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1. Introduction 
 

The challenge of the finite element is how to generate a 

simple and applicable element formulation to reduce the 

computational cost, yet providing high accuracy and good 

convergence. In structural modeling, the use of a triangular 

element is interesting due to the simplicity and flexibility. 

Three node triangular elements are mostly used for complex 

configurations. However, research on triangular elements is 

not so intensive compared to the quadrilateral element. 

Hence, many analysts prefer to use quadrilateral element 

(Katili et al. 2014, 2015, 2018), Mahjudin et al. (2016) and 

Maknun et al. (2016), Wong et al. (2017), Ko et al. (2017) 

and Banh and Lee (2018). This situation should encourage 

researchers to develop low order triangular element. 

Formulation of plate element based on Reissner-Mindlin 

theory with C0 continuity results in shear locking 

phenomenon, which is responsible for giving poor results in 

thin plate problems, at least with low order approximation. 

To deal with this phenomenon, reduced and selective 

integration have been used to improve the performance of 

elements, but the shear locking cannot always be overcome.  

Mixed formulation and Assumed Natural Strain (ANS) 

have been better alternatives to overcome the problem of 

shear locking was proposed by Hughes and Tezduyar 

(1981) and MacNeal (1982). ANS has been found a very 

effective method used by many authors to develop new 

finite elements based on Reissner-Mindlin plate theory.  

One of the simplest ANS formulation to obtain a 3 

nodes, three degrees of freedom (dof) per node, plate 

bending element with Transverse Shear (TS) effects 

included is due to Hughes and Taylor (1982). They  
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consisted in two things: the first was to express the 

transverse shear strains in terms of the three constant 

tangential shear strains on each side which are then 

expressed in terms of the nodal variables. This was an 

application of what is now called the Assumed Natural 

Strain (ANS) or independent transverse shear approach. 

Another paper using the same formulation called TCSS 

(Triangular with Constant Shear on Sides) element was 

presented by Ayad et al. in 1992. In this present paper this 

element, called as T3γs, has a constant TS at sides of the 

element and uses the shear projection method to obtain TS 

on nodes.  

DKT (Discrete Kirchhoff Triangular) element, proposed 

by Batoz, Bathe and Ho in 1980, was developed based on 

the Reissner-Mindlin theory but using discrete Kirchhoff 

constraints on edges to neglect Transverse Shear (TS) 

energy. This element passes the patch test and gives good 

performance but it is only valid for thin plate cases. 

Based on the DKT element Batoz and Lardeur (1989) 

proposed the triangular element called DST (Discrete Shear 

Triangular), where TS effects have been considered using 

element equilibrium equations and shear constitutive 

equations to define constant shear strains along the three 

edges of the element. DST element give overall good 

behavior for the analysis of thin to thick plates but the 

transverse shear contribution is a bit complicated and patch 

tests for very thick plates were not fully satisfied. 

Combining several aspects of the formulation of DKT, 

T3γs and DST, Katili (1993) proposed DKMT (Discrete 

Kirchoff Mindlin Triangular) element using simplified 

equilibrium equation for assumed constant transverse shear 

strains along element sides. DKMT is valid for thin to thick 

plates, has good convergence properties and fully satisfies 

patch tests. DKMT element is free of shear locking by 

element constructions since as DKMT converges to DKT 

for thin plates.  

The MITC3, triangular shell element proposed by Lee  
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Fig. 1 Triangular element and degrees of freedom 

 

 

and Bathe (2004), is another popular triangular element 

with several of studies and developments (Lee et al. 2007) 

and (Lee et al. 2012). This 3-node triangular element has a 

simple and general formulation. The improvement of 

MITC3 shell elements called MITC3+ has been recently 

proposed by Jeon et al. (2015) and Ko et al. (2017). 

The purpose of this paper is to compare the formulation 

and performance of the two triangular elements, T3γs and 

MITC3, and compare the numerical results of both elements 

with DKMT element. The paper is organized as follows. 

Some aspects of the formulation of T3γs are recalled in 

section 2. In sections 3 and 4, the formulation of DKMT 

and MITC3 is presented using the same notation as for the 

formulation of T3γs. Section 5 deals with the numerical 

tests for circular plate problems to evaluate the convergence 

of both elements and compare the results with DKMT 

element. Concluding remarks, acknowledgments and 

references are given at the end. 

