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1. Introduction  
 

Microbeams are important micro-scale structures that 

have been widely used in micro and nanotechnology 

indust r ies  such as  microe lec tromechanica l  and 

biomechanical devices, micro sensors and actuators, and 

atomic force microscopes. The design and optimization of 

microbeams are extensively investigated in the literature. 

Since the classical continuum theory is powerless 

sincapting size effect, researchers have developed theories 

to study the size-dependencies of microstructures 

reasonably as nonlocal elasticity theory (Eringen 1972), 

strain gradient theory (Arefi et al. 2018, Karami et al. 2017, 

2018c, Karami et al. 2018b), micropolar elasticity 

(Nowacki 1986) and modified couple stress theory (Yang et 

al. 2002) on which the current study is based, relates the 

couple stress tensor to the symmetric rotational gradient 

with only one material length scale parameter is used in the 

constitutive equations. The nonlocal continuum theory 

founded by Eringen (1972), assumes that the stress state at a 

given reference point is considered to be function of the 

strain states of all points in the body. therefore, it should 

mention some pioneer work based on the nonlocal 

continuum theory (Amnieh et al. 2018, Arani and Kolahchi 

2016a, Hajmohammad et al. 2018b, Babak et al. 2016,  
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Kolahchi 2017a, Mehdi et al. 2017, Kolahchi et al. 2017c, 

Bounouara et al. 2016, Mokhtar et al. 2018, Yazid et al. 

2018). Kolahchi (2017e) studied the visco-nonlocal-refined 

Zigzag theories for dynamic buckling of laminated 

nanoplates. 

New type of composite developed recently, named 

functionally graded material (FGM), has high potential to 

use as a structural material (Bennoun et al. 2016, Bouderba 

et al. 2013, Boukhari et al. 2016, Bousahla et al. 2016, El-

Haina et al. 2017, Tounsi et al. 2013, Yahia et al. 2015). 

Recently, the application of FG materials has broadly been 

spread in nano-composite (Guessas et al. 2018, 

Hajmohammad et al. 2017, Hamid et al. 2016, Maryam 

Shokravi 2017a, Kolahchi et al. 2016d, Kolahchi et al. 

2017b, Khetir et al. 2017). Shokravi (2017a) analyzed the 

buckling of embedded laminated plates with CNT-

reinforced composite layers using FSDT theory and DQM 

method. Utilising the advantage of the modified couple 

stress theory, the size-dependent behaviors of FG 

microbeams and nanobeams has been study by many 

researchers (Trinh et al. 2016, Al-Basyouni et al. 2015, 

Bensattalah et al. 2016, Bouazza et al. 2014, Bouazza et al. 

2015, Rakrak et al. 2016, Zidour et al. 2015, Mahmoud et al 

2014, Ahouel et al. 2016, Bellifa et al. 2017b, Bouafia et al. 

2017, Cherif et al. 2018, LarbiChaht et al. 2015, Mouffoki 

et al. 2017, Youcef et al. 2018, Zemri et al. 2015). A large 

number of documents discussing the size effect of the FG 

microbeams have been published based on modified couple 

stress theory. 

An Euler-Bernoulli beam model for free vibration and 
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Abstract.  In the current research paper, a quasi-3D beam theory is developed for free vibration analysis of functionally 

graded microbeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by 

three functions, power function, symmetric power function and sigmoid law distribution. The modified coupled stress theory is 

used to incorporate size dependency of micobeam. The equation of motion is derived by using Hamilton’s principle, however, 

Navier type solution method is used to obtain frequencies. Numerical results show the effects of the function distribution, 

power index and material scale parameter on fundamental frequencies of microbeams. This model provides designers with 

guidance to select the proper distributions and functions. 
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buckling analysis was proposed by Kong et al. (2008). 

Asghari et al. (2010a, 2010b, 2011) studies static and 

vibration analysis of functionally graded Euler-Bernoulli 

and Timoshenko microbeam models. On the basis of the 

modified couple stress theory. Reddy (2011) has developed 

nonlocal models for bending, free vibration and buckling of 

functionally graded beam according to Euler-Bernoulli and 

Timoshenko beam theories. Static and dynamic analysis of 

third-order shear deformation functionally graded 

microbeams by Salamat-Talab et al. (2012). Reddy and 

Arbind (2012); developed algebraic relationships between 

the bending solutions of Timoshenko beam theory (TBT) 

and homogeneous Bernoulli-Euler beams for microstructure 

dependent FGM beams. Euler-Bernoulli and Timoshenko 

models have been widely used in the last years.  

Since the shear deformation effect is more pronounced 

in advanced structures, shear deformation theories such as 

first-order shear deformation theory (FSDT) and higher-

order shear deformation theories (HSDTs) (Abdelaziz et al. 

2017, Belabed et al. 2014, Belabed et al. 2018, Bouadi et 

al. 2018, Bouhadra et al. 2018, Bousahla et al. 2014, Chikh 

et al. 2017, Mahi et al. 2015, Menasria et al. 2017, Zidi et 

al. 2017, Zine et al. 2018). These theories should be used to 

predict the static, buckling and vibration (Kolahchi et al. 

