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1. Introduction 
 

Free vibrational analysis of concrete foundations resting 

on soil bed is of great importance for the design of many 

engineering problems such as footing of buildings, 

pavement of roads and bases of machines. It is due to the 

vibrational effect on the performance of sensitive 

equipment located on foundations. Engineers need to know 

natural frequencies and corresponding mode shapes of 

foundations so that they can design system appropriately. 

Also, as concrete is most usable material in the construction 

of foundations, it’s been required to improve its quality for 

reducing vibrations. Nowadays, nanotechnology offers the 

possibility of great advances in construction materials. So, 

free vibrations can be reduced by improving the properties 

of concrete foundations with adding nano material in order 

to increase its stiffness. On the other hand, for the accurate 

vibrational analysis of thick plates such as foundations, it is 

appropriate to use the high-order shear deformation 

theories. Because the results evaluated by using classical 

thin plate theory may not be reliable especially as the plate 

gets thicker. Therefore, free vibration analysis of concrete 

foundations reinforced with SiO2 nanoparticles using shear 

deformation theory is done on this topic. Also, Winker 

model is used for the simulation of soil bed because of its 

simplicity and accuracy. The investigation of vibration 

problems of plates on elastic foundation have attracted the 

attention of many researchers working on structural 

foundation analysis and design. Lam et al. (2000) applied 

the Green's functions to achieve canonical exact solutions  
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of elastic bending, buckling and vibration for Levy plates 

resting on two-parameter elastic foundations. The free and 

forced vibration analysis for a Reissner-Mindlin plate with 

four free edges resting on Pasternak type elastic foundation 

is studied by Shen et al. (2001). By employing the 

Rayleigh-Ritz method, the three dimensional vibration of 

rectangular thick plates on elastic foundations was 

investigated by Zhou et al. (2004). Zhong and Yin (2008) 

investigated the free vibration behavior of plate on Winkler 

foundation by finite integral transform method. Ferreira et 

al. (2010) used the radial basis function collocation method 

to study static deformation and free vibration of plates on 

Pasternak foundation. Free vibration analysis of moderately 

thick trapezoidal symmetrically laminated plates with 

various combinations of boundary conditions is studied by 

Zamani et al. (2012). Moradi-Dastjerdi et al. (2012) 

presented static analysis of nanocomposite cylinders 

reinforced by single-walled carbon nanotubes subjected to 

internal and external pressure was carried out by a mesh-

free method. Kumar and Lal (2012) studied the vibration 

analysis of nonhomogeneous orthotropic rectangular plates 

with bilinear thickness variation resting on Winkler 

foundation. Moradi-Dastjerdi et al. (2013a) reported the 

effect of nanotube aspect ratio on the free vibration 

characteristics of a functionally graded nanocomposite 

cylinders reinforced by wavy single-walled carbon 

nanotubes (CNTs) based on mesh-free method. 

Axisymmetric natural frequencies of nanocomposite 

cylinders reinforced by straight single-walled carbon 

nanotubes were presented based on a mesh-free method by 

Moradi-Dastjerdi et al. (2013b). A simple refined theory for 

bending, buckling, and vibration of thick plates resting on 

elastic foundation is introduced by Thai et al. (2013). 

Pourasghar and Kamarian (2013a) studied Dynamic 

stability analysis of functionally graded nanocomposite 
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non-uniform column reinforced by carbon nanotubes. In 

another work by Pourasghar and Kamarian (2013b), three-

dimensional solution for the vibration analysis of 

functionally graded multiwalled carbon nanotubes/phenolic 

nanocomposite cylindrical panels on elastic foundation was 

investigated. Free vibrations analysis of four-parameter 

continuously graded nanocomposite cylindrical panels 

reinforced by randomly oriented straight and local 

aggregation single‐walled carbon nanotubes (CNTs) were 

presented by Pourasghar et al. (2013) based on three‐

dimensional theory of elasticity. Yas et al. (2013) studied 

the vibrational properties of functionally graded 

nanocomposite cylindrical panels reinforced by single-

walled carbon nanotubes (SWCNTs) based on the three-

dimensional theory of elasticity. Analytical solution of a 

refined plate theory is developed for free vibration analysis 

of functionally graded plates under various boundary 

conditions by Thai and Choi (2014). Nguyen-Thoi et al. 