 

 

2. Formulation of the T3s element 
 

One of the developments for plate bending elements 

proposed by Hughes and Taylor (1982) for the triangular 

element is called in this paper as T3γs, is generated by an 

assumed natural strain concept. Transversal shear strain for 

this element is expressed with special interpolation called 

shear projection method. The triangular elements discussed 

here have three-degrees of freedom per node (Fig. 1). 

 

2.1 Bending strain matrix 
 

The displacement functions are given as 

3 3 3

1 1 1

  ;     ;    
i ii i x i x y i y

i i i

w N w N N

= = =

=  =   =     (1) 

where: 

w is the vertical displacement function 

βx and βy are the rotations in plane of z-x and z-y, 

respectively.  

Ni is a shape function and the shape functions are 

1 2 31   ;      ;    N N N= −  − =  =   (2) 

The relation between curvature and rotation is declared 

as 

 
,

,

, ,

x x x

y y y

xy x y y x

    
      

 =  =    
   
  +      

 (3) 

βx,x and βx,y denote the first derivatives of βx with respect 

to x and y, respectively.  

The relation between curvature and nodal displacement 

is expressed in the equation 

    b nB u =  (4) 

{un}: Nodal displacements 

 
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... ...
i i

TT
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u u w

=
= =    (5) 

[Bb]: From Eqs. (1)-(4), we obtain the expression of the 

bending strain matrix, 

 
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,
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(6) 

Ni,x and Ni,y denote the first derivatives of Ni with 

respect to x and y, respectively.  

 
,,

, ,

ii x

i y i

NN
j

N N





     
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(7) 

where [j] is the inverse of Jacobian matrix, and the Jacobian 

matrix is 

  21 2111 12

13 1321 22

, ,

, ,

  ;  ji j i ji j i

x y x yJ J
J

x yJ J x y

x x x y y y

 

 

    
= = =    

− −     

= − = −

 
(8) 

The inverse of Jacobian is 

 

 

13 2111 12

13 2121 22

1

2

det 2   ;   is the area of the element

y yj j
j

x xj j A

J A A

− −  
= =   
   

=

 
(9) 

From Eqs. (5)-(9), we obtain the expression of the 

bending strain matrix as 

 
32 13 21

32 13 21

32 32 13 13 21 21

0 0 0 0 0 0
1

0 0 0 0 0 0
2

0 0 0

b

y y y

B x x x
A

x y x y x y

− − − 
 

=
 
 − − − 

 
(10) 

 
2.2 Shear strain interpolation 

 

The shear strain field is assumed linear in each element 

 
3

1

i

i

xx
i

y yi

N

=

      
 = =   

       
  (11) 
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where: 
ix and

iy  are the shear strains at node-i 

Shear strain is assumed constant along sides of the 

element (Fig. 2). Shear strain at node–i is obtained from the 

projection of constant shear strain
ijs from each side of the 

element to the nodes of the element. 
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(12) 

where  

2 2  ;     ;  
ji ji

ij ij ij ji ji
ij ij

x y
C S L x y

L L
= = = +  

(13) 

From Eqs. (11)-(13), we obtain 
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x
s s

y

B
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(14) 

with 
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and 

1 12 31 31 12

2 23 12 12 23

3 31 23 23 31
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= −

= −
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(16) 

  12 23 31n n

T T

s s s s s =  =     (17) 

If the assumed shear force and shear strains are constant 

along the side, then we obtain 

0

1
γ γ  

ij

ij

L

ss
ij

ds
L

= 
 (18) 

On each side i-j, we recall that w, βx and βy have a linear 

variation in s 
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1

1
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s s s

i j
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s s s
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w
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w w w
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 
 

 
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(19) 

Using Eqs. (18)-(19), we obtain 

( )

( ) ( )

1 1 1
γ β β

2 2

1 1
γ β β β β

2

i jij

i i j jij

j i s ss
ij

j i ij x ij y ij x ij ys
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w w
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L
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(20) 

Using Eq. (20) for all sides we get 

 

Fig. 2 Constant transverse shear strain along the side ij for 

T3s 
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Fig. 3 DKMT element, corner and temporary degrees of 

freedom at mid side of the element 

 

 

Fig. 4 Rotations βs and βn on each side i-j of an element. 

