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1. Introduction 
 

Func t io na l ly  Grad ed  Mater i a l s  (FGMs)  ar e 

heterogeneous composite materials for which material 

properties, such as Young’s modulus, density, and fish 

coefficient continuously vary, giving a considerable 

advantage over homogeneous and laminated materials in 

maintaining the integrity of the FGM structure can also be 

defined as a composite in which the properties of the 

material gradually vary in a certain direction as a function 

of the coordinates of the position to obtain the desired 

strength and rigidity. Currently, FGM materials are 

increasingly used in the energy, aeronautics, aerospace, 

electronics, automotive and chemical industries (Ait 

Atmane et al. 2010, Ahmed 2014, Zemri et al. 2015, Mahi 

et al. 2015, Akavci 2016, Benbakhti et al. 2016, Bounouara 

et al. 2016, Janghorban 2016, Aldousari 2017, Bellifa et al. 

2017a, Zidi et al. 2017, Mouffoki et al. 2017, Benadouda et 

al. 2017, Ahouel et al. 2016, Selmi and Bisharat 2018, 

Shahsavari et al. 2018, Younsi et al. 2018, Karami et al. 

2019). Therefore, knowledge of the characteristics of FGM 

plates is of great practical importance for structural design. 

To this end, numerous studies have been carried out in 

order to understand the dynamic behavior of structures  
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made by this type of material. It is clear from the literature 

that the behavior of elastic-based FGM structures has 

attracted the intention of many researchers. Describe the 

interactions of the structure and its foundation in an 

appropriate very where possible, scientist has proposed 

different types of foundation models (Kerr 1964). The 

simplest model for the elastic foundation is the Winkler 

model, which considers the foundation as a series of 

separate springs without coupling effects, which has the 

disadvantage of a discontinuous deflection on the 

interacting surface of the plate (Benferhat et al. 2016). 

Pasternak (1954) corrects the Winkler model by introducing 

a shear layer as a parameter. From that moment, the 

Pasternak model has been widely used to describe the 

mechanical behavior of structure-foundation interactions. 

Reddy (2000) is one of the first to analyzed the static 

behavior of FGM rectangular plates based on his plate 

theory. Cheng and Batra (2000) have found correspondence 

between eigenvalues of membranes and functionally graded 

simply supported polygonal plate. The same membrane 

analogy was later applied to FGM plate and shell analysis 

based on a third order theory of plates by Reddy (2002). Vel 

and Batra (2004) presented a three-dimensional exact 

solution for the vibration of functionally graded rectangular 

plates. By using first order and higher shear deformation 

theories, Shufrin and Eisenberger (2005) studied the free 

vibration and stability of FG deformable plates. Zenkour 

(2006) presented a generalized shear deformation theory in 

which function across the thickness. Woo et al. (2006) 
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studied the non-linear free vibration behavior of plates 

made of FGMs using the Von Karman theory for large 

transverse deflection. Matsunaga (2008) analyzed the free 

vibration and stability of FG plates based on a two-

dimensional higher-order theory. Zhao et al. (2009) used 

the element-free kp-Ritz method to investigate the free 

vibration behavior of FG plates. Later, Ait Atmane et al. 

(2010) and Benachour et al. (2011) proposed some new 

shape functions. Hosseini-Hashemi et al. (2011) proposed 

an exact analytical solution for transverse vibration 

investigation of Lévy-type rectangular plates. In addition, 

Neves et al. (2012a, 2012b, 2013c) proposed a sinusoidal 

and a hybrid type quasi-3D hyperbolic shear deformation 

theories to study bending, free vibration and buckling 

responses of FG plates. Based on the Reddy’s third order 

shear deformation plate model, A new higher-order shear 

deformation theory for static analysis of laminated 

composite and sandwich plates was established by Mantari 

et al. (2012). Sobhy (2013) studied the vibration and 

buckling behavior of exponentially graded material 

sandwich plate resting on elastic foundations under various 

boundary conditions. The first-order shear deformation 

theory (FSDT), including the effects of transverse shear 

deformation, was employed by some researches to analyze 

buckling behavior of moderately thick FGM plates 

(Yaghoobi and Yaghoobi 2013). In the same way, 

Bouremana et al. (2013) developed a new first shear 

deformation beam theory based on neutral surface position 

for FG beams. An efficient and simple higher order shear 

and normal deformation theory for static and free vibration 

of functionally graded plates was developed by Belabed et 

al. (2014). Recently, by employing a novel four variables 

refined plate theory against five in case of other shear 

deformation theories, some studies investigated a series of 

buckling, bending and vibration response of FG plate/beam 

and laminated plate supported by elastic foundation (Fekrar 

et al. 2012, Bouderba et al. 2013, Kettaf et al. 2013, Tounsi 

et al. 2013, Nedri et al. 2014, Zidi et al. 2014, Attia et al. 

2015 and 2018, Beldjelili et al. 2016, Bousahla et al. 2016, 

Laoufi et al. 2016, Khetir et al. 2017, Fahsi et al. 2017, 

Zine et al. 2018, Chikh et al. 2017, Sekkal et al. 2017a, 

Besseghier et al. 2017, Menasria et al. 2017). Bousahla et 

al. (2014) presented a novel higher order shear and normal 

deformation theory based on neutral surface position for 

bending analysis of advanced composite plates. 

Chakraverty and Pradhan (2014) studied the free vibration 

of exponential functionally graded rectangular plates in 

thermal environment with general boundary conditions. 

Hebali et al. (2014) developed a new quasi-3D hyperbolic 

shear deformation theory for the bending and free vibration 

behavior of FG plate. A quasi-3D theory, which 

incorporates both shear deformation and thickness 

stretching effects, supposes that the in plane and out-plane 

displacements are a higher-order variation within the 

thickness.  A new simple shear and normal deformations 

theory was developed by Bourada et al. (2015) for the 

analysis of the behavior of functionally graded beams. 

Recently, Bennai et al. (2015) proposed a novel higher-

order shear and normal deformation theory for the study of 

vibration and stability for FG sandwich beams. Ait Atmane 

et al. (2015) examined dynamics of FG porous beams with 

different beams theories. Belkorissat et al. (2015) studied 

the dynamic properties of FG nanoscale plates using a novel 

nonlocal refined four variable theory. Kolahchi and Moniri 

Bidgoli (2016) presented a model for the dynamic 

instability of embedded single-walled carbon nanotubes 

using a sinusoidal shear deformation. Tounsi et al. (2016) 

proposed a new 3-unknowns non-polynomial plate theory 

for buckling and vibration of FG sandwich plate. Kolahchi 

et al. (2016) studied the dynamic stability response of 

embedded piezoelectric nanoplates made of polyvinylidene 

fluoride (PVDF) based on visco-nonlocal-piezo elasticity 

theories. Bouderba et al. (2016) studied the thermal stability 

of FG sandwich plates using a simple shear deformation 

theory. Kolahchi et al. (2016) is investigated nonlinear 

dynamic stability analysis of embedded temperature-

dependent viscoelastic plates reinforced by single-walled 

carbon nanotubes. Bellifa et al. (2016) presented static 

bending and dynamic analysis of FG plates using a simple 

shear deformation theory and the concept the neutral 

surface position. The buckling of straight concrete columns 

armed with single-walled carbon nanotubes or Nano-Fiber 

Reinforced Polymer (NFRP) was studied by Arani and 

Kolahchi (2016) and Safari Bilouei et al. (2016). Houari et 

al. (2016) presented a new simple three-unknown sinusoidal 

shear deformation theory for FG plates. Madani et al. 

(2016) presented the Vibration analysis of embedded 

functionally graded (FG)-carbon nanotubes (CNT)-

reinforced piezoelectric cylindrical shell subjected to 

uniform and non-uniform temperature distributions. Draiche 

et al. (2016) used a refined theory with stretching effect for 

the flexure analysis of laminated composite plates. Al 

Jahwari and Naguib (2016) investigated FG porous plates 

with different plate theories and cellular distribution model. 

Hajmohammad et al. (2017) studied the dynamic buckling 

behavior of a sandwich plate composed of laminated 

viscoelastic nanocomposite layers integrated with 

viscoelastic piezoelectric layers. Kolahchi and Cheraghbak 

(2017) studied nonlocal dynamic buckling analysis of 

embedded microplates reinforced by single-walled carbon 

nanotubes using Bolotin method. Ait Atmane et al. (2017) 

is study the effect of stretching the thickness and porosity 

on the mechanical response of a FG beam resting on elastic 

foundations. Kolahchi (2017) presented a comparative 

study on the bending, vibration, and buckling of viscoelastic 

sandwich nano-plates using on various nonlocal theories 

employing DC, HDQ and DQ methods. Kolahchi et al. 

(2017) presented optimization of embedded piezoelectric 

sandwich nanocomposite plates for dynamic buckling 

analysis based on Grey Wolf algorithm. Kolahchi et al. 

(2017) investigated dynamic buckling of sandwich nano 

plate (SNP) subjected to harmonic compressive load based 

on nonlocal elasticity theory. Shokravi (2017) studied the 

effect agglomeration on vibration analysis of silica 

nanoparticles-reinforced concrete beams. Shokravi (2017) 

studied buckling analysis of embedded laminated plates 

with nanocomposite layers. The same author Shokravi 

(2017) examined dynamic pull-in and pullout analysis of 

viscoelastic nanoplate switch under electrostatic and 

intermolecular Casimir forces. Shokravi (2017) presented 
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reddy plate theory for buckling of sandwich plates with FG-

CNT-reinforced layers resting on orthotropic elastic 

medium was studied. Zamanian et al. (2017) investigated 

nonlinear buckling of embedded straight concrete columns 

reinforced with silicon dioxide (SiO2) nanoparticles. Zarei 

et al. (2017) investigated the seismic response of the fluid-

conveying concrete pipes reinforced with SiO2 

nanoparticles and fiber reinforced polymer (FRP) layer. 

Amnieh et al. (2018) presented the dynamic analysis of 

non-homogeneous concrete block resting on soil foundation 

subjected to blast load with a studied experimentally and 

theoretically. Golabchi et al. (2018) examined the 

agglomeration effects on vibration and buckling analysis of 

pipes reinforