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1. Introduction  
 

Thermoelasticity is a branch of applied mechanics, 

which deals with the effect of heat on the solid elastic 

bodies giving rise to the deformation and stresses in the 

body. The change in temperature of a real homogeneous 

body may occur due to non-uniform heating of a body, 

body force, the motion of a body or the external loading of 

a body. The materials (natural and synthetic) in which the 

properties like thermal conductivity vary with orientation 

are called anisotropic materials. Transversely isotropic 

medium is a special kind of anisotropic medium. 

Transversely isotropic media are those in which there is one 

axis of elastic and thermal symmetry. If this axis is taken as 

the X3 axis, then in any plane perpendicular to this axis (in 

other words in plane parallel to the X1X2-plane), the elastic 

and thermal behaviour is isotropic, whereas in the X3 

direction these properties are different. The number of 

independent constants for transversely isotropic medium in 

the (fourth-rank) elasticity tensor is reduced to 5. The 

hexagonal crystals, like Cadmium and Zinc, are 

transversely isotropic.  

The theory of thermoelasticity deals with the prediction 

of thermomechanical behaviour of the elastic solids. It 

represents an overview of both the theory of heat 

conduction and theory of elasticity in solids. Temperature 

changes cause thermal effects on materials like thermal 

stress, strain, and deformation. The study can be useful to  
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the design of structure or machines in engineering 

applications. The proposed model for studying the 

variations in the transversely isotropic thick circular plates 

can be useful in numerous applications in engineering 

discipline such as nuclear reactor design, geothermal 

engineering, advanced aircraft structure design, industrial 

engineering, submarine structures, high-energy particle 

accelerators, and many emerging technologies.  

Chen et al. (1968a, 1968b, 1969) formulated a two 

temperature thermoelasticity of deformable bodies for the 

conduction of heat depending on two types of temperatures, 

the thermodynamic temperature T, and the conductive 

temperature 𝜑. For the cases which are time-independent, 

the difference between T and 𝜑 is proportional to supply 

of heat, and in the absence of heat supply, these 

temperatures are equal. For the problems which depends on 

time, the difference in two temperatures is non-zero and do 

not depend on heat supply. When the two-temperature 

factor is zero, then φ=T and the coupled thermoelasticity 

can be derived from the two-temperature theory. 

Marin (1997) had proved the Cesaro means of the 

kinetic and strain energies of dipolar bodies with finite 

energy. Marin (1998) investigated and solved the initial-

boundary value problem without recourse either to an 

energy conservation law or to any boundedness 

assumptions on the thermoelastic coefficients in 

thermoelastic bodies with voids. Marin and Stan (2013) 

studied the micro stretch elastic bodies using Lesan and 

Quintanilla of dipolar bodies with stretch. Marin et al. 

(2013) constructed a new theory of thermoelasticity by 

considering heat conduction in deformable bodies 

depending upon two temperatures. Ezzat et al. (2016) built 

a model of two-temperature thermoelasticity theory with 

time-delay and Kernel function. Marin et al. (2017) studied 

the GN-thermoelastic theory for a dipolar body using mixed 
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initial BVP and proved a result of Hölder’s-type stability. 

Ezzat et al. (2017) developed a unified mathematical 

fractional model of two-temperature phase-lag Green-

Naghdi thermoelasticity theories based on two-temperature. 

Ezzat et al. (2012), Ezzat et al. (2015), Ezzat and El-Bary 

(2016), Ezzat and El-Bary (2017) presented a new 

mathematical models of two-temperature electro-thermo 

viscoelasticity theory in the perspective of heat conduction 

and provided applications of  this model to different 

problems like concrete problems, a thermal shock problem 

and a problem for a half-space exposed to ramp-type 

heating respectively. 

Tripathi et al. (2015) presented the effect of 

axisymmetric heat supply for diffusion in an infinite as well 

as finitely thick thermoelastic copper plate with one 

relaxation time. Tripathi et al. (2016) presented the 

thermoelastic diffusion interactions in a thick circular 

copper material plate. Kant and Mukhopadhyay (2017) 

studied the thermoelastic effect of axisymmetric 

temperature distribution applied inside at the lower and 

upper surfaces of an infinitely extended thick plate. Kumar 

et al. (2016a, 2016b) depicted the effect of time and 

thermal, diffusion phase lags for an axisymmetric heat 

supply in a ring and thick circular plate respectively. 