 

 

  { }
n

u ns
A u =  (21) 

Where [Au] is 

 

12 12 12 12
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1 2 2
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(22) 

Introducing Eqs. (21)-(22) into Eq. (14) we have 

          ;   
x

s n s s u
y

B u B B A


     = = =     
 (23) 

The shear stiffness for T3s is calculated using three-

points of Hammer integration. 
 

 

3. Formulation of DKMT element 
 

The DKMT element first published by Katili (1993) 
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combines some ideas and formulation aspects found in 

DKT, DST and T3s to achieve a simple and efficient 

element valid for thin to thick plates. DKMT element has 3 

nodes with 3 degrees of freedom each, which are: w 

(translation in the z-direction), βx (rotation in the z-x plane) 

and βy (rotation in the z-y plane). Incomplete quadratic 

rotation fields for βx and βy are considered in terms of 

rotations at the three corners and a temporary variable at 

mid-side i-j (Fig. 3). 

On each side i-j, the normal rotation βn is a linear 

function of s, while rotation βs is quadratic in s (Fig. 4). 

In a hierarchical form 

1
i jn n n

k k

s s

L L

 
 = −  +  

 
 (24) 

1 4 1
i j ks s s s

k k k k

s s s s

L L L L

     
 = −  +  + −      

     
 (25) 

The displacement function is given as 

3

1

3 6

1 4

3 6

1 4

i k
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i i
i

x i x k k s
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y i y k k s
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=

 =  + 
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

 

 

 
(26) 

where: Pk are the quadratic functions 

4 5 64    ;    4    ;    4P P P=  =  =   (27) 

Ck and Sk are the cosinus and sinus directions and Lk is 

the length of side-k of the element 

4 12 5 23 6 31

4 12 5 23 6 31

4 12 5 23 6 31

   ;       ;    

   ;        ;    

   ;       ;    

C C C C C C

S S S S S S

L L L L L L

= = =

= = =

= = =

 (28) 

The relation between curvature and nodal displacement 

is expressed in the equation below. 

     nb n b sB u B
 

    = + 
   

 (29) 

The bending strain 
bB


 
 

 is the same as [Bb] for T3s, 

(see Eq. (10)) 

where        

 
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T T
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(31) 

 

Fig. 5 Tying points 

 

 

Pk,x and Pk,y denote the first derivatives of Pk with 

respect to x and y, respectively.  

The assumed TS strain field is similar compared to T3s, 

(see Eqs. (11)-17)). The independent transverse shear 

strains are using local equilibrium and constitutive 

equations considering each side as a beam in order to keep 

the C0 continuity. 

In 1993, Katili proposed the assumed independent 

transverse shear strain s  along the side i-j, can be 

expressed as 

( )

2

2

2 2
  ;  

3 1ij k ks s k s k

k

h

L

 
 =  = −    =  

  −   

 (32) 

where  is the shear correction factor (usually  = 5/6),  

The factor k, which is characterizing the influence of 

shear effects, maintains the consistency of proposed 

element and precisely explains why DKMQ element 

behaves as either the Reissner-Mindlin theory for a thick 

plate or as Kirchhoff-Love theory for the thin plate. In the 

thin plate problems, where factor k
 is close to zero, shear 

strain is automatically reduced. Accordingly, as the main 

positive result, the shear locking is automatically resolved 

by this Discrete Kirchhoff Mindlin method. If Eq. (32) is 

applied to all sides of the element, the following matrix 

relation is obtained 

   

 
4 5 6

n n

n n

s s

T T

s s s s s

A  =  

 =  =   

 (33) 

4

5

6

0 0
2

0 0
3 0 0

A

 
   = −    

 

 (34) 

Introducing (33) into (14), the shear strains for DKMQ 

can be expressed as 

   
n

x
s s

y
B A

 

       = =       
 (35) 

Combining Eqs. (18), (32) and (19) with βs in Eq. (25), 

we obtain on each side 





1 2

3

( )A


( )B


A

B
C

( )C

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( )

( )

2
1 β
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1
β β β β

2
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i i j j

k s

j i
k x k y k x k y

k

w w
C S C S

L

− +   =

−
+ + + +

 (36) 

Applying Eq. (36) to all sides of the element, we get 

      
1

ns u nA A u
−

 =  (37) 

with          

 
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 

= − + 
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 +  
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and [Au] given by (22).  