(2014) presented an edge-based smoothed three-node 

Mindlin plate element (ES-MIN3) for static and free 

vibration analyses of plates. An original first shear 

deformation theory to study advanced composites on elastic 

foundation is presented by Mantari and Granados (2016). 

Based on the three-dimensional elasticity theory, the 

investigation of the free vibration response of a carbon 

nanotube-reinforced cylindrical panel resting in elastic 

foundation in thermal environments was presented by 

Pourasghar and Chen (2016). Uğurlu (2016) analyzed the 

vibration of elastic bottom plates of fluid storage tanks 

resting on Pasternak foundation based on boundary element 

method. Large amplitude vibration problem of laminated 

composite spherical shell panel under combined 

temperature and moisture environment was analyzed by 

Mahapatra et al. (2016a). The nonlinear free vibration 

behaviour of laminated composite spherical shell panel 

under the elevated hygrothermal environment was 

investigated by Mahapatra and Panda (2016b). Mahapatra et 

al. (2016c) studied the geometrically nonlinear transverse 

bending behavior of the shear deformable laminated 

composite spherical shell panel under hygro-thermo-

mechanical loading. Nonlinear free vibration behavior of 

laminated composite curved panel under hygrothermal 

environment was investigated by Mahapatra et al. (2016d). 

A simplified first-order shear deformation theory for 

bending, buckling and free vibration analyses of isotropic 

plates on elastic foundations is investigated by Park and 

Choi (2017). The flexural behaviour of the laminated 

composite plate embedded with two different smart 

materials (piezoelectric and magnetostrictive) and 

subsequent deflection suppression were investigated by 

Dutta et al. (2017). Suman et al. (2017) studied static 

bending and strength behaviour of the laminated composite 

plate embedded with magnetostrictive (MS) material 

numerically using commercial finite element tool. 

Furthermore, the mechanical behavior of concrete 

structures containing nanoparticles has been investigated 

experimentally by a number of researchers, but there is little 

mathematical works in this field. Investigations on the 

development of powder concrete with nano-SiO2 particles 

are made by Jo et al. (2007). Fathi et al. (2017)  

 

Fig. 1 A schematic figure for concrete foundation 

reinforced with SiO2 nanoparticles resting on soil medium 

 

 

investigated the mechanical and physical properties of 

expanded polystyrene structural concrete containing Micro-

silica and Nano-silica. Effect of nanosilica on the 

compressive strength development and water absorption 

properties of cement paste and concrete containing Fly Ash 

is tested by Ehsani et al. (2017). In the field of 

mathematical modeling of concrete structures, Jafarian 

Arani and Kolahchi (2016) considered buckling analysis of 

concrete columns reinforced with carbon nanotubes by 

using Euler-Bernoulli and Timoshenko beam models. The 

nonlinear buckling of a concrete column reinforced with 

SiO2 nanoparticles is investigated by Zamanian et al. 

(2017). Also, Arbabi et al. (2017) studied the buckling of   

concrete columns reinforced with Zinc Oxide nanoparticles 

subjected to electric field. Mechanical characteristics of a 

classical concrete lightened by the addition of treated straws 

were presented by Kammoun and Trabelsi (2018). Effect of 

porosity on frost resistance of Portland cement pervious 

concrete was presented by Zhang et al. (2018). 

It is worthy of noting that, this paper is mainly 

concerned with the vibration of concrete foundations 

reinforced by SiO2 nanoparticles resting on soli medium. To 

the best of the authors’ knowledge, the effects of using nano 

particles on the vibration of concrete foundations have not 

been investigated. In order to obtain the equivalent material 

properties of nano-composite structure, the Mori-Tanaka 

model is used. Also, higher-order shear deformation 

theories (HSDTs) were proposed to avoid the use of shear 

correction factor and obtain better prediction of response of 

thick foundation. Applying Reddy higher-order shear 

deformation theory, the motion equations are obtained 

based on Hamilton’s principal. Also, Navier method is 

applied for obtaining the frequency of the system. The 

effects of volume percent and agglomeration of SiO2 

nanoparticles, soil medium and geometrical parameters of 

structure on the frequency of system are disused in detail. 