Moreover, Kumar et al. (2017) investigated the 

homogeneous isotropic thermoelastic thick circular plate 

with dual phase lag and two temperature. Kumar et al. 

(2017) investigated the Rayleigh waves in a homogeneous 

transversely isotropic magnetothermoelastic with two 

temperature, in the presence of Hall current and rotation. 

Shahani and Torki (2018) investigated the thermoelasticity 

problem in a thick-walled orthotropic hollow cylinder by 

applying time-dependent thermal and mechanical boundary 

conditions on the inner and the outer surfaces of the 

cylinder. Despite of this several researchers worked on 

different theory of thermoelasticity as Akbaş (2017), 

Ozdemir (2018), Taleb et al. (2018), Houari et al. (2018), 

Heydari (2018), Liu et al. (2019). 

In this paper, we have attempted to study the 

deformation in transversely isotropic thick circular plate 

due to thermal and mechanical sources.  The Laplace and 

Hankel transform has been used for finding the general 

solution to the field equations. The analytical expressions of 

stresses, conductive temperature, displacement components 

are computed in transformed domain. However, the 

resulting quantities are obtained in the physical domain by 

using numerical inversion technique.  

 

 

2. Basic equations   
 

Following Chandrasekharaiah (1998), Youssef (2011) 

and Green and Naghdi (1992), the constitutive relations and 

field equations for an anisotropic thermoelastic medium 

with GN theory of type-II in absence of body forces and 

heat sources are 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇, (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙,𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌 𝑢̈𝑖 (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 = 𝛽𝑖𝑗𝑇0ё𝑖𝑗 + 𝜌𝐶𝐸𝑇̈ (3) 

where 

𝑇 =  𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 , (4) 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗 (5) 

𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).  𝑖 = 1,2,3 (6) 

Here 𝐶𝑖𝑗𝑘𝑙  are elastic parameters and having symmetry 

(𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘). The basis of these 

symmetries of  𝐶𝑖𝑗𝑘𝑙  is due to 

i. The stress tensor is symmetric, which is only possible 

if (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙) 

ii. If a strain energy density exists for the material, the 

elastic stiffness tensor must satisfy 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗  

iii. From stress tensor and elastic stiffness tensor 

symmetries infer (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘)  and 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 =

 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘  

𝛽𝑖𝑗 is the thermal tensor, 𝑇  is the thermodynamic 

temperature, 𝑇0  is the reference temperature,  𝑡𝑖𝑗  are the 

components of stress tensor, 𝑒𝑖𝑗  are the components of 

strain tensor, 𝑢𝑖 are the displacement components, 𝜌 is the 

density, 𝐶𝐸  is the specific heat,  𝐾𝑖𝑗  is the materialistic 

constant, 𝑎𝑖𝑗  are the two temperature parameters, 𝛼𝑖𝑗 is the 

coefficient of linear thermal expansion. 
 

 

3. Formulation of the problem 
 

Consider a transversely isotropic thick circular plate of 

thickness 2b occupying the space D defined by 0 ≤ 𝑟 ≤
∞,−𝑏 ≤ 𝑧 ≤ 𝑏. Let the plate be subjected to axisymmetric 

heat supply on the radial and the axial direction of the 

cylindrical co-ordinate system. The initial temperature in 

the thick circular plate is given by a constant temperature 

𝑇0 and heat flux 𝑔0𝐹(𝑟, 𝑧) is prescribed on the upper and 

lower surfaces. We take a cylindrical polar co-ordinate 

system (𝑟, 𝜃, 𝑧)  with symmetry about Z-axis. As the 

problem considered is plane axisymmetric, the field 

component  (𝑣 = 0) , and (𝑢, 𝑤, 𝑎𝑛𝑑 𝜑) are independent 

of  𝜃. We restrict our analysis to two-dimension problem 

with 𝑢⃗ = (𝑢, 0, 𝑤), also we use the appropriate 

transformation following Slaughter (2002) on the set of 

Eqs. (1)-(3) to derive the equations for transversely 

isotropic thermoelastic solid with two temperatures and 

without energy dissipation, to obtain 

𝐶11 (
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
− 

1

𝑟
𝑢) + 𝐶13 (

𝜕2𝑤

𝜕𝑟𝜕𝑧
) + 𝐶44

𝜕2𝑢

𝜕𝑧2 +

 𝐶44 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) − 𝛽1

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2} =

 𝜌
𝜕2𝑢

𝜕𝑡2 , 

(7) 