Introduction of (37) into (29) we obtain the bending 

curvatures for DKMT element 

    
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     where     b n
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Introducing (37) into (35) leads to 
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where    
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4
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1

0 0
1

0 0
1

A A A
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 +  

 (41) 

The bending and shear stiffness for DKMT element is 

calculated using three-points of Hammer integration (Katili 

1993). In case the size element is very small compare to the 

thickness (Lk << h), then [A] = [I] and [A]-1 = [0], then the 

DKMTT3s. 

 

 

4. Formulation of MITC3 element 
 

In this section, we briefly review the formulations of a 

3-node triangular MITC3 proposed by Lee and Bathe 

(2004). This element has been developed using Mixed 

Interpolation of Tensorial Components initially proposed by 

Dvorkin and Bathe (1984).  

The key to MITC3 element is the use of appropriate 

assumed strain interpolation and the proper choice of tying 

points to relate displacement interpolation and strain 

interpolation, which is done separately. MITC3 has the 

same bending strain matrix formula as T3s since there is no 

specific formulation that makes the difference. We will 

describe the strain interpolation method to obtain the shear 

strain matrix of MITC3. 

For MITC3, tying points are chosen in the mid-points 

(Fig. 5) of the sides 1-2, 1-3, and 2-3. Distribution of  is 

assumed constant along ξ direction and  is assumed 

constant along η 

( )

1 2

1 2

1

2

a a

b b





  

 = + 

 = + 

 =  −

 
(42) 

From Eq. (42), we obtain the values of , ,  at the 

tying points A, B, and C.  

• At point A (=0): we obtain ( )1 Aa = .  

• At point B (=0): we obtain ( )1 Bb = .  

• At node 2 (=1,=0): we obtain 

( )
1

(1,0) (1,0) (1,0)
2

   =  −  

• At node 3 (=0,=1): we obtain 

( )
1

(0,1) (0,1) (0,1)
2

   =  −  

• Along edge 2-3, (1,0) (0,1)  =  leads to 

 ( ) ( )
1 1

(1,0) (1,0) (0,1) (0,1)
2 2

    − =  −       

Gives: 2 2a b c= − = . Then, Eq. (42) becomes 

( ) ( )  ;  A Bc c   = +   = −   (43) 

• At point C (=1/2,=1/2) 

( ) ( )  ( ) ( )( ) ( )
1 1 1 1

  and  
2 22 2

C CC C A Bc c    

    
 =  −  =  + −  −    

    

    

and we obtain the value of c 

( ) ( ) ( ) ( )B A C Cc    = − + −  (44) 

Introducing Eq. (44) into Eq. (43), we obtain the 

expression 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
A B A C C

B B A C C

     

     

 =  +  − + − 

 =  −  − + − 

 
(45) 

 and  at tying points are the average values on their 

sides, hence 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 3

2 3

2 3

1

2

1

2

1

2

1

2

A

B

C

C

 

 

 

 

 =  +

 =  +

 =  +

 =  +

 (46) 

Introducing (46) into (45), we obtain 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2 3 2 3 1 2 1 3

1 3 2 3 2 3 1 2 1 3

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

         



         

  
 + +  + −  + −  + +  +         

=   
        + −  + −  + −  + +  +     

 

(47) 

The transformation for the rotation at each node in 

parametric system into Cartesian system can be obtained by 

  ii

ii

x

y
J





   
=   

   

 (48) 

Substituting (48) into (47), we obtain 

 nB





  
 =      

 
(49) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

21 32 21 32 21 13 21 13 21 21

13 32 13 32 13 13 13 21 13 21

1

2

x x y y x x y y x y
B

x x y y x y x x y y


 +  +  +  +   
  =    − +  − +  −  −  − +  − +  

 

