunting ants in nature. As a comparison with 

GA, PSO, and Cuckoo System (CS), this method is 

designed by some equations and engineering problems to 

reveal that ALO has better performance in convergence, 

local optima prevention, and robustness. (Nischal and 

Shivani 2015) presented the ALO technique to formulate 

the optimal load dispatch issue. He compared the results of 

ALO for three, six and twenty generating unit systems with 

other techniques. (Yao and Wang 2017) proposed a 

dynamic adaptive ALO for route planning of unmanned 

aerial vehicle.  (Petrović  et al.  2015) optimized 

combinatorial NP-hard flexible process planning problem  
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Fig. 1 A schematic of the plate with a triangular hole 

converting to a circular hole 

 

 

and the performance of the ALO algorithm was compared 

with GA, SA, and PSO. The results indicated that the 

proposed algorithm performs better than other bio-inspired 

optimization algorithms. (Nischal and Mehta 2015) used the 

ALO to solve optimal load dispatch problem for three, six 

and twenty generating unit systems. (Mouassa et al. 2017) 

used a developed algorithm inspired by the hunting 

mechanism of antlions in nature for solving optimal reactive 

power dispatch (ORPD) problem. 

The main aim of this study is to exhibit that the ALO is 

an algorithm with appropriate performance in optimizing 

the finite plates with different hole shapes. Also, in this 

research, according to the analytical solution based on 

complex variable and conformal mapping, the effect of 

important parameters on stress analysis of a finite metallic 

plate with various holes is investigated when the plate is 

subjected to in-plane loading (shear load uniaxial tensile, 

and biaxial). ALO is also used to optimize the effective 

parameters such as curvature radius of the corner of the 

cutout, the rotation angle of the hole, the ratio of plate's 

sides and the ratio of hole size to plate size. 

 

 

2. Theoretical methods 
 

The main goal of this paper is to optimize the stress and 

effective factors on the stress distribution of metallic finite 

plate with regular polygon hole in the linear elastic region. 

In such plate, the proportion of hole domain to the 

lengthiest domain is higher than 0.2. The problem is 

assessed according to the hypothesis of the in-plane stress 

without volumetric forces. The hole is presumed to be 

situated at the midpoint and far from external loads 

(σρ=σρθ=0). The rotation angle of the hole that signifies its 

location based on the horizontal is indicated by β. 

The plate is under biaxial, uniaxial and shear loadings. 

The goal is to evaluate the impacts of various factors such 

as the hole corner radius of curvature, the shape of the hole, 

ratio of hole size to plate size, the rotation angle of the hole 

(β), and the type of in-plane loading on the optimum SCF. It 

must be pointed out that in this paper λ=0 and 2 are taken 

for uniaxial and biaxial loadings, respectively. To analyze 

the stress of non-circular holes, first, the problem of the  
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Fig. 2 Effect of n on the creation of a hole 

 

 

plate with a dissimilar hole in complex plane z must be 

transformed into to problem of the plate with a circular hole 

with unit radius in the mapping plane ζ. This is performed 

using Eq. (1) where R (R=1), n, and m are diameter, hole 

type, corner curvature, respectively. Fig. 1 displays this 

transformation for triangular hole. 
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m
Rwiyxz


 +==+=  (1) 

where m≥0 is a measure of sharpness or curvature of the 

corner. Varying m for a certain hole results in a different 

radius of curvature, and the resulting stress in different 

directions should be investigated. For m=0, the hole is a 

circle while increasing m rounds the hole. 

The impact of n on the formation of various holes is 

presented in Fig. 2. As observed, the number of domains of 

the hole is n+1. 

The complex variable ζ in ρ and θ coordinate is as Eq. 

(2) 
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By considering Eqs. (3)-(4) 
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By replacing the above equation in Eq. (1) and 

separating the imaginary and real parts, x and y coordinates 

are yielded.  
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The modeling is assessed according to the complex 

variable method and plane elasticity theory. In the absence 

of volumetric forces, the compatibility equation in terms of 

stress function U is as Eq. (7) 
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A solution of plane problems in elasticity theory is 

summarized in form of determination of bi-harmonic 

function U(x,y). To this end, (Muskhelishvili 1966) 
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recommended the below solution for Eq. (7) 

)]()(Re[),( zzzyxU  +=  (8) 

In Eq. (8), Re represents the real part of a complex 

expression. φ(z) and θ(z) are analytical functions of 

complex variable z. Then, two holomorphic analytical 

functions φ(z) and ψ(z)=θ’(z) were considered which satisfy 

boundary conditions on the external contour. By means of 

the conformal mapping, the stress components as a function 

of ξ are well-defined as below 
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After calculating 𝜑(𝜉)  and 𝜓(𝜉)  as well as 

substituting them in Eqs. (12)-(14), the stress components 

were obtained (Pan et al. 2013) 
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where An, Bn, Cn and Dn are complex numbers.  

At the present, based on the above-mentioned equations, 

it is essential to estimate the unidentified coefficients 

remaining in Eqs. (15) and (16) to investigate the stress 

distribution around the hole. Hence, a least square boundary 

collocation approach is employed. To estimate the 

unidentified coefficients in Eq. (15), equidistance 

collocation points are chosen on the internal boundary in ζ-

plane and on the external boundary in z-plane (Jafari and 

Ardalani 2016). Afterward, corresponding points related to 

the internal and external boundaries of the regular hole in z-

plane and the finite plate in ζ-plane can be calculated by Eq. 

(1). 

 

 

3. Ant lion optimizer (ALO) 
 

Over the last decades, there has been a growing interest 

in algorithms inspired by the behaviors of natural 

phenomena (Dashti et al. 2018, Rezakazemi et al. 2018). It 

is shown by many researchers that these algorithms are well 

suited to solve complex computational problems. In this 

paper, ALO is used as a new optimization algorithm based 

on the lifecycle of ant lions in natural. This method mimics 

the hunting mechanism of ant lions in nature (Mirjalili 

2015). 

 

3.1 Inspiration 
 

Ant lions are related to the Myrmeleontidae class and 

Neuroptera order. The lifecycle of ant lions involves two 

steps: larvae and adult. The first one is commonly 

recognized as “doodlebug” due to the trails it leaves in the 

sand whereas seeking for an excellent position to form its 

trap. Afterward, the ant lion hides on the bottom of pit and 

waits for insects particularly ants to be trapped. When an 

ant falls into the trap, it is hard to escape, as the ant lion 

throws sands out of pit with its mandible to force the victim 

to slide towards the bottom. Eventaully, the ant is dragged 

into the sand and eaten. Then, the ant lion amends the trap 

and waits for the next hunt. Besides, it should be pointed 

out that the size of pit is positively related to the strength of 

ant lions. Commonly, the more ants the ant lion has 

consumed, the stronger the ant lion, the bigger the pit size, 

the larger the probability of catching more ants. The 

modeling of the behavior of ant lions and ants is given in 

the following section by (Mirjalili 2015).  

 

3.2 Mathematical model of ALO 
 

To model ALO, ants are needed to travel across the seek 

space, and ant lions are permitted to hunt them and become 

fitter by traps. As ants travel stochastically in nature when 

seeking for food, a random walk is selected for modeling 

ants’ movement (Mirjalili 2015). 
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where cumsum calculates the cumulative sum, n is the 

maximum number of iteration, t exhibits the stage of 

random walk and r(t) is a stochastic function calculated as 

Eq. (18) 
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where t exhibits the stage of random walk and rand is a 

random number produced with homogenous distribution in 
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the range of [0,1]. The positions of ants are preserved in a 

MAnt 
matrix 
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where Ai,j exhibits the value of the j-th variable of i-th ant, n 

is the number of ants, and d is the number of variables. 

Fitness function of each ant is preserved in the matrix MOA 
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where f is the objective function. In Eq. (19), MAntlion is the 

matrix for preserving the position of each ant lion, ALi,j 

exhibits the j-th dimension’s value of i-th ant lion. 
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Analogously, the fitness function of each ant lion is 

preserved in the matrix MOAL 
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To keep the random walks inside the seek space; they 

are normalized using the Eq. (23) 
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where ai and bi are the minimum and maximum of the 

random walk of i-th variable, respectively. t
ic
 
and t

id  are 

the minimum and maximum of i-th variable at t-th iteration, 

respectively. The modeling of ants trapping in ant lion's pits 

is represented by the Eqs. (24)-(25) 
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where t
jAntlion  exhibits the location of the j-th ant lion at 

t-th iteration. To model the ant lions’s hunting capability, a 

roulette wheel is used.  