2016c, Kolahchi and Cheraghbak 2017b, Shokravi 2017b). 

in the last two decades, a considerable research reports on 

the nanoparticles reinforced polymer (Golabchi et al. 2018, 

Hajmohammad et al. 2018a, Bakhadda et al. 2018, 

Besseghier et al. 2017, Karami et al. 2018a) and concrete 

(Hajmohammad et al. 2018c) investigated that they have 

good properties to produce high multifunctional composites 

for various potential applications. Maryam Shokravi 

(2017b) has considered nanocomposites beams made from 

concrete reinforced by silica nanoparticles. Zarei et al. 

(2017) stressed of emphasize on the Seismic response of 

underwater fluid-conveying concrete pipes reinforced with 

SiO2 nanoparticles and fiber reinforced polymer (FRP) 

layer.  

Şimşek and Reddy (2013) presented a unified higher-

order beam theory for an FGM micro-beam embedded in 

elastic Pasternak medium. Dehrouyeh-Semnani and 

Nikkhah-Bahrami (2014) investigated the influence of size-

dependent shear deformation on mechanical behavior of 

microstructures dependentbeam based on modified couple 

stress theory. Tounsi et al. (2015) and Hanifi et al. (2017) 

used a modified couple stress theory and neutral surface 

position to investigate the bending and dynamic behaviors 

of functionally graded microbeams. By using modified 

couple stress-theory, Thai et al. (2015) studied the static, 

vibration and buckling behaviors of FG sandwich beams 

without a shear correction factor. Using quasi-3D theories, a 

considerable research investigates the behaviors of 

functionally graded and composite plates (Abualnour et al. 

2018, Benchohra et al. 2018, Hebali et al. 2014, Younsi et 

al. 2018). Trinh et al. (2016) investigates the behaviors of 

functionally graded (FG) microbeams using various shear 

deformation theories based on the modified couple stress 

theory.  

Based on the frame work of the modified couple stress 

theory and Hamilton’s principle, Trinh et al. (2017), studied 

the free vibration behavior of bi-dimensional functionally 

graded microbeams using a quasi-3D theory under arbitrary 

boundary conditions. Fang et al. (2018) developed a size-

dependent three-dimensional dynamic model of rotating 

FGM micro-beams. Li et al. (2018), focuses on the buckling 

behaviors of a micro-scaled bi-directional functionally 

graded (FG) beam based on a generalized differential 

quadrature method (GDQM). 

The classical beam theory (CBT) or Euler-Bernoulli 

beam model is the well-known one and is appropriate only 

for thin beams because it assumes that planes initially 

normal to the mid plane remain plane and normal after 

deformation, The CBT neglects the effects of transverse 

shear deformation. In order to take into account the shear 

deformations, the Timoshenko or the First-order Beam 

Theory (FBT) which is appropriate for thick beams is 

introduced. However, this theory is limited in use because it 

assumes a constant transverse shear deformation through 

the thickness of the beam. Therefore, a shear correction 

factor is required to appropriately represent the strain 

energy of shear deformation. To overcome this limitation, 

several higher order shear deformation theories (HSDTs) 

have been proposed (Bouderba et al. 2016, Bourada et al. 

2015, Kaci et al. 2018), third-order deformation theory 

(TDT), sinusoidal deformation theory (SDT) (Bourada et al. 

2019, Houari et al. 2016), exponential deformation theory 

(EDT), hyperbolic deformation theory (HDT) and refined 

deformation theory (Attia et al. 2018, Beldjelili et al. 2016, 

Belkorissat et al. 2015, Bellifa et al. 2017a, Fourn et al. 

2018, Meziane et al. 2014, Zidi et al. 2014). They all 

neglect the thickness stretching by considering the 

transverse displacement independent of the thickness 

coordinate. For this reason, other HSDTs that include 

stretching effect, called quasi-3D theories, have been 

developed (Draiche et al. 2016, Hamidi et al. 2015). Those 

effects become important for very thick beams. 

In short, most analyses of microbeams use the power 

law distribution and Mori-Tanaka scheme to calculate the 

effective material properties of FG microbeam. To the best 

of our knowledge, microbeam vibration of symmetric 

power function and sigmoid function are not yet studied in 

literature. 

 

 

2. Functionally graded materials 
 

Consider a FG microbeam with rectangular cross-

section b×h and length ℓ, Fig. 1, which is made of metal and 

ceramic. The material properties such as Young’s modulus 

E, density ρ and Poisson’s ratio v are assumed to vary 

through the beam’s depth continuously. 

 

 

 

Fig. 1 Geometry and coordinate of a FG microbeam 
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Fig. 2 Power-Law function (P-FGM) 

 

 

Fig. 3 Symmetric power-law function (SP-FGM) 
 
 

2.1 Spatial material graduation functions 
 

In the current analysis, three functions are assumed to 

describe the spatial distribution of materials through the 

thickness direction. The first is the power law function P-

FGM, (Kolahchi et al. 2015, Bennai et al. 2015, Ranjan Kar 

et al. 2016, Tlidji et al. 2014), which is described by 

ccmme VPVPP +=  (1) 

Pm and Pc are the material properties of metal and 

ceramic, and Vm and Vc represent the volume fraction of 

metal and ceramic, which are assumed to be 
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Where k is the power-law index. 