 

(8) 
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𝐾1 (
𝜕2𝜑

𝜕𝑟2
+ 

1

𝑟

𝜕𝜑

𝜕𝑟
) + 𝐾3

𝜕2𝜑

𝜕𝑧2

= 𝑇0

𝜕2

𝜕𝑡2
(𝛽1

𝜕𝑢

𝜕𝑟
+ 𝛽3

𝜕𝑤

𝜕𝑧
)

+ 𝜌𝐶𝐸

𝜕2

𝜕𝑡2
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2
+ 

1

𝑟

𝜕𝜑

𝜕𝑟
)

− 𝑎3

𝜕2𝜑

𝜕𝑧2
}. 

(9) 

Constitutive relations are 

𝑡𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 
𝑡𝑧𝑟 = 2𝑐44𝑒𝑟𝑧, 

𝑡𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇, 
𝑡𝜃𝜃 = 𝑐12𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽3𝑇, 

(10) 

where 

𝑒𝑟𝑧 = 
1

2
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑟
), 

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 

𝑒𝜃𝜃 = 
𝑢

𝑟
, 

𝑒𝑧𝑧 =
𝜕𝑤

𝜕𝑧
, 

𝑇 =  𝜑 − 𝑎1 (
𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2 , 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 , 𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗  , 

𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3, 

𝛽3 =  2𝑐13𝛼1 + 𝑐33𝛼3. 

To facilitate the solution, the following dimensionless 

quantities are introduced 

𝑟′ = 
𝑟

𝐿
,   𝑧′ = 

𝑧

𝐿
,    𝑡′ = 

𝑐1

𝐿
𝑡,    𝑢′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,    𝑤′ =

 
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑤, 𝑇′ = 

𝑇

𝑇0
, 𝑡𝑧𝑟

′ = 
𝑡𝑧𝑟

𝛽1𝑇0
, 𝑡𝑧𝑧

′ = 
𝑡𝑧𝑧

𝛽1𝑇0
, 𝜑′ =

 
𝜑

𝑇0
, 𝑎1

′ = 
𝑎1

𝐿2 , 𝑎3
′ =  

𝑎3

𝐿2. 

(11) 

Using the dimensionless quantities defined by (11) in 

Eqs. (7)-(9) and after that suppressing the primes and 

applying the Laplace and Hankel transforms defined by 

𝑓∗(𝑟, 𝑧, 𝑠) =  ∫ 𝑓(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

 (12) 

𝑓(𝜉, 𝑧, 𝑠) =  ∫ 𝑓∗(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑𝑟

∞

0

 (13) 

on the resulting quantities, we obtain 

(−𝜉2 − 𝑠2 + 𝛿2𝐷
2)𝑢̃ + (1 − 𝜉)𝛿1𝐷𝑤̃ + ((1 −

𝜉)(1 − 𝑎3𝐷
2) + 𝑎1𝜉

3)) = 0,  
(14) 

−𝛿1𝐷𝑢̃ + (𝛿3𝐷
2 − 𝜉2 − 𝑠2)𝑤̃

− (
𝛽3

𝛽1

[(1 − 𝑎3𝐷
2)𝐷 + 𝜉2𝑎1]) 𝜑̃

= 0, 
(15) 

𝛿4𝑠
2(1 − 𝜉)𝑢̃ − 𝛿5𝑠

2𝐷𝑤̃ + (−𝛿6𝑠
2(1 + 𝜉2𝑎1)+𝜉2 − 𝐷2 (

𝐾3

𝐾1

− 𝑎3𝛿6𝑠
2)) 𝜑̃ = 0, (16) 

where 

𝛿1 = 
𝑐13 + 𝑐44

𝑐11

, 𝛿2 =  
𝑐44

𝑐11

, 𝛿3 = 
𝑐33

𝑐11

,

𝛿4 = 
𝛽1

2𝑇0

𝐾1𝜌
,   𝛿5 = − 

𝛽1𝛽3𝑇0

𝐾1𝜌
,

𝛿6 = 
𝜌𝐶𝐸𝐶1

2

𝐾1

 

and 

𝑡𝑧𝑧̃ = ∑𝐴𝑖(𝜉, 𝑠)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧)