Ant lions shoot sands outwards the center of the pit 

when they understand that an ant is in the trap. This slides 

down the trapped ant which is trying to escape. To model 

such action, the radius of ants’ random walks hyper-sphere 

is reduced adaptively. Eqs. (26)-(27) are proposed in this 

regard by (Mirjalili 2015). 
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where 𝐼 is a ratio calculated as Eq. (28)  
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Where t is the current iteration, T is the maximum 

number of iterations, w is the constant that depends on 

current iteration as Eq. (29) 
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Afterward, an ant lion is needed to renew its location to 

the latest location of the hunted ant to increase its chance of 

catching new prey (Mirjalili 2015) 
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where t exhibits the current iteration, t
jAntlion  refers the 

location of chosen j-th ant lion at t-th iteration, and t
iAnt  

illustrates the location of i-th ant at t-th iteration. The final 

section is elitism. It is presumed that each ant randomly 

walks around a selected ant lion by the roulette wheel ( t
AR ) 

and the elite simultaneously ( t
ER ) at t-th iteration as Eq. 

(31) 

2

t
E

t
At

i

RR
Ant

+
=  (31) 

where t
iAnt  indicates the location of i-th ant at t-th 

iteration.  
 

 

4. Verification of results 
 

For verification of the ALO results, two well-known 

algorithms i.e., PSO and GA algorithms are chosen. To 

gather measurable findings, all algorithms are implemented 

on the test functions several times and statistical test is used 

to consider outcomes and confirms that the outcomes are 

statistically noteworthy. In this study, the Wilcoxon test 

with α<0.05 and two assumptions is also performed. The 

null assumption denotes to the performance equality of the 

three optimization algorithms  (𝐻0: 𝜒1 = 𝜒2 = 𝜒3), and 

other assumption is one hypothesis which denotes to the 

nonappearance of equality that algorithms and confirms the 

advantage of ALO compared to GA and PSO algorithms  
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Fig. 3 Comparing convergence diagram of ALO, PSO and 

GA 

 

Table 1 Material properties of the plate 

Material E (GPa) 𝜈 

Steel 207 0.3 

 

 
(𝐻1: 𝜒1 ≠ 𝜒2 ≠ 𝜒3). Based on findings achieved from the 

Wilcoxon test, the P values found by this method is 

between the ALO and GA (0.043). Also, the P value of this 

method is between the ALO and PSO (0.045). The P values 

indicate that this superiority is statistically substantial as 

their values are below 0.05. Consequently, the first 

assumption is excluded. The ALO algorithm profits from 

high exploitation which helps the ALO algorithm to quickly 

converge to the global optimum and exploit it precisely. 

The convergence diagram for steel plate with a square 

hole in one of the optimum conditions m=0.03218, 

=9.4257, L/a=0.2 and under bi-axial loading is shown in 

Fig. 3. The constraints, comprise of lower and upper 

boundaries, can be altered upon the hole shape. The results 

prove that in the iterations of 150, the best convergence can 

be attained for ALO in 27 iterations, while for GA and PSO 

algorithms converges after 133 and 85 iterations, 

respectively. As observed, the ALO converges quicker than 

both GA and PSO and the optimum findings achieved by 

ALO are further better. Using CPU 2.66GHz, convergence 

times for ALO, PSO, GA was 71, 105 and 155 s 

respectively, which confirms that the ALO in less time to 

achieve the suitable convergence. 

 

 

5. Results 
 

The mechanical properties of the plate used in this study 

are given in Table 1. According to the fact that in isotropic 

materials, the type of material does not affect stress 

concentration, only results associated with steel are 

presented. Here, the optimum values of normalized stress in 

metallic finite plates with square, triangular, hexagonal and 

pentagonal holes under biaxial, uniaxial and shear loadings 

are presented. The various factors including the shape of the 

hole, the rotation angle of the hole and bluntness and ratio 

of hole size to the plate are taken into account. In this study, 

finite metallic plates with hypotrochoid holes are 

considered. Therefore, it is first tried to examine the 

optimum values of design parameters and a minimum value 

of SCF of the hole in each ratio of hole size to plate size, 

using ALO algorithm. 