 

 

2. Mathematical modeling 
 

A concrete foundation reinforced with SiO2 

nanoparticles with length L, width b, concrete thickness h 

and is considered as shown in Fig. 1. 

 
2.1 Reddy theory 

 

Based on Reddy theory, the displacement field can be 

expressed as (Reddy 2002) 
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where (u1(x,y,z,t), u2(x,y,z,t), u3(x,y,z,t)) denote the 

displacement components at an arbitrary point (x, y, z) in 

the plate, and (u(x,y,t, v(x,y,t), v(x,y,t), w(x,y,t)) are the 

displacement of a material point at (x, y) on the mid-plane 

(i.e., z=0) of the plate along the x and y directions, 

respectively;
 
ϕx and ϕy

 
are the rotations of the normal to the 

mid-plane about x and y directions, respectively; Also, 

c1=43h2.  

Based on above relations, the strain-displacement 

equations may be written as 
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where c2=3c1. 

 

2.2 Stress-strain relations 
 

Based on Hook’s law, we have 
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55 ,c
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66 ,c

xy xyQ =  (7) 

where Qij are elastic constants which can be obtained by 

Mori-Tanaka model. 

 
2.3 Mori-Tanaka model and agglomeration effects 

 
In this section, the effective modulus of the concrete 

foundation reinforced by SiO2 nanoparticles is developed. 

Different methods are available to obtain the average 

properties of a composite (Mori and Tanaka 1973). Due to 

its simplicity and accuracy even at high volume fractions of 

the inclusions, the Mori-Tanaka method is employed in this 

section. The matrix is assumed to be isotropic and elastic, 

with the Young’s modulus Em and the Poisson’s ratio υm. 

The constitutive relations for a layer of the composite with 

the principal axes parallel to the x,y and z directions are 

(Mori and Tanaka 1973) 
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(8) 

where σij, εij, γij, k, m, n, l, p are the stress components, the 

strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by (Mori and Tanaka 1973) 
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where the subscripts m and r stand for matrix and 

reinforcement respectively. Cm and Cr are the volume 

fractions of the matrix and the nanoparticles respectively 

and kr, lr, nr, pr, mr are the Hills elastic modulus for the 

nanoparticles (Mori and Tanaka 1973). The experimental 

results show that the assumption of uniform dispersion for 

nanoparticles in the matrix is not correct and the most of 

nanoparticles are bent and centralized in one area of the 

matrix. These regions with concentrated nanoparticles are 

assumed to have spherical shapes, and are considered as 

“inclusions” with different elastic properties from the 

surrounding material. The total volume Vr of nanoparticles 

can be divided into the following two parts (Shi et al. 2004) 

inclusion m

r r rV V V= +  (10) 
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where 
inclusion

rV  and 
m

rV  are the volumes of 

nanoparticles dispersed in the spherical inclusions and in 

the matrix, respectively. Introduce two parameters ξ and ζ 

describe the agglomeration of nanoparticles 
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where χr, βr, δr, ηr may be calculated as 

( )

( )

3
,

3

m m r r

r

r m

K G k l

k G


+ + −
=

+

 
(20) 

( ) ( )

( ) ( )

( ) ( )

2 3 3 74 2 41
,

5 3 3 3 7

m m m m m mm r r m
r

r m r m m m m r m m

G K G G K GG k l G

k G p G G K G m K G


 + + + + +  = + + 
+ + + + +  

 
(21) 

( )( )2 3 21
2 ,

3

r r m m r

r r r

r m

k l K G l
n l

k G


− + − 
= + + 

+ 

 
(22) 

( )
( )

( )

( ) ( )

( )( )

( )

8 3 4 2 241 2
.