(50) 

and 

 
1 1 2 2 3 3

TT
n n x y x y x y =  =        (51) 

Transverse shear strain field in parametric space is 

2 1

3 1

,

,

w w w

w w w

   

   

 + − +          
= =     

 + − +          

 (52) 

Then, substituting (49) into (52) we get the expression 

of shear strain in parametric space 

 

( ) ( )
( ) ( )

( ) ( )

1 2 3

1

2

3

21 32 21 32

13 32 13 32

21 13 21 13

13 13

21 21

1

21

22

21

2 0

01

22

s n

s s s s

s

s

s

B u

B B B B

x x y y
B

x x y y

x x y y
B

x y

x y
B

x



   











    =     

       =
              

 − +  +   =     − − +  − +   

 +  +   =     −  −  

 
  =
   −( ) ( )3 21 13 21x y y

 
 

+  − +  

 
(53) 

 

Transverse shear strain field in Cartesian system is 

   
x

y
j





     
 = =   

       

 (54) 

Where [j] is the inverse of the Jacobian matrix. 

From Eq. (53) and Eq. (54), we obtain 

           ;   
x

s n s s
y

B u B j B


     = = =     
 (55) 

The shear stiffness for MITC3 is calculated using three-

points of Hammer integration (Jeon et al. 2015).  

It is interesting to note that the shear strain matrix [Bs]  

 

 

(a) Single Isosceles triangle (b) Single Arbitrary triangle 

Fig. 6 Single triangular element test 

 

 

 

 

 

 

Fig. 7 A quarter of Circular plate with different number of 

elements (NELT) 

 

 

for MITC3 element in the Eq. (55) is the same with the 

shear strain matrix [Bs] for T3s element in Eq. (23). The 

shear strain matrix [Bs] for T3s and MITC3 elements is 

finally given by 

 

( ) ( )
( ) ( )

( ) ( )

1 2 3

1

2

3

13 21 21 32 21 32

13 21 13 32 13 32

13 21 21 13 21 13

13 21 13 13

13 21

13 21

21

24

21

4 0

1

4

s s s s

s

s

s

B B B B

y y x x y y
B

x x x x y yA

y y x x y y
B

x xA x y

y y
B

x xA

     =
      

 − − − +  +  
  =     − − +  − +     

− −  +  +  
  =     −  −    

− − 
  =  

  ( ) ( )
21 21

13 21 13 21

0

2

x y

x x y y

  
  − +  − +  

 

(56) 

NELT = 6 

NELT = 24 

NELT = 54 

NELT = 96 

NELT = 216 
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Table 1 Exact solution for circular plate (Batoz and Dhatt 

1990) 

Simply supported Clamped 

( ) ( )

( )
( ) ( )

( )

24
2 26 2 8

1 1
64 1 3 1

z

b

h / Rf R
w

D k

 + 
 = −  − +  +
 +  − 
 

 
( ) ( ) ( )

( )

24
2 2 8

1 1
64 3 1

z

b

h / Rf R
w

D k

 
 = −  +  +
 − 
 

 

( )( )
2

23 1    ;   
16

z
r

f R r
M

R
= +  −   =

 ( )
( )

( )

2
23

1 1
16 1

z
r

f R
M

 + 
= +  −   +  

 

 