The modified symmetric power-law function S-P-FGM, 

Aldousari (2017), has the following form 
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Fig. 4 Sigmoid function S-FGM. 

 

 

The third function used in this study is the Sigmoid 

function S-FGM (Aldousari 2017, Bouguenina et al. 2015). 

This function is depicted by 
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The distribution of Young’s modulus through the beam 

thickness for P-FGM, SP-FGM and sigmoidal distribution 

is presented in Figs. 2, 3 and 4, respectively. 

 

2.2 Constitutive equations 
 

The linear stress-strain relations are expressed by (Trinh 

et al. 2016) 
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3. Governing equations of motion 
 

In the modified couple stress theory, (Rahmani et al. 

2018, Kolahchi and Bidgoli 2016d), the virtual strain 

energy is expressed in terms of both strain tensor and 

curvature tensor as 

( ) zyxjidvmU
v

ijijijij ,,, =+=    
(6) 

σij and εij are the components of the stress tensor and 

strain tensor mij and χij denote deviatoric part of the couple 

stress tensor, and symmetric curvature tensor, which are 
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defined as 
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G is the shear modulus; l is the material length scale 

parameter; and θi are the components of the rotation vector 

related to the displacement field as 
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According to the quasi-3D beam theory (Bennai et al. 

2015), the displacement field is given by 
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u(x,t), wb(x,t), ws(x,t) and wz(x,t) are four unknown 

displacements of midplane of the beam. The thickness 

stretching effect in quasi-3D theories is taken into account 

by adding the component g(z)wz(x,t) in Eq. (9c). While f(z) 

and g(z) represent functions determining the distribution of 

the transverse shear and normal stresses along the thickness 

of the beam. In this study, the shape function is chosen 

based on the hyperbolic function proposed by Soldatos 

(HBT) (Soldatos 1992) and EBT by (Karama et al. 2003). 

The nonzero components of the strain and the curvature 

tensors can be obtained as 

'''''1
sbx fwzwu

x

u
−−=




=  (10a) 

( )''13
zsxz wwg

z

u

x

u
−=




+




=  (10b) 

zz wg
z

u '3 =



=  (10c) 

( ) ( )''''''''

42

1

2

1
zssb

y

xy ww
g

ww
x

−++−=



=


  (10d) 

( )''
'

42

1
zs

y

yz ww
g

z
−=




=


  (10e) 

Table 1 Dimensionless fundamental frequency of P-FGM 

microbeams ℓ/h=5
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam Theory 

(CBT) 
16.0020 13.5770 12.1927 8.1401 

First-order Beam Theory 

(FBT) 
14.7917 12.5885 11.3293 7.4837 

Exponential Beam Theory 

(EBT) 
15.7266 13.3456 12.0034 8.0348 

hyperbolic beam theory 

(HBT) 
15.7140 13.3316 11.9948 8.0431 

Third-order Beam Theory 

(TBT)* 
15.7140 13.3318 11.9948 8.0425 

Sinusoidal Beam Theory 

(SBT)* 
15.7174 13.3364 11.9971 8.0375 

Quasi-3DExponential 

Beam Theory 

 (Quasi-3D EBT) 

15.6441 13.2825 11.9571 7.9857 

Quasi-3D hyperbolic beam 

theory 

 (Quasi-3D HBT) 

15.6248 13.2625 11.9444 7.9976 

Quasi-3D Third-order 

Beam Theory 

 (Quasi-3D TBT) * 

15.6249 13.2627 11.9444 7.9967 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

15.6304 13.2692 11.9477 7.9887 

2 

Classical Beam Theory 

(CBT) 
9.7649 8.1817 7.2974 5.1338 

First-order Beam Theory 

(FBT) 
9.3153 7.8316 6.9992 4.8579 

Exponential Beam Theory 

(EBT) 
9.5237 7.9931 7.1410 4.9945 

hyperbolic beam theory 

(HBT) 
9.5175 7.9866 7.1369 5.0032 

Third-order Beam Theory 

(TBT)* 
9.5175 7.9867 7.1369 5.0026 

Sinusoidal Beam Theory 

(SBT)* 
9.5191 7.9888 7.1380 4.9975 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

9.5030 7.9883 7.1489 4.9894 

Quasi-3D hyperbolic beam 

theory 

 (Quasi-3D HBT) 

9.4917 7.9776 7.1420 4.9987 

Quasi-3D Third-order 

Beam Theory 

 (Quasi-3D TBT) * 

9.4917 7.9776 7.1420 4.9979 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

9.4950 7.9809 7.1435 4.9913 

4 

Classical Beam Theory 

(CBT) 
7.4281 6.1304 5.4202 4.0457 

First-order Beam Theory 

(FBT) 
7.1237 5.9008 5.2281 3.8445 

Exponential Beam Theory 

(EBT) 
7.1785 5.9436 5.2631 3.8592 

hyperbolic beam theory 

(HBT) 
7.1753 5.9407 5.2614 3.8649 

Third-order Beam Theory 

(TBT)* 
7.1753 5.9407 5.2614 3.8645 

Sinusoidal Beam Theory 

(SBT)* 
7.1761 5.9416 5.2619 3.8610 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