 

5.1 Triangular hole 
 

Table 2 exhibits the impact of the hole size ratio to plate 

on the value of cost function by simultaneous consideration 

of rotation angle and cutout radius of curvature as design 

variables and compare optimal stress values obtained by 

solving an infinite plate (L/a=0.01) for metallic finite plate 

with triangular hole subjected to in-plane loadings (b/a=1). 

In this section, the optimization is performed for three 

design variables i.e., ratio of hole size to plate size, hole 

corner radius of curvature and rotation angle to find the 

optimum value of normalized stress in terms of the 

optimum rotation angle and hole curvature. It is clarified in 

Table 2, with increasing the ratio of L/a, the value of 

optimum SCF increases in three type of loading. It is 

obvious that for the L/a ratio less than 0.2, enhancing the 

ratio have not a remarkable impact on the changes of stress 

concentration and the percentage error is less than 10%. 

Then, infinite plate solution can be applied for these ratios. 

Whereas for ratios higher than 0.2, by enhancing L/a, the 

value of stress concentration enhances significantly and the 

percentage difference for the examination of optimum SCF 

of the perforated finite plate by the theory of infinite plates 

reaches 129.43% in L/a=0.6. This clearly shows that 

effective of the ratio of hole size to plate size in a finite 

plate. Moreover, for m=0 (circular hole), the cost function 

of all loading states is minimum. Fig. 4 exhibits the impact 

of hole size to plate size ratio on the value of optimum SCF 

for finite metallic plate subjected to in-plane loadings. 

Furthermore, Fig. 5 shows the maximum optimum stress in 

terms of L/a in the three aforementioned loadings states. As 

observed, by increasing the ratio of hole size to plate size in 

the range of L/a less than 0.2 the value of optimum stress is 

approximately constant. Furthermore, in the range of L/a 

greater than 0.2 the values of optimum stress increase with 

increasing L/a. Moreover, the impact of L/a is more 

noticeable for uniaxial loading than other types of loading, 

therefore the rate of increase in the optimum SCF is more 

severe in this type of loading. 
 

5.2 Square hole 
 

For the square hole, the optimum values of effective 

parameters, optimum SCF and the comparison of optimum 

stress values obtained by solving an infinite plate 

(L/a=0.01) with a metallic finite plate subjected to in-plane 

loadings (b/a=1) are presented in Table 3. The optimum 

values of rotation angle, hole corner radius of curvature and 

normalized stress are the outputs of the ALO. The findings 

in Table 3 indicate that the value of SCF less than circular 

hole can be achieved by choosing suitable values for the 

effective parameters such as rotation angle. Also, Table 3 

shows that with increasing L/a, the values of optimum stress 

concentration increase in all three types of loading. For the 

L/a ratios less than 0.2, the percentage difference is below 

20% for all types of loading. While for ratios higher than 

0.2, the value of stress concentration enhances significantly 

and the percentage difference for the examination of  
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Table 2 Optimum results for triangular hole in various 

values of L/a (b/a=1) 

Shear loading Bi-axial loading Uni-axial loading 

L/a 
Percentage 

Difference 

Optimum 

SCF 

Percentage 

Difference 

Optimum 

SCF 

Percentage 

Difference 

Optimum 

SCF 

0 2.3099 0 2.8871 0 3.0006 0.01 

2.38 2.365 1.54 2.9316 2.12 3.0643 0.1 

9.9 2.5386 6.36 3.0708 8.84 3.266 0.2 

23.4 2.8502 15.02 3.3207 21.15 3.6354 0.3 

44.25 3.3322 28.82 3.7193 41.30 4.24 0.4 

74.22 4.0244 50.61 4.3485 74.01 5.2214 0.5 

114.31 4.9504 86.55 5.3859 129.43 6.8843 0.6 

 

 

Fig. 4 Optimum SCF in a finite plate with a triangular hole 

under (a) uni-axial (b) bi-axial and (c) shear loadings for 

different values of L/a 

 

 

Fig. 5 Maximum optimum SCF with L/a for triangular hole 

in different loading 

 