5 3 3 7 3

m r m m r r m rm r
r r r

r m m r m m r m r m

G m K G k l G lG p
n l

p G K m G G m G k G


 + − +
= − + + + 

+ + + + + 

 
(23) 

where, Km and Gm are the bulk and shear moduli of the 

matrix which can be written as 
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Furthermore, β, α can be obtained from 
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Finally, the elastic modulus (E) and poison’s ratio (υ) 

can be calculated as 
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2.4 Energy method 
 

The potential energy can be written as 
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Combining of Eqs. (1), (3)-(7) and (30) yields 
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(31) 

where the stress resultant-displacement relations can be 

written as 
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Substituting Eqs. (1) and (3)-(7) into Eqs. (32)-(36), the 

stress resultant-displacement relations can be obtained as 

follows 
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The kinetic energy of system may be written as 
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The external work due to Pasternak medium can be 

written as (Bowles 1988) 
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where Kw is Winkler’s spring modulus. The governing 

equations can be derived by Hamilton’s principal as follows 

0
( ) 0.

t

eU K W dt  − − =  (50) 

Substituting Eqs. (31), (48) and (49) into Eq. (50) yields 

the following governing equations 
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 (52) 
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where 

),6,...,1,0(
2/

2/
== − idzzI

h

h

i

i   (56) 

),4,1(
3

4
22

=−= + iI
h

IJ iii
 (57) 

,
3

4

3

8
6

2

24222 I
h

I
h

IK 







+−=  (58) 

Substituting Eqs. (37) to (41) into Eqs. (51) to (55), the 

governing equations can be written as follows 
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(63) 

 

 

3. Solution procedure  
 

Steady state solutions to the governing equations of the 

system motion which relate to the simply supported 

boundary conditions (v=w=ϕx=ϕθ=Mx=0) can be assumed as 

0( , , ) cos( )sin( ) ,i tn x m y
u x y t u e

L b

 
=  (64) 

0( , , ) sin( )cos( ) ,i tn x m y
v x y t v e

L b

 
=  (65) 

0( , y, ) sin( )sin( ) ,i tn x m y
w x t w e

L b

 
=  (66) 

0( , , ) cos( )sin( ) ,i t

x x

n x m y
x y t e

L b

 
 =  (67) 
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0( , , ) sin( )cos( ) ,i t

y y

n x m y
x y t e

L b

 
 =  (68) 

Substituting Eqs. (64)-(68) into Eqs. (59)-(63) yields 

011 12 13 14 15

021 22 23 24 25

31 32 33 34 35 0

41 42 43 44 45 0

51 52 53 54 55 0

0,

x

y

uK K K K K

vK K K K K

K K K K K w

K K K K K

K K K K K





  
  
  
   =
  
  
     

 (69) 

where Kij are stiffness constants. Finally, for calculating the 

frequency of the system (ω), the determinant of matrix in 

Eq. (69) should be equal to zero. 
 

 

4. Numerical results and discussion 
 

A computer program coded in Matlab is prepared for the 

vibration of concrete foundation reinforced with SiO2 

nanoparticles. SiO2 nanoparticles have Yong’s modulus of 

Er=70 Gpa and Poisson’s ratio of vr=0.2.  
 

4.1 Validation 
 

In this paper, to validate the results, the frequency of the 

structure is obtained by assuming the absence of soil 

medium (Kw=0). Therefore, all the mechanical properties 

and type of loading are the same as Whitney (1987). So, the 

non-dimensional frequency is considered as 
2 4

0

h L

D

 
 = in which 

3

0 1 12 21/ (12(1 ))D E h  = − . 

The results are compared with five references which have 

used different solution method. Whitney (1987) is used 

exact solution while Seçgin and Sarıgül (2008) are applied 

discrete singular convolution approach. The numerical 

solution method of Dai et al. (2007), Chen et al. (2003) and 

Chow et al. (1992) are mesh-free, finite element and Ritz, 

respectively. As it is observed in Table 1 the results of 

present work are in accordance with the mentioned 

references. 