+ ∑𝜇𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧), 
(17) 

𝑡𝑟𝑧̃ = ∑𝐴𝑖(𝜉, 𝑠)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (18) 

𝑡𝑟𝑟 = ∑𝐴𝑖(𝜉, 𝑠)𝑅𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧)

+ ∑𝑆𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧). 
(19) 

where 

𝜂𝑖 = 
𝐶13

𝐶11
(2 − 𝜉) −

β3

β1
ζ4𝑙𝑖 +

β3

β1
a3liqi

2, 

𝑅𝑖 = (𝐶11 + 𝐶12)𝜉 − 𝑙𝑖(1 + 𝑎1𝜉
2) + a3qi

2, 

𝑆𝑖 = 𝐶13𝑑𝑖𝑞𝑖,   
𝜇𝑖

=
𝐶33

𝐶11
𝑑𝑖𝑞𝑖, 

𝑀𝑖 = 𝛿2𝐷 + (1 − 𝜉)𝑙𝑖 , 𝑖 = 1, 2, 3. 

The non-trivial solution of (14)-(16) by eliminating 𝑢̃, 

𝑤̃, and 𝜑̃ yields 

𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 = 0, (20) 

where 

A = δ2δ3ζ5 + a3δ2ζ3, 

B = δ2δ3(ζ2 + ζ5 − ζ4) − δ1δ5s
2ζ8 + ζ10ζ5 +

β3

β1
ζ6ζ8δ1, 

𝐶 = δ3ζ9ζ2 + δ3ζ2ζ5 − ζ3ζ4ζ9 + δ2ζ1ζ2 + δ1δ5s
2ζ7 +

δ1ζ7δ5s
2 + ζ6ζ1ζ8 − ζ6ζ7δ3 + δ3ζ6ζ8 + ζ10ζ2 − δ1(1 −

ξ)
β3

β1
ζ6ζ4, 

𝐸 = ζ2ζ1ζ9 − ζ6ζ7ζ1. 

The solutions of the Eq. (20) can be written in the form 

𝑢̃ =  ∑𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (21) 

𝑤̃ = ∑𝑑𝑖𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (22) 

𝜑̃ = ∑𝑙𝑖𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (23) 

where  𝐴𝑖, 𝑖 = 1, 2, 3  being arbitrary constants,  ±𝑞𝑖(𝑖 =

1,2,3) are the roots of the Eq. (20) and 𝑑𝑖  and 𝑙𝑖  are 

given by 
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𝑑𝑖

=
𝛿2𝜁5𝑞𝑖

4 + (𝜁8𝜁6 + 𝜁5𝜁9 + 𝛿2𝜁2)𝑞𝑖
2 + 𝜁2𝜁9 − 𝜁6𝜁7

(𝑎3𝜁3 + 𝛿3ζ5)𝑞𝑖
4 + (𝛿3𝜁2 + 𝜁5𝜁1 − 𝜁3𝜁4)𝑞𝑖

2+𝜁1𝜁2
 (24) 

𝑙𝑖 =
𝛿2𝛿3𝑞𝑖

4 + (𝜁9𝛿3 + 𝛿2𝜁1 + 𝜁10)𝑞𝑖
2 + 𝜁1𝜁9

(𝑎3𝜁3 + 𝛿3ζ5)𝑞𝑖
4 + (𝛿3𝜁2 + 𝜁5𝜁1 − 𝜁3𝜁4)𝑞𝑖

2+𝜁1𝜁2
 (25) 

and 

ζ1 = 𝛿2𝜉
2 − s2, 

ζ2 = 𝛿6s
2(1 + 𝑎1ξ

2)+ξ2 

ζ3 = 𝛿5𝑠
2 β3

β1
, 

ζ4 = (1 + a1ξ
2), 

ζ5 = −𝑎3𝑠
2𝛿6 −

𝐾3

𝐾1
, 

ζ6 = 𝛿4s
2(1 − ξ), 

ζ7 =  1 − ξ + a1ξ
3, 

ζ8 = a3(1 − ξ) 

ζ9 = −𝜉2 − s2, 

ζ10 = (1 − ξ)𝛿1
2. 