 

optimum SCF of the perforated finite plate by the theory of 

infinite plates reaches 304% in some cases. Therefore, we 

cannot use of the infinite plate solution for these ratios. In  

Table 3 Optimum results for square hole in various values 

of L/a (b/a = 1) 

Type of 

Loading 
L/a β m  Optimum SCF 

Percentage 

Difference 

Uni-axial 

0.01 47.1252 0.05625 2.4709 0 

0.1 21.9899 0.05857 2.5594 3.58 

0.2 22.9902 0.06431 2.8497 15.33 

0.3 28.274 0.06446 3.4057 37.83 

0.4 28.2712 0.06630 4.2529 72.11 

0.5 9.4252 0.08847 5.3684 117.26 

0.6 53.4103 0.09332 6.7285 172.30 

Bi-axial 

0.01 9.4196 0.02846 2.5652 0 

0.1 53.4066 0.02921 2.6728 4.19 

0.2 9.4257 0.03218 2.8402 10.72 

0.3 21.9918 0.03565 3.25 26.69 

0.4 47.1208 0.03985 3.994 55.69 

0.5 21.9905 0.05117 5.4707 113.26 

0.6 21.991 0.07086 10.3663 304.11 

Shear 

0.01 3.5549 0.08953 1.7739 0 

0.1 41.7267 0.08938 1.8460 4.06 

0.2 4.6238 0.09325 2.0797 17.23 

0.3 1.1847 0.09278 2.5294 42.58 

0.4 38.7713 0.09566 3.2914 85.54 

0.5 11.4861 0.09538 4.1634 134.70 

0.6 53.268 0.09702 4.6447 161.83 

 

 

addition to Fig. 6 exhibits the stress distribution around the 

hole after applying the optimum values of mentioned 

effective parameters in three types of loading for different 

ratio of hole size to plate size. 

Fig. 7 exhibits the maximum optimum stress 

concentration in various L/a ratios for biaxial, uniaxial, and 

the shear loadings. In all loadings, with increasing L/a, 

optimum SCF increases. The effect of L/a is more 

pronounced for biaxial loading. 

 

5.3 Pentagonal cutout 
 

Optimum stress values obtained from various ratios of 

hole size to plate size for a finite metallic plate with a 

pentagonal hole is presented in Table 4. According to this 

table, with increasing L/a, the optimum SCF in all three 

types of loadings increases. Also, for the ratios of L/a 

greater than 0.2, by changing
 
L/a, the optimum SCF rises 

significantly but for the ratio of L/a less than 0.2, increasing 

the ratio do not have a significant effect on variation of 

SCF. Moreover, in the pentagonal hole, m = 0 that 

represents a circular hole and yields the minimum value of 

cost function for all types of loading. Fig. 8 exhibits the 

stress distribution around the hole after applying optimum 

values for the aforementioned effective parameters in the 

three types of loading and different ratios of hole size to 

plate size. As observed, as L/a increases, in all three types 

of loading, the optimum values of SCF stress increase. 

Furthermore, Fig. 9 shows the variation of maximum  
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Fig. 6 Optimum SCF in a finite plate with a square hole 

under (a) uni-axial (b) bi-axial and (c) shear loadings for 

different values of L/a 

 

 

Fig. 7 Maximum optimum SCF with L/a for square hole in 

different loadings 

 

 

optimum SCF in terms of L/a in the three mentioned 

loadings. Similar to the triangular hole for all ratio of L/a, 

by increasing the ratio of hole size to plate size in the range 

of less than 0.2 the value of optimum stress is 

approximately constant. Then, the solution is satisfactory 

for these ratios. 

Moreover, in the range of greater than 0.2 the values of 

optimum stress increase and the percentage difference 

reaches 182.26% for uni-axial loading in L/a=0.6. As 

observed, increasing rate of SCF for the uniaxial loading is 

quicker than another loading. 