 

4.2 Effects of different parameters 
 

Fig. 2 illustrates the effect of the SiO2 nanoparticles 

volume fraction on the dimensionless frequency of structure 

( /m mL E  = ) versus agglomeration percent of SiO2 

nanoparticles. It can be seen that with increasing the values 

of SiO2 nanoparticles volume fraction, the frequency of the 

system is increased. This is due to the fact that the increase 

of SiO2 nanoparticles leads to a harder structure. In 

addition, decreasing the agglomeration of SiO2 

nanoparticles (ξ→1), the frequency is increased due to more 

stability of the foundation. 

The dimensionless frequency of the nano-composite 

concrete foundation versus agglomeration percent of SiO2 

nanoparticles is demonstrated in Fig. 3 for the effect of soil 

mediums. As can be seen, considering soil medium  

Table 1 Validation of present study with the other works 

Method Mode number    

 1 2 3 4 

Whitney (1987) 15.171 33.248 44.387 60.682 

Seçgin and Sarıgül (2008) 15.171 33.248 44.387 60.682 

Dai et al. (2004) 15.17 33.32 44.51 60.78 

Chen et al. (2003) 15.18 33.34 44.51 60.78 

Chow et al. (1992) 15.19 33.31 44.52 60.79 

Present 15.169 33.241 44.382 60.674 

 

 

Fig. 2 Effects of SiO2 nanoparticles volume percent on the 

dimensionless frequency versus agglomeration percent 

 

 

Fig. 3 Effects of soil medium on the dimensionless 

frequency versus agglomeration percent 

 

 

increases the frequency of the structure. It is due to the fact 

that considering soil medium leads to stiffer structure.  

The effect of the length of concrete foundation on the 

dimensionless frequency of the system versus 

agglomeration percent of SiO2 nanoparticles is depicted in 

Fig. 4. As can be seen, the frequency of the structure 

decreases with increasing the length of concrete foundation. 

It is because increasing the length leads to softer structure. 

Fig. 5 shows the dimensionless frequency of the 

structure versus agglomeration percent  of SiO 2 

nanoparticles for different width the concrete foundation. It 

can be also found that the frequency of the structure  
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Fig. 4 Effects of length of concrete foundation on the 

dimensionless frequency versus agglomeration percent 

 

 

Fig. 5 Effects of width of concrete foundation on the 

dimensionless frequency versus agglomeration percent 

 

 

Fig. 6 Effects of thickness of concrete foundation on the 

dimensionless frequency versus agglomeration percent 
 

 

decrease with increasing the width which is due to the 

higher stiffness of system with lower width of concrete 

foundation. 

The effect of thickness of concrete foundation on the 

dimensionless frequency versus agglomeration percent of 

SiO2 nanoparticles is shown in Fig. 6. It can be found that 

with increasing the thickness, the frequency of the structure 

is increased. It is because with increasing the thickness, the 

stiffness of the structure will be improved. 

 

 

5. Conclusions 
 

Vibration of concrete foundations reinforced with SiO2 

nanoparticles resting on soil medium was the main 

contribution of the present paper. Mori-Tanaka model was 

used for obtaining the effective material properties of the 

structure considering agglomeration effects. The soil 

medium was simulated by Winkler foundation. Based on 

orthotropic Reddy theory, the motion equations were 

derived using energy method and Hamilton’s principle. 

Exact solution is applied for obtaining the frequency of 

system so that the effects of the volume percent and 

agglomeration of SiO2 nanoparticles, soil medium and 

geometrical parameters of concrete foundation were 

considered. It can be seen that with increasing the values of 

SiO2 nanoparticles volume fraction, the frequency of the 

system was increased. Considering agglomeration of SiO2 

nanoparticles leads to lower frequency. It can be seen that 

considering soil medium increases the frequency of the 

structure. Furthermore, the frequency of the dense sand 

medium was higher than other cases since the spring 

constant of this medium was maximum. In addition, the 

frequency of the structure decreases with increasing the 

length to thickness ratio and length to width ratio of the 

concrete foundation. Present results are in good agreement 

with those reported by the other references. Finally, it is 

hoped that the results presented in this paper would be 

helpful for design of concrete foundations. 
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