 

 

4. Boundary conditions 
 

We consider a cubical thermal source and normal force 

following Kumar et al. (2016) of unit magnitude along with 

vanishing of tangential stress components at the stress free 

surface at z = ±b. Mathematically, these can be written as  

𝜕𝜑

𝜕𝑧
=  ±𝑔𝑜𝐹(𝑟, 𝑧), (26) 

𝑡𝑧𝑧(𝑟, 𝑧, 𝑡) = 𝑓(𝑟, 𝑡) (27) 

𝑡𝑟𝑧(𝑟, 𝑧, 𝑡) = 0 (28) 

Using the dimensionless quantities defined by (11) on 

the Eqs. (26)-(28) and taking Hankel and Laplace transform 

of the resulting equations and then using (17)-(19) and (21)-

(23) yields  

∑𝐴𝑖 𝑙𝑖𝑞𝑖 sinh(𝑞𝑖𝑧) = ±𝑔𝑜𝐹̃(𝜉, 𝑧), (29) 

∑𝐴𝑖(𝜉, 𝑠)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧)

= 𝑓(𝜉, 𝑠), 
(30) 

∑𝐴𝑖(𝜉, 𝑠)(𝛿2𝑞𝑖 sinh(𝑞𝑖𝑧) + (1 − 𝜉)𝑙𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧))

= 0. 
(31) 

Solving the Eqs. (21)-(23) with the aid of (29)-(31) and 

also solving (17)-(19), we obtain 

𝑢̃ =  
𝑓̃(𝜉,𝑠)

Δ
{−𝜒1𝜗1 + 𝜒2𝜗2 − 𝜒3𝜗3} +

𝑔𝑜𝐹̃(𝜉,𝑧)

Δ
{𝜒4𝜗1 −

𝜒5 𝜗2 +𝜒6𝜗3}, 
(32) 

𝑤̃ =      
𝑓(𝜉, 𝑠)

Δ
{−𝜒1 𝑑1 𝜗1 + 𝜒2 𝑑2 𝜗2 − 𝜒3 𝑑3 𝜗3}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4 𝑑1 𝜗1

− 𝜒5 𝑑2𝜗2 +𝜒6 𝑑3 𝜗3}, 

(33) 

(−𝛿6𝑠
2(1 + 𝜉2𝑎1)+𝜉2 − 𝐷2 (

𝐾3

𝐾1

− 𝑎3𝛿6𝑠
2)) 𝜑̃ = 0, 

𝜑̃ =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1 𝑙1 𝜗1 + 𝜒2 𝑙2 𝜗2 − 𝜒3 𝑙3 𝜗3}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4 𝑙1 𝜗1

− 𝜒5 𝑙2𝜗2 +𝜒6 𝑙3 𝜗3}, 

(34) 

𝑡𝑧𝑧̃ =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1(𝜂1𝜗1 + 𝜇1𝜃1) + 𝜒2(𝜂2𝜗2 + 𝜇2𝜃2)

− 𝜒3(𝜂3𝜗3 + 𝜇3𝜃3)}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4(𝜂1𝜗1 + 𝜇1𝜃1)

− 𝜒5 (𝜂2𝜗2 + 𝜇2𝜃2)+𝜒6(𝜂3𝜗3

+ 𝜇3𝜃3)}, 

(35) 

𝑡𝑧𝑟̃ =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1(𝜍1)𝜗1 + 𝛿2𝑞1𝜃1)

+ 𝜒2(𝜍2)𝜗2 + 𝛿2𝑞2𝜃2) − 𝜒3 (𝜍3) 𝜗3

+ 𝛿2𝑞3𝜃3)}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4(𝜍1)𝜗1 + 𝛿2𝑞1𝜃1)  

− 𝜒5 (𝜍2𝜗2 + 𝛿2𝑞2𝜃2) +𝜒6𝜍3

+ 𝛿2𝑞3𝜃3)} 

(36) 

𝑡𝑟𝑟̃ =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1(𝑅1𝜗1 + 𝑆1𝜃1) + 𝜒2(𝑅2𝜗2 + 𝑆2𝜃2)

− 𝜒3(𝑅3𝜗3 + 𝑆3𝜃3)}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4(𝑅1𝜗1 + 𝑆1𝜃1)

− 𝜒5 (𝑅2𝜗2 + 𝑆2𝜃2)+𝜒6((𝑅3𝜗3

+ 𝑆3𝜃3)} 

(37) 

where 

Gi = 𝑙𝑖𝑞𝑖𝜃𝑖, 

Gi+3 = 𝜂𝑖 𝜗𝑖 + 𝜇𝑖𝜃𝑖, 

Gi+6 = 𝛿2 𝑞𝑖 𝜃𝑖 + 𝜍𝑖 𝜗𝑖 , 𝑖 = 1,2,3. 