7.1798 5.9624 5.2963 3.8781 

Quasi-3D hyperbolic beam 

theory 

 (Quasi-3D HBT) 

7.1713 5.9547 5.2914 3.8839 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

7.1713 5.9547 5.2913 3.8833 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

7.1738 5.9568 5.2922 3.8786 

8 

Classical Beam Theory 

(CBT) 
6.7181 5.4993 4.8382 3.7243 

First-order Beam Theory 

(FBT) 
6.4448 5.2952 4.6687 3.5393 

Exponential Beam Theory 

(EBT) 
6.4603 5.3089 4.6776 3.5133 

hyperbolic beam theory 

(HBT) 
6.4583 5.3073 4.6764 3.5159 

Third-order Beam Theory 

(TBT)* 
6.4583 5.3073 4.6764 3.5157 

Sinusoidal Beam Theory 

(SBT)* 
6.4588 5.3078 4.6767 3.5139 

Quasi-3D Exponential 

Beam Theory  

 (Quasi-3D EBT) 

6.4692 5.3365 4.7202 3.5420 

Quasi-3D hyperbolic beam 

theory (Quasi-3D HBT) 
6.4615 5.3296 4.7160 3.5448 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

6.4615 5.3296 4.7159 3.5444 
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Table 1 Continued 

8 

Quasi-3D Sinusoidal 

Beam Theory (Quasi-3D 

SBT) * 

6.4638 5.3314 4.7166 3.5413 

l=0 

Classical Beam Theory 

(CBT) 
6.4657 5.2736 4.6294 3.6115 

First-order Beam Theory 

(FBT) 
6.2021 5.0775 4.4667 3.4317 

Exponential Beam Theory 

(EBT) 
6.2041 5.0813 4.4666 3.3900 

hyperbolic beam theory 

(HBT) 
6.2025 5.0801 4.4657 3.3910 

Third-order Beam Theory 

(TBT)* 
6.2025 5.0801 4.4657 3.3909 

Sinusoidal Beam Theory 

(SBT)* 
6.2029 5.0804 4.4659 3.3900 

Quasi-3D Exponential 

Beam Theory 

 (Quasi-3D EBT) 

6.2159 5.1122 4.5132 3.4227 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

6.2085 5.1057 4.5092 3.4240 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

6.2085 5.1057 4.5091 3.4237 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

6.2107 5.1073 4.5097 3.4214 

*Trinh et al. (2016) 

 

 

Hamilton’s principle (Kolahchi 2016a) is used here to 

derive the equations of motion. The principle can be stated 

in analytical form as 

0)(
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t is the time; U is the strain energy; and K is the kinetic 

energy. 

The governing equations of motion are obtained as 
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The stress and moment resultants are given by 

zss
A

bxx XwwBwBAudAN +−−== 
'  (13a) 

zss
A

bx

b

x YwwDwDBudAzM +−−== 
'  (13b) 

zss
A

bssx

s

x wYwHwDuBdAfM +−−== 
'  (13c) 

)( z
A

ssxzxz wwAdAgQ +==    (13d) 

Table 2 Dimensionless fundamental frequencies of P-FGM 

microbeams ℓ/h=10
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam Theory 

(CBT) 
16.1966 13.7529 12.3671 8.2646 

First-order Beam 

Theory (FBT) 
15.8337 13.4558 12.1057 8.0624 

Exponential Beam 

Theory (EBT) 
16.1178 13.6863 12.3118 8.2332 

Hyperbolic beam theory 

(HBT) 
16.1144 13.6824 12.3095 8.2359 

Third-order Beam 

Theory (TBT)* 
16.1144 13.6824 12.3095 8.2357 

Sinusoidal Beam 

Theory (SBT)* 
16.1152 13.6837 12.3100 8.2341 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

16.1012 13.6796 12.3140 8.2323 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

16.0945 13.6727 12.3100 8.2366 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

16.0945 13.6728 12.3100 8.2363 

Quasi-3D Sinusoidal 

Beam Theory 

 (Quasi-3D SBT) * 

16.0963 13.6747 12.3107 8.2330 

2 

Classical Beam Theory 

(CBT) 
9.8837 8.2867 7.3994 5.2101 

First-order Beam 

Theory (FBT) 
9.7550 8.1863 7.3134 5.1293 

Exponential Beam 

Theory (EBT) 
9.8157 8.2333 7.3548 5.1697 

Hyperbolic beam theory 

(HBT) 
9.8140 8.2315 7.3537 5.1724 

Third-order Beam 

Theory (TBT)* 
9.8140 8.2316 7.3536 5.1723 

Sinusoidal Beam 

Theory (SBT)* 
9.8144 8.2321 7.3539 5.1707 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

9.8129 8.2446 7.3779 5.1851 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

9.8072 8.2393 7.3748 5.1893 

Quasi-3D Third-order 

Beam Theory 

 (Quasi-3D TBT) * 

9.8072 8.2393 7.3747 5.1889 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