 

5.4 Hexagonal hole 
 

The difference of optimum SCF of a finite plate with a 

hexagonal hole as function of bluntness and rotation angle 

for various ratios L/a is presented in Table 5. The results 

indicate that for different ratios of L/a, the hexagonal hole 

(m≠0) leads to the optimum SCF less than those of circular 

hole (m=0). This will be possible by proper selection of the  

Table 4 Optimum results for pentagonal hole in various 

values of L/a (b/a = 1) 

Shear loading Bi-axial loading Uni-axial loading 

Percentage 

Difference 

Optimum 

SCF 

Percentage 

Difference 

Optimum  

SCF 

Percentage 

Difference 

Optimum 

SCF 
L/a 

0 2.31 0 2.8872 0 3.0008 0.01 

2.88 2.3767 1.86 2.9411 2.57 3.078 0.1 

12.06 2.5888 7.74 3.1109 10.79 3.3248 0.2 

28.77 2.9747 18.51 3.4217 26.20 3.7871 0.3 

55.02 3.5810 36.31 3.9357 52.43 4.5744 0.4 

92.97 4.4577 66.15 4.7972 97.78 5.9351 0.5 

142.02 5.5908 120.13 6.3557 182.26 8.4702 0.6 

 

 

Fig. 8 Optimum SCF in a finite plate with a pentagonal hole 

under (a) uni-axial (b) bi-axial and (c) shear loadings for 

different values of L/a 

 

 

Fig. 9 Maximum optimum SCF with L/a for a pentagonal 

hole in different loadings 

 

 

effective parameters values. Also, for the ratio of L/a less 

than 0.2, the percentage difference between the results 

obtained by finite and infinite plate solutions is less than  
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Table 5 Optimum results for hexagonal hole in different 

values of L/a (b/a = 1) 

Type of 

Loading 
L/a β m Optimum SCF 

Percentage 

Difference 

Uni-axial 

0.01 29.6935 0.01374 2.7398 0 

0.1 21.9887 0.01340 2.8083 2.5 

0.2 65.9809 0.01513 3.0299 10.58 

0.3 15.7076 0.01470 3.4344 25.35 

0.4 15.7053 0.01581 4.1217 50.43 

0.5 21.989 0.01838 5.2688 92.30 

0.6 53.4093 0.02381 7.2862 165.93 

Bi-axial 

0.01 0 0.00764 2.7341 0 

0.1 0 0.00776 2.7828 1.78 

0.2 0 0.00811 2.9370 7.42 

0.3 0 0.00862 3.2204 17.78 

0.4 0 0.00942 3.6858 34.80 

0.5 0 0.01087 4.4465 62.63 

0.6 0 0.01376 5.7526 110.40 

Shear 

0.01 29.8407 0.02314 2.0154 0 

0.1 10.9956 0.02356 2.0737 2.89 

0.2 73.8262 0.02293 2.2594 12.10 

0.3 10.9965 0.02257 2.6002 29.01 

0.4 23.5703 0.02082 3.1562 56.60 

0.5 54.9795 0.01863 3.9985 98.39 

0.6 17.2805 0.01416 5.2311 159.55 

 

 

Fig. 10 Optimum SCF in a finite plate with a hexagonal 

hole under (a) uni-axial, (b) bi-axial and (c) shear loadings 

for different values of L/a 

 

 

20%. While for higher ratios, the percentage difference for 

the assessment of optimum SCF of the perforated a finite 

plate by the theory of infinite plates is 165.93% for uni-

axial loading in L/a=0.6. Moreover, Fig. 9 exhibits the 

stress distribution around the hole after applying the 

optimum values of the mentioned effective factors in three 

different loadings and ratios of hole size to plate size. 

Fig. 11 shows maximum optimum SCF in terms of L/a  

 

Fig. 11 Maximum optimum SCF with L/a for a hexagonal 

hole in different loadings 

 

 

in the three aforementioned loadings. As it is clear, the 

optimum SCF enhances by an increment the ratio of L/a. 

Furthermore, the effectiveness of the ratio of hole size to 

plate size on uni-axial loading is greater than others 

loadings. 

 

 

6. Scope of application of infinite plate theory  
 

In this section, for different cutouts and bluntness 

parameters, different ratios of L/a that the percentage 

difference between the results obtained by finite and infinite 

plate theory is less than 10% are listed in Table 6. In fact, 

this table indicates that what aspect ratio (L/a) for different 

holes leads to the percentage difference of less than 10% 

when we use infinite plate theory. For various holes the 

aspect ratio is different. Also, with enhancing the value of 

bluntness parameter (m), the ratio of L/a increases. 