Δ = G1𝜒4 − G2𝜒5 + G3𝜒6, 

Δ1 = −𝑓(𝜉, 𝑠)𝜒1 + 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒4, 

Δ2 = 𝑓(𝜉, 𝑠)𝜒2 − 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒5, 

Δ3 = −𝑓(𝜉, 𝑠)𝜒3 + 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒6, 
𝜒1 = [G2G9 − G8G3], 
𝜒2 = [G1G9 − G7G3], 
𝜒3 = [G1G8 − G2G7], 
𝜒4 = [G5G9 − G8G6], 
𝜒5 = [G4G9 − G6G7], 
𝜒6 = [G4G8 − G5G7], 

𝜗𝑖 = cosh(𝑞𝑖𝑧), 
𝜃𝑖 = sinh(𝑞𝑖𝑧), 

𝜍𝑖 = (1 − 𝜉)𝑙𝑖 , 𝑖 = 1,2,3 

 

 

610



 

Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply 

 

5. Applications 
 

As an application of the problem, we take the source 

functions 𝐹(r, z), which decays exponentially as moving 

away from the centre of the thick circular plate in the radial 

direction and symmetrically increases along the axial 

directions is specified by  

𝐹(r, z) = z2e−ωr, (38) 

𝑓(𝑟, 𝑡) =
1

2𝜋𝑟
𝛿(𝑐𝑡 − 𝑟), (39) 

where δ (ct − r) is the Dirac delta function 

Applying Laplace and Hankel Transform, on Eqs. (38)-

(39), gives 

𝐹̃(𝜉, 𝑧) =
𝑧2𝜔

(𝜉2 + 𝜔2)
3
2

 (40) 

𝑓(𝜉, 𝑠) =  
1

2𝜋√𝜉2 +
𝑠
𝑐2

2
 

(41) 

 

 

6. Inversion of the transforms 
 

To find the solution of the problem in physical domain 

following Sharma et al. (2015), we must invert the 

transforms in Eqs. (32)-(37) These equations are functions 

of z, the parameters of Laplace and Hankel transforms s and 

𝜉, respectively, and hence are of the form 𝑓̃(𝜉, 𝑧, 𝑠). To get 

the function 𝑓(𝑟, 𝑧, 𝑡) in the physical domain, first we invert 

the Hankel transform using 

𝑓∗(𝑟, 𝑧, 𝑠) =  ∫ 𝜉𝑓(𝜉, 𝑧, 𝑠)𝐽𝑛(𝜉𝑟)𝑑𝜉

∞

0

 (42) 

Now for the fixed values of the  𝜉, 𝑧, 𝑎𝑛𝑑 𝑟  in the 

expression above can be considered as the Laplace 

transform of 𝑔∗(𝑠) of 𝑔(𝑡). Following Honig and Hirdes 

(1984), the Laplace transform function 𝑔̂(𝑠) can be 

inverted. 

The last step is to calculate the integral in Eq. (42). The 

method for evaluating this integral is described in Press et 

al. (1986), which uses Romberg’s integration with adaptive 

step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 

 

 

7. Numerical results and discussion 
 

In order to illustrate our theoretical results in the 

proceeding section and to show the effect of two 

temperature, we now present some numerical results. 