9.8087 8.2406 7.3751 5.1855 

4 

Classical Beam Theory 

(CBT) 
7.5185 6.2089 5.4955 4.1055 

First-order Beam 

Theory (FBT) 
7.4332 6.1445 5.4415 4.0479 

Exponential Beam 

Theory (EBT) 
7.4488 6.1567 5.4515 4.0517 

Hyperbolic beam theory 

(HBT) 
7.4479 6.1559 5.4510 4.0536 

Third-order Beam 

Theory (TBT)* 
7.4479 6.1559 5.4510 4.0534 

Sinusoidal Beam 

Theory (SBT)* 
7.4481 6.1561 5.4511 4.0523 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

7.4527 6.1784 5.4886 4.0781 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

7.4468 6.1734 5.4857 4.0814 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

7.4468 6.1733 5.4856 4.0810 

Quasi-3D Sinusoidal 

Beam Theory  

(Quasi-3D SBT) * 

7.4484 6.1745 5.4857 4.0779 

8 

Classical Beam Theory 

(CBT) 
6.7998 5.5696 4.9054 3.7792 

First-order Beam 

Theory (FBT) 
6.7238 5.5129 4.8581 3.7266 

Exponential Beam 

Theory (EBT) 
6.7281 5.5167 4.8606 3.7184 

Hyperbolic beam theory 

(HBT) 
6.7276 5.5163 4.8603 3.7193 

Third-order Beam 

Theory (TBT)* 
6.7276 5.5163 4.8603 3.7192 

Sinusoidal Beam 

Theory (SBT)* 
6.7277 5.5164 4.8604 3.7187 

Quasi-3D Exponential 

Beam Theory 

 (Quasi-3D EBT) 

6.7345 5.5429 4.9038 3.7494 

Quasi-3D hyperbolic 

beam theory  

 (Quasi-3D HBT) 

6.7285 5.5376 4.9008 3.7520 

Quasi-3D Third-order 

Beam Theory 

 (Quasi-3D TBT) * 

6.7285 5.5376 4.9007 3.7516 
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Table 2 Continued 

8 

Quasi-3D Sinusoidal 

Beam Theory 

 (Quasi-3D SBT) * 

6.7301 5.5387 4.9008 3.7488 

l=0 

Classical Beam 

Theory (CBT) 
6.5444 5.3410 4.6937 3.6647 

First-order Beam 

Theory (FBT) 
6.4713 5.2867 4.6484 3.6138 

Exponential Beam 

Theory (EBT) 
6.4718 5.2877 4.6484 3.6010 

Hyperbolic beam 

theory (HBT) 
6.4713 5.2874 4.6481 3.6013 

Third-order Beam 

Theory (TBT)* 
6.4713 5.2874 4.6481 3.6013 

Sinusoidal Beam 

Theory (SBT)* 
6.4714 5.2875 4.6482 3.6010 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

6.4791 5.3158 4.6940 3.6338 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

6.4730 5.3104 4.6911 3.6359 

Quasi-3D Third-order 

Beam Theory  

(Quasi-3D TBT) * 

6.4731 5.3102 4.6909 3.6356 

Quasi-3D Sinusoidal 

Beam Theory 

 (Quasi-3D SBT) * 

6.4747 5.3113 4.6910 3.6330 

*Trinh et al. (2016) 
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The governing equations of motion of EBT and HBT are 

obtained by neglecting the shape function g(z) in Eq. (9), as 
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By considering the shape functions f(z)=0, g(z)=1, the 

governing equations of motion of FBT. 
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The governing equations of motion of CBT can be 

obtained by neglecting shear component ws=0 and 

considering the shape functions as f(z)=z, g(z)=0. 
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Table 3 Dimensionless fundamental frequencies of SP-

FGM microbeams ℓ/h=5
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam Theory (CBT) 16.0020 13.9694 12.7708 8.3964 