 

 

7. Conclusions 
 

In the current work, the ability of the ALO algorithm to 

optimize the finite perforated plates was examined. The 

optimal values of factors influencing the stress distribution 

around hypotrochoid hole located in the center of the finite 

metallic plate at different ratios of hole size to plate under 

in-plane loading were determined. Design variables in this 

study were the curvature of hole corners, the rotation angle 

of the hole, the aspect ratio of the plate, the ratio of hole 

size to plate size and the type of loading. In this study, the 

cost function was taken into account to be the value of SCF 

obtained based on the Muskhelishvili complex variable and 

conformal mapping with plane stress assumption. The stress 

functions in the finite plate with hypotrochoid hole were 

calculated by superposition of the stress function in the 

infinite plate having a hypotrochoid hole with stress 

function in the finite plate free of hole. The unidentified 

coefficients were determined using least squares boundary 

approach and proper boundary conditions. The optimum 

value of bluntness parameter (m) for all holes with an odd 

number of sides was m=0 which is equal to a circular hole.  
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Table 6 Scope of application of infinite plate theory for 

different holes 

Triangular Hole 

m=0.1 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.21 102.098 3.7522 9.35 

Bi-axial 0.26 0 3.924 9.9 

Shear 0.2 123.117 2.7499 9.87 

m=0.2 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.22 120.95 5.0902 9.63 

Bi-axial 0.26 0 5.682 9.2 

Shear 0.2 58.9195 3.418 9.8 

m=0.3 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.22 98.9596 7.9896 9.8 

Bi-axial 0.27 0 9.39 9.5 

Shear 0.2 27.4895 4.93 9.87 

Square Hole 

m=0.05 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.16 40.8443 2.714 9.7 

Bi-axial 0.2 15.6988 2.9421 9.4 

Shear 0.15 0 2.1006 9.8 

m=0.1 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.17 40.8378 2.9779 9.2 

Bi-axial 0.22 40.8422 3.7637 9.2 

Shear 0.15 0 1.946 9.3 

m=0. 15 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.19 40.8403 3.818 9.7 

Bi-axial 0.24 40.8408 5.240 9.9 

Shear 0.15 0 2.153 9.1 

Pentagonal Hole 

m=0.05 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.19 136.6591 4.2233 9.3 

Bi-axial 0.23 0 4.3142 9.7 

Shear 0.18 139.0151 3.076 9.7 

m=0.8 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.19 98.9569 5.2914 9.2 

Bi-axial 0.23 0 5.4878 9.5 

Shear 0.18 19.6351 3.7616 9.8 

m=0.12 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Table 6 Continued 

Uni-axial 0.19 139.8018 7.5646 9.18 

Bi-axial 0.23 0 7.9282 9.43 

Shear 0.18 44.7674 5.2591 9.9 

Hexagonal Hole 

m=0.05 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.2 78.5393 3.7679 9.56 

Bi-axial 0.25 0 4.234 9.9 

Shear 0.18 80.1079 2.461 9.7 

m=0.08 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.2 9.4247 5.0619 9.1 

Bi-axial 0.25 0 5.84 9.8 

Shear 0.18 17.2795 3.123 9.9 

m=0.12 

Type of Loading L a⁄  𝛽 Optimum SCF 
Percentage 

Difference 

Uni-axial 0.2 53.4073 8.4961 9.1 

Bi-axial 0.25 0 9.85 9.3 

Shear 0.18 86.3941 4.9969 9.9 

 

 
While, for the holes with an even number of sides, the 
optimum conditions happened when m0. For these holes, 
by choosing appropriate values for the effective parameters, 
SCF less than circular holes could be achieved. Moreover, 
results showed that for particular L/a values the 
determination of stress distribution in finite plates by means 
of infinite plates theory can allow to remarkable 
differences. These ratios for different holes and bluntness 
were presented. Results obtained from ALO showed an 
excellent balance between exploitation and exploration 
which leads to high local optimum avoidance and an 
appropriate convergence. Therefore, it can be found that 
ALO is a reliable and appropriate technique for optimizing 
a finite metallic plate. 
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