Copper material is chosen for the purpose of numerical 

calculation, which is transversely isotropic. The physical 

data for copper material, which is transversely isotropic, is  

 

Fig. 1 Demonstrates the variations of displacement 

component u with distance r 

 

 

taken from (Dhaliwal and Singh 1980) is given by 

𝑐11 = 18.87 × 1010𝐾𝑔𝑚−1𝑠−2, 
𝑐12 = 8.76 × 1010𝐾𝑔𝑚−1𝑠−2, 
𝑐13 = 8.00 × 1010𝐾𝑔𝑚−1𝑠−2, 
𝑐33 = 17.2 × 1010𝐾𝑔𝑚−1𝑠−2, 
𝑐44 = 5.06 × 1010𝐾𝑔𝑚−1𝑠−2, 
𝐶𝐸 = 0.6331 × 103𝑗𝐾𝑔−1𝐾−1, 

𝛼1 = 2.98 × 10−5𝐾−1, 
 𝛼3 = 2.4 × 10−5𝐾−1, 

𝜌 = 8.954 × 103𝐾𝑔𝑚−3 

  𝐾1 = 0.433 × 103𝑊𝑚−1𝐾−1, 
𝐾3 = 0.450 × 103𝑊𝑚−1𝐾−1. 

The values of normal force stress  𝑡𝑧𝑧, tangential stress 

𝑡𝑧𝑟, radial stress 𝑡𝑟𝑟 and conductive temperature 𝜑 for a 

transversely isotropic thermoelastic solid with two 

temperature is presented graphically to show the impact of 

two temperature. 

i. The solid black line with centre symbol square 

corresponds to without two temperature parameter i.e., 

for 𝑎1 = 0.00, 𝑎3 = 0.00, 

ii. The solid blue line with centre symbol circle 

corresponds to two temperature parameter  𝑎1 =
 0.02, 𝑎3 = 0.02, 

iii. The solid red line with centre symbol triangle 

corresponds to two temperature parameter  𝑎1 = 0.04, 𝑎3 =
0.04, 

iv. The solid green line with centre symbol star 

corresponds to two temperature parameter   𝑎1 =
 0.02, 𝑎3 = 0.04. 

Fig. 1 shows the variations of displacement component 

𝑢 with distance r. In the initial range of distance r, there is a 

sharp increase in the value of displacement component for 

the curves when the two temperatures are i.e., 𝑎1 = 0.00 

=  𝑎3, 𝑎1 =  0 . 0 2  =  𝑎3 ,  𝑎1 =  0 . 0 4  =  𝑎3 ,  a n d  𝑎1 = 

0.02, 𝑎3 = 0.04. However, away from source applied, it 

follows oscillatory behaviour near the zero value. We can 

see that the two temperature have significant effect on the 

displacement component in all the cases as there are more  
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Fig. 2 illustrates the variations of displacement component 

𝑤 with distance r 

 

 

Fig. 3 depicts the behavior of conductive temperature 𝜑 

with distance r 

 

 

Fig. 4 Shows the variations of tangential stress tzr with 

distance r 

 

 

variations in 𝑢 in case of when both temperature are non-

zero and equal as compared to when both temperature are 

zero. 

Fig. 2 shows the variations of displacement component 

𝑤 with distance r. In the initial range of distance r, there is a 

increase in the value of displacement component for 𝑎1 =
 0.00 = 𝑎3 and 𝑎1 = 0.02, 𝑎3 = 0.04.   

However, there is a sharp decrease in the value of 

displacement component for the curves when the two 

temperatures are i.e.,  𝑎1 = 0.02 = 𝑎3, and 𝑎1 = 0.04 = 𝑎3, 

but again away from source applied, it follows opposite 

oscillatory behaviour. 

Fig. 3 demonstrates the variations of conductive 

temperature 𝜑 with distance r.In the initial range of distance 

r, there is a sharp decrease in the value of conductive 

temperature for the curves when the two temperatures are 

i.e., 𝑎1 = 0.00 = 𝑎3, 𝑎1 = 0.02 = 𝑎3 , 𝑎1 = 0.04 =  𝑎3 , 

and 𝑎1 = 0.02, 𝑎3 = 0.04, but away from source applied, 

it follows oscillatory behaviour. We can see that the two 

temperature have significant effect on the conductive 

temperature in all the cases as there are more variations in 

𝜑 in case of when the two temperatures are i.e., 𝑎1 = 0.00 

=  𝑎3 . However, for two temperatures, there is a sharp 

decrease in the range  0 ≤ 𝑟 ≤ 3  but pattern is oscillatory 

in the rest of the range. In case of when both temperature 

are non-zero and equal, oscillations are of lesser magnitude 

than in case of when both temperature are zero. Two-

temperature effect is more prominent in the range 0 ≤ 𝑟 ≤
3  for all the curves and curves are close to each other in 

the remaining range with minor difference in the 

magnitude. 