First-order Beam Theory (FBT) 14.7917 12.8199 11.6672 7.6264 

Exponential Beam Theory (EBT) 15.7266 13.7610 12.5933 8.2750 

Hyperbolic beam theory (HBT) 15.7140 13.7573 12.5955 8.1042 

Quasi-3D Exponential Beam Theory (Quasi-3D EBT) 15.6441 13.6665 12.4939 8.1918 

Quasi-3D hyperbolic beam theory (Quasi-3D HBT) 15.6248 13.6610 12.4980 8.2166 

2 

Classical Beam Theory (CBT) 9.7649 8.8086 8.1996 5.5026 

First-order Beam Theory (FBT) 9.3153 8.3275 7.7085 5.1367 

Exponential Beam Theory (EBT) 9.5237 8.5537 7.9401 5.3172 

Hyperbolic beam theory (HBT) 9.5175 8.5565 7.9507 5.5212 

Quasi-3D Exponential Beam Theory (Quasi-3D EBT) 9.5030 8.5203 7.8998 5.2828 

Quasi-3D hyperbolic beam theory (Quasi-3D HBT) 9.4917 8.5207 7.9099 5.3020 

4 

Classical Beam Theory (CBT) 7.4281 6.9429 6.5778 4.4970 

First-order Beam Theory (FBT) 7.1237 6.5928 6.2084 4.2125 

Exponential Beam Theory (EBT) 7.1753 6.6249 6.2250 4.0598 

Hyperbolic beam theory (HBT) 7.1785 6.6173 6.2080 4.2339 

Quasi-3D Exponential Beam Theory (Quasi-3D EBT) 7.1798 6.6118 6.1985 4.2258 

Quasi-3D hyperbolic beam theory (Quasi-3D HBT) 7.1713 6.6165 6.2140 4.2342 

8 

Classical Beam Theory (CBT) 6.7181 6.3919 6.1054 4.2082 

First-order Beam Theory (FBT) 6.4448 6.0705 5.7629 3.9418 

Exponential Beam Theory (EBT) 6.4603 6.0300 5.6773 3.9062 

Hyperbolic beam theory (HBT) 6.4583 6.0396 5.6964 4.2277 

Quasi-3D Exponential Beam Theory (Quasi-3D EBT) 6.4692 6.0353 5.6804 3.9087 

Quasi-3D hyperbolic beam theory (Quasi-3D HBT) 6.4615 6.0418 5.6979 3.9080 

l=0 

Classical Beam Theory (CBT) 6.4657 6.1986 5.9407 4.1081 

First-order Beam Theory (FBT) 6.2021 5.8862 5.6066 3.8475 

Exponential Beam Theory (EBT) 6.2041 5.8213 5.4874 3.7896 

Hyperbolic beam theory (HBT) 6.2025 5.8316 5.5071 3.5160 

Quasi-3D Exponential Beam Theory (Quasi-3D EBT) 6.2159 5.8307 5.4955 3.7964 

Quasi-3D hyperbolic beam theory (Quasi-3D HBT) 6.2085 5.8380 5.5136 3.7909 
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The mass parameters are defined by 
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4. Analytical solutions 
 

The equations of motion are solved using the Navier 

solutions for simply supported Microbeams. The variables 

u, wb, ws and wz can be written by assuming the following 

forms 

iwt

n
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5. Numerical results and discussion 
 

The aim of this analysis is showing the accuracy of the 

developed formulation. We validate by comparing the 

computed natural frequencies with respect to reference  
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Table 4 Dimensionless fundamental frequencies of SP-

FGM microbeams ℓ/h=10
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam 

Theory (CBT) 
16.1966 14.1436 12.9314 8.5006 

First-order Beam 

Theory (FBT) 
15.8337 13.7955 12.5954 8.2649 

Exponential Beam 

Theory (EBT) 
16.1178 14.0835 12.8799 8.4653 

Hyperbolic beam 

theory (HBT) 
16.1144 14.0827 12.8809 8.4710 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

16.1012 14.0630 12.8578 8.4463 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

16.0945 14.0612 12.8593 8.4542 

2 

Classical Beam 

Theory (CBT) 
9.8837 8.9184 8.3027 5.5709 

First-order Beam 

Theory (FBT) 
9.7550 8.7794 8.1599 5.4639 

Exponential Beam 

Theory (EBT) 
9.8157 8.84580 8.2283 5.5176 

Hyperbolic beam 

theory (HBT) 
9.8140 8.8469 8.2318 5.5237 

Quasi-3D Exponential 

Beam Theory 

 (Quasi-3D EBT) 

9.81289 8.8384 8.2185 5.5097 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

9.8072 8.8378 8.2219 5.5165 

4 

Classical Beam 

Theory (CBT) 
7.5185 7.0294 6.6605 4.5528 

First-order Beam 

Theory (FBT) 
7.4332 6.9303 6.5552 4.4712 

Exponential Beam 

Theory (EBT) 
7.4488 6.9369 6.5541 4.4768 

Hyperbolic beam 

theory (HBT) 
7.4479 6.9393 6.5595 4.4801 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

7.4527 6.9372 6.5524 4.4762 

Quasi-3D hyperbolic 

beam theory 

 (Quasi-3D HBT) 

7.4468 6.9375 6.5575 4.4800 

8 

Classical Beam 

Theory (CBT) 
6.7998 6.4716 6.1822 4.2604 

First-order Beam 

Theory (FBT) 
6.7238 6.3812 6.0852 4.1845 

Exponential Beam 

Theory (EBT) 
6.7281 6.3687 6.0584 4.1728 

Hyperbolic beam 

theory (HBT) 
6.7276 6.3717 6.0645 4.1731 

Quasi-3D Exponential 

Beam Theory  

(Quasi-3D EBT) 

6.7345 6.3722 6.0606 4.1755 

Quasi-3D hyperbolic 

beam theory 

 (Quasi-3D HBT) 

6.7285 6.3729 6.0662 4.1765 

l=0 

Classical Beam 

Theory (CBT) 
6.5444 6.2759 6.0154 4.1591 

First-order Beam 

Theory (FBT) 
6.4713 6.1882 5.9210 4.0849 

Exponential Beam 

Theory (EBT) 
6.4718 6.1686 5.8841 4.0665 

Hyperbolic beam 

theory (HBT) 
6.4713 6.1718 5.8904 3.6325 

Quasi-3D Exponential 

Beam Theory 

 (Quasi-3D EBT) 