Table 2 Displacements wc for the simply and clamped of 

circular plate under uniform loading 

cw  

Simply supported Clamped 

R/h = 500 R/h = 50 R/h = 5 R/h = 2.5 R/h = 500 R/h = 50 R/h = 5 R/h = 2.5 

T3s 

NELT = 6 44.091 45.998 55.854 64.367 0.008 0.717 11.279 20.210 

NELT = 24 51.134 58.328 63.728 72.312 0.183 7.628 16.683 25.300 

NELT = 54 54.149 61.166 65.264 73.842 0.958 12.692 17.699 26.282 

NELT = 96 51.229 62.309 65.790 74.368 2.692 14.408 18.038 26.616 

NELT = 216 56.797 63.133 66.162 74.737 7.883 15.278 18.274 26.848 

NELT = 384 59.602 63.365 66.291 74.863 11.785 15.473 18.355 26.926 

MITC3 

NELT = 6 44.091 45.998 55.854 64.367 0.008 0.717 11.279 20.210 

NELT = 24 51.134 58.328 63.728 72.312 0.183 7.628 16.683 25.300 

NELT = 54 54.149 61.166 65.264 73.842 0.958 12.692 17.699 26.282 

NELT = 96 51.229 62.309 65.790 74.368 2.692 14.408 18.038 26.616 

NELT = 216 56.797 63.133 66.162 74.737 7.883 15.278 18.274 26.848 

NELT = 384 59.602 63.365 66.291 74.863 11.785 15.473 18.355 26.926 

DKMT 

NELT = 6 60.531 60.557 63.139 71.195 16.466 16.490 19.074 27.127 

NELT = 24 63.011 63.037 65.741 74.217 15.967 15.992 18.720 27.212 

NELT = 54 63.360 63.386 66.147 74.696 15.789 15.814 18.586 27.137 

NELT = 96 63.464 63.490 66.283 74.849 15.713 15.739 18.531 27.098 

NELT = 216 63.530 63.555 66.378 74.952 15.653 15.679 18.491 27.062 

NELT = 384 63.547 63.576 66.411 74.984 15.631 15.657 18.475 27.046 

Exact solution 63.702 63.730 66.559 75.136 15.625 15.654 18.482 27.054 

 

 

5. Numerical analysis 
 

5.1 Single element test 
 

To compare MITC3 and T3s elements, we will compare 

the results of the formulation of both elements for simple 

cases. Two single triangles cases have been chosen (Fig. 6). 

As bending strain matrices for both elements are obtained in 

the same way, we will only compare the impact of the shear 

strain matrices.  

If we substitute the coordinates of isosceles and 

arbitrary triangles (Fig. 6) into Eqs. (23) and (55) we obtain 

the same shear strain matrices [Bs], which leads to the same 

shear stiffness. 
 

5.2 Convergence tests 
 

Next, we will consider a quarter of circular plate (Fig. 7) 

under uniform loading fz for convergence studies. Because 

of symmetry, only one quarter of circular plate is evaluated 

and divided in 3 zones. For each zone we consider N×N×2 

elements. Two cases will be studied with number of  

Table 3 Moment Mr at the center of circular plate for simply 

and clamped under uniform loading 

 

Simply supported Clamped 

R/h = 500 R/h = 50 R/h = 5 R/h = 2.5 R/h = 500 R/h = 50 R/h = 5 R/h = 2.5 

T3γs 

NELT = 6 2.868 3.124 4.118 4.182 0.001 0.097 1.207 1.318 

NELT = 24 3.150 4.524 4.899 4.906 0.031 1.099 1.842 1.852 

NELT = 54 3.368 4.870 5.044 5.045 0.110 1.687 1.951 1.953 

NELT = 96 3.117 5.018 5.094 5.094 0.273 1.897 1.988 1.989 

NELT = 216 4.219 5.109 5.128 5.128 0.900 1.996 2.013 2.013 

NELT = 384 4.690 5.132 5.139 5.140 1.490 2.016 2.021 2.021 

MITC3 

NELT = 6 2.868 3.124 4.118 4.182 0.001 0.097 1.207 1.318 

NELT = 24 3.150 4.524 4.899 4.906 0.031 1.099 1.842 1.852 

NELT = 54 3.368 4.870 5.044 5.045 0.110 1.687 1.951 1.953 

NELT = 96 3.117 5.018 5.094 5.094 0.273 1.897 1.988 1.989 

NELT = 216 4.219 5.109 5.128 5.128 0.900 1.996 2.013 2.013 

NELT = 384 4.690 5.132 5.139 5.140 1.490 2.016 2.021 2.021 

DKMT 

NELT = 6 5.261 5.262 5.333 5.417 2.400 2.401 2.472 2.554 

NELT = 24 5.220 5.221 5.267 5.290 2.163 2.164 2.212 2.235 

NELT = 54 5.194 5.195 5.225 5.233 2.101 2.102 2.133 2.141 

NELT = 96 5.179 5.181 5.201 5.205 2.074 2.075 2.096 2.099 

NELT = 216 5.166 5.167 5.178 5.179 2.052 2.053 2.064 2.065 

NELT = 384 5.160 5.161 5.169 5.169 2.043 2.044 2.050 2.051 

Exact solution 5.156 5.156 5.156 5.156 2.031 2.031 2.031 2.031 

 