Fig. 4 illustrates the variations of tangential stress 

𝑡𝑧𝑟 with distance r. In the initial range of r, there is a sharp 

decrease in the values of  𝑡𝑧𝑟 for all the curves when the 

two temperatures are i.e., 𝑎1 = 0.02 = 𝑎3 and 𝑎1 =
 0.02, 𝑎3 = 0.02 and sharp increase in the values of 𝑡𝑧𝑟 for 

𝑎1 = 0.00 = 𝑎3 but away from source applied, it follows 

oscillatory behaviour. However, for 𝑎1 = 0.00 = 𝑎3 it 

follows opposite oscillatory behaviour. It is evident from 

Fig. 4 that near the point of application of source there is 

increase in the values when both temperature are non-zero 

and equal and has small variation near the zero value in the 

remaining range. However, for 𝑎1 =  0.02, 𝑎3 =  0.04, 

there is a sharp decrease in the range  0 ≤ 𝑟 ≤ 2   but 

pattern is oscillatory near the zero value in the rest of the 

range. In case of 𝑎1 = 0.02, 𝑎3 = 0.04 oscillations are of 

greater magnitude than in case of 𝑎1 = 0.00 = 𝑎3. 

Fig. 5 shows the variations of normal stress  𝑡𝑧𝑧with 

distance r. In the initial range of r, there is a sharp decrease 

in the value of normal stress for the curves i.e., 𝑎1 = 0.02 

= 𝑎3 , 𝑎1 =  0.00 = 𝑎3, 𝑎1 = 0.04 = 𝑎3 and a sharp 

increase in the value of normal stress for the curve when 

two temperature i.e., 𝑎1 = 0.02, 𝑎3 = 0.04 but away from 

source applied, it follows oscillatory behaviour. We can see 

that the two temperature have significant effect on the 

normal stress in all the cases as there are less variations in 

 𝑡𝑧𝑧 in case of 𝑎1 = 0.00 = 𝑎3. However, for when two 

temperature 𝑎1 = 0.02, 𝑎3 =0.04 and  𝑎1 = 0.04 = 𝑎3 , 

there is a sharp decrease in the range  0 ≤ 𝑟 ≤ 3   but 

pattern is oscillatory near the zero value in the rest of the 

range. 

Fig. 6 shows the variations of radial stress 𝑡𝑟𝑟with  
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Fig. 5 Shows the variations of normal stress tzz with distance 

r 

 

 

Fig. 6 Shows the variations of radial stress trr with distance 

r 

 

 

distance r. In the initial range of distance r, there is a sharp 

increase in the value of radial stress for the curves when the 

two temperatures are i.e., 𝑎1 = 0.00 = 𝑎3, 𝑎1 = 0.02 = 𝑎3, 

𝑎1 = 0.04 = 𝑎3, and 𝑎1 = 0.02, 𝑎3 = 0.04. However, away 

from source applied, it follows oscillatory behaviour.  

 

 

8. Conclusions 
 

From the figures, it is clear that there is a significant 

impact on the deformation of various components of 

stresses, displacement, conductive temperature, and 

temperature change in the thick circular plate while 

comparing the effect of two temperatures. The effect of two 

temperature has played an important part in the deformation 

of thick circular plate with two temperature and without 

energy dissipation. As distance r diverse from the point of 

application of the source, the components of normal stress, 

tangential stress and conductive temperature follow an 

oscillatory pattern. Much variations in amplitude and 

behaviour are observed while studying the effect of two-

temperature. It is observed that as the disturbances travel 

through different constituents of the medium, the variations 

of normal stress  𝑡𝑧𝑧, tangential stress  𝑡𝑧𝑟 and conductive 

temperature  𝜑 , suffer sudden changes resulting in an 

inconsistent non- uniform pattern of curves. The trend of 

curves exhibits the properties of two temperature of the 

medium and satisfies the requisite condition of the problem. 

The results of this problem are very useful in the two 

dimensional problem of dynamic response of the 

transversely isotropic thermoelastic solid with and without 

two temperature which has various geophysical and 

industrial applications and beneficial to dissect the 

deformation field such as geothermal engineering; advanced 

aircraft structure design, thermal power plants, composite 

engineering, geology, high-energy particle accelerators, and 

many emerging technologies. 
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