6.4791 6.1734 5.8878 4.0706 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

6.4730 6.1743 5.8937 4.0700 

 

 

solutions available in the literature. A fully simply 

supported FG Microbeams composed of Al/Sic, Em=70 Gpa, 

ρm=2702 kg/m3, vm=0.3 and Ec=427 GPa, ρm=3100 kg/m3, 

vc=0.17 with two slenderness ratios (ℓ/h=5,10) are 

considered. The materiel proprieties are estimated by three 

rules of mixture (P-FGM, S-FGM and SP-FGM). The 

length scale parameter is assumed to be constant l=15 μm, 

Thai et al. (2015). The natural frequencies are normalized 

by 

m

m

Eh
ww
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Fig. 5 Dimensionless fundamental frequencies of SiC/Al 

microbeams (ℓ/h=5) 

 
 

The fundamental frequencies of P-FGM microbeams are 

presented in Tables 1, 2 with varying material scale 

parameter and material distribution for two slenderness 

ratios respectively. It is obvious that the results are in 

excellent agreement with those generated by Trinh et al. 

(2016) for SBT and Quasi-3D SBT, the slight difference is 

due to the beam theory used. It appears that, increase in 

material distribution tends to decrease the frequency at the 

same material scale parameter. The frequencies are higher 

when the size effect is very strong and the increase in length 

scale parameter leads to decrease the natural frequency. As 

observed by Trinh et al. (2016), the frequencies computed 

by EBT and HBT are slightly higher than those form quasi-

3D theories. And the results of the EBT, HBT and quasi-3D 

theories are between those of CBT and FBT. 

In Tables 3, 4, for respectively, the variation of natural 

frequencies of SP-FGM microbeams are illustrated, the 

same effect is noted for SP-FGM as P-FGM microbeams. 

At the same value of material distribution and material scale 

parameter, the natural frequencies for SP-FGM are higher 

than P-FGM. This is due to the distribution of ceramics 

phase in SP-FGM is less than the distribution in P-FGM. 

It is also observed that for a sigmoid distribution, the 

natural frequencies decreased as the material parameter 

distribution k increasing and length scale parameter 

decreasing, as presented in Tables 4, 5. It showed that for 
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Fig. 6 Dimensionless fundamental frequencies of SiC/Al 

microbeams (ℓ/h=10) 
 

 

k=1 S-FGM and P-FGM generate the same dimensionless 

fundamental frequency. By varying the material distribution 

index from 0 to 10, the dimensionless fundamental 

frequency is smoothly reduced for S-FGM distribution law. 

However, the reduction in frequencies for P-FGM and SP-

FGM laws distribution is very important. 

Figs. 5 and 6 present the variation of dimensionless 

fundamental frequency versus material length scale 

parameter for the three distribution lows, for k=0 and k=10, 

is given for HBT quasi-3D and (ℓ/h=5) and 10, respectively. 

The size effects in frequencies are very significant when 

h/l<5, but become insignificant for h/l<10. 
 
 

6. Conclusions 
 

Vibration analysis of an FG simply supported 

Microbeam modeled according to quasi-3D theory. The 

volume fractions of metal and ceramic are assumed to be 

distributed through a beam thickness by three functions, 

which are, power function, symmetric power function, and 

sigmoid function. The equations of motion are derived 

according to Hamilton’s principle. 

The results are validated compared to previous studies. 

Numerical results show significant effects of the function 

distribution, the power index and the material scale 

parameter on the fundamental frequencies. 

Table 5 Dimensionless fundamental frequencies of S-FGM 

microbeams ℓ/h=5
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam 

Theory (CBT) 
12.3381 12.2675 12.1927 12.0503 

First-order Beam 

Theory (FBT) 
11.3867 11.3598 11.3293 11.2845 

Exponential Beam 

Theory (EBT) 
12.1200 12.0638 12.0034 11.8916 

Hyperbolic beam 

theory (HBT) 
12.1102 12.055 11.9948 11.8825 

Quasi-3D 

Exponential Beam 

Theory  

(Quasi-3D EBT) 

12.0428 12.0024 11.9571 11.8745 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

12.0252 11.9884 11.9444 11.8589 

2 

Classical Beam 

Theory (CBT) 
7.5859 7.4459 7.2974 6.9575 

First-order Beam 

Theory (FBT) 
7.2223 7.1150 6.9993 6.7298 

Exponential Beam 

Theory (EBT) 
7.3896 7.2692 7.1410 6.8467 

Hyperbolic beam 

theory (HBT) 
7.3847 7.2649 7.1369 6.8422 

Quasi-3D 

Exponential Beam 

Theory  

(Quasi-3D EBT) 

7.3702 7.2639 7.1489 6.8789 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

7.3582 7.2556 7.1420 6.8689 

4 

Classical Beam 

Theory (CBT) 
5.8203 5.6274 5.4202 4.9152 

First-order Beam 

Theory (FBT) 
5.5697 5.4063 5.2281 4.7848 

Exponential Beam 

Theory (EBT) 
5.6142 5.4455 5.2634 4.8163 

Hyperbolic beam 

theory (HBT) 
5.6116 5.4434 5.2615 4.8136 

Quasi-3D 

Exponential Beam 

Theory  

(Quasi-3D EBT) 

5.6180 5.4641 5.2963 4.8764 

Quasi-3D hyperbolic 

beam theory  

(Quasi-3D HBT) 

5.6075 5.4577 5.2914 4.8674 

8 

Classical Beam 

Theory (CBT) 
5.2875 5.0718 4.8382 4.2538 

First-order Beam 

Theory (FBT) 
5.0612 4.8742 4.6687 4.1434 

Exponential Beam 

Theory (EBT) 
5.0739 4.8841 4.6776 4.1560 

Hyperbolic beam 

theory (HBT) 
5.0722 4.8828 4.6764 4.1539 

Quasi-3D 

Exponential Beam 

Theory  

(Quasi-3D EBT) 

5.0860 4.9116 4.7202 4.2291 

Quasi-3D hyperbolic 

beam theory 

 (Quasi-3D HBT) 

5.0758 4.9058 4.7160 4.2200 

l=0 

Classical Beam 

Theory (CBT) 
5.0988 4.8739 4.6294 4.0108 

First-order Beam 

Theory (FBT) 
4.8801 4.6835 4.4667 3.9063 

Exponential Beam 

Theory (EBT) 
4.8817 4.6835 4.4666 3.9127 

Hyperbolic beam 

theory (HBT) 
4.8804 4.6824 4.4657 3.9109 

Quasi-3D 

Exponential Beam 

Theory  

(Quasi-3D EBT) 

4.8970 4.7143 4.5132 3.9915 

Quasi-3D hyperbolic 

beam theory 

 (Quasi-3D HBT) 

4.8869 4.7087 4.5092 3.9823 

 

Table 6 Dimensionless fundamental frequencies of S-FGM 

microbeams ℓ/h=10
 

h/l Theory k=0 0.5 1 10 

1 

Classical Beam Theory (CBT) 12.4882 12.4297 12.3671 12.2527 

First-order Beam Theory (FBT) 12.2025 12.1560 12.1057 12.0182 

Exponential Beam Theory (EBT) 12.4258 12.3708 12.3118 12.2050 

Hyperbolic beam theory (HBT) 12.4231 12.3684 12.3095 12.2024 

Quasi-3D Exponential Beam Theory 

(Quasi-3D EBT) 
12.4100 12.3644 12.3140 12.2222 

Quasi-3D hyperbolic beam theory 

(Quasi-3D HBT) 
12.4027 12.3596 12.3100 12.2161 
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Table 6 Continued 

2 

Classical Beam Theory (CBT) 7.6782 7.5431 7.3994 7.0694 

First-order Beam Theory (FBT) 7.2223 7.4480 7.3134 7.0032 

Exponential Beam Theory (EBT) 7.6228 7.4930 7.3548 7.0372 

Hyperbolic beam theory (HBT) 7.6214 7.4918 7.3537 7.0359 

Quasi-3D Exponential Beam Theory 

(Quasi-3D EBT) 
7.6217 7.5044 7.3779 7.0806 

Quasi-3D hyperbolic beam theory 

(Quasi-3D HBT) 
7.6142 7.5003 7.3748 7.0746 

4 

Classical Beam Theory (CBT) 5.8911 5.7007 5.4955 4.9935 

First-order Beam Theory (FBT) 5.8207 5.6385 5.4415 4.9566 

Exponential Beam Theory (EBT) 5.8334 5.6497 5.4515 4.9655 

Hyperbolic beam theory (HBT) 5.8327 5.6491 5.4510 4.9648 

Quasi-3D Exponential Beam Theory 

(Quasi-3D EBT) 
5.8400 5.6718 5.4886 5.0307 

Quasi-3D hyperbolic beam theory 

(Quasi-3D HBT) 
5.8316 5.6676 5.4857 5.0237 

8 

Classical Beam Theory (CBT) 5.3518 5.1378 4.9054 4.3214 

First-order Beam Theory (FBT) 5.2887 5.0827 4.8581 4.2906 

Exponential Beam Theory (EBT) 5.2923 5.0855 4.8606 4.2941 

Hyperbolic beam theory (HBT) 5.2918 5.0852 4.8603 4.2935 

Quasi-3D Exponential Beam Theory 

(Quasi-3D EBT) 
5.3017 5.1119 4.9038 4.3703 

Quasi-3D hyperbolic beam theory 

(Quasi-3D HBT) 
5.2929 5.1076 4.9008 4.3625 

l=0 

Classical Beam Theory (CBT) 5.1608 4.9373 4.6937 4.0745 

First-order Beam Theory (FBT) 5.1000 4.8844 4.6484 4.0455 

Exponential Beam Theory (EBT) 5.1004 4.8843 4.6484 4.0472 

Hyperbolic beam theory (HBT) 5.1001 4.8840 4.6481 4.0096 

Quasi-3D Exponential Beam Theory 

(Quasi-3D EBT) 
5.1110 4.9125 4.6941 4.1283 

Quasi-3D hyperbolic beam theory 

(Quasi-3D HBT) 
5.1019 4.9081 4.6911 4.1202 
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