 

(a) Simply supported 

 
(b) Clamped 

Fig. 8 Displacement wc of circular plate for simply and 

clamped with R/h = 500 
 

 

elements (NELT) of 6, 24, 54, 96, 216 and 384. R = 5; h 

=0.01, 0.1, 1, 2; R/h = 500, 50, 5, 2.5; E = 10.92; Poisson’s 

ratio = 0.3; and uniform loading fz = 1.  

In the first case, the perimeter edge is simply supported 

(soft simply supported), while in the second it is fixed. The 

analytical solution is given in Table 1.  

We observe the displacement at the centre of the plate 

(wc). The numerical results for T3s and for MITC3 are 

compared with DKMT element and the exact results, as 
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(a) Simply supported 

 
(b) Clamped 

Fig. 9 Displacement wc of circular plate for simply and 

clamped with R/h = 50 

 

 

(a) Simply supported 

 
(b) Clamped 

Fig. 10 Displacement wc of circular plate for simply and 

clamped with R/h = 5 
 

 

shown in Table 2 for normalized vertical displacement
3 410c b zcw w D f R=   and in Table 3 for bending 

moment Mr at the centre. 

As we can see from Tables 2 and 3, both T3s and 

MITC3 show exactly the same results. Evidently, although 

based on different formulation ideas, both elements lead to 

the same stiffness matrix. 

Figs. 8-11 show the comparative results of T3γs, MITC3 

and DKMT elements for R/h, i.e., R/h = 500, 50, 5 and 2.5 

for vertical displacement at the center of the plate. Figs. 12-

15 show comparative results of moment Mr at the center of 

the plate.  

For thin plate (R/h = 500), we observe the poor behavior 

of MITC3 (T3s) due to shear locking problem and 

excellent performance is shown for DKMT  DKT gives 

the better results. For R/h = 50, we observe that less shear 

locking using MITC3 and T3s, compared with previous  

 

(a) Simply supported 

 
(b) Clamped 

Fig. 11 Displacement wc of circular plate for simply and 

clamped with R/h = 2.5 

 

 

(a) Simply supported 

 
(b) Clamped 

Fig. 12 Moment Mr at the center of circular plate for simply 

and clamped with R/h = 500 

 

 

(a) Simply supported 

 
(b) Clamped 

Fig. 13 Moment Mr at the center of circular plate for simply 

and clamped with R/h = 50 
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(a) Simply supported 

 
(b) Clamped 

Fig. 14 Moment Mr at the center of circular plate for simply 

and clamped with R/h = 5 

 

 

(a) Simply supported 

 
(b) Clamped 

Fig. 15 Moment Mr at the center of circular plate for simply 

and clamped with R/h = 2.5 

 

 

plate cases (R/h = 500). We remark the overall best 

performances and gives good convergence behavior to the 

exact solution of DKMT, T3s and MITC3 for R/h = 2.5. 

 

 

6. Conclusions 
 

The paper includes detailed formulation aspects of the 

stiffness matrix of three triangular plate bending elements 

with 3 dof per node, based on the first order Reissner-

Mindlin theory. The three elements T3s, DKMT and 

MITC3, have been published in 1982, 1993 and 2004. 

The present paper is written in order to understand the 

differences and complementarities, using a unified notation 

and similar assumed shear strain constraints on element 

sides. 

Although T3s and MITC3 elements are obtained 

considering two different methods, the formulation of these 

two elements are actually identical, which is proved by the 

same bending strain and shear strain matrices. The paper 

shows that for thin plates DKMT should converge to DKT 

without shear locking. On the other end for extremely thick 

plates the formulation of DKMT is such that

DKMT T3 (MITC3)s  . The results of numerical tests 

confirm that the three elements show a good convergence 

towards the exact solution. However, better results for 

displacement and stresses are obtained using the DKMT 

element due to incomplete quadratic interpolation of the 

rotations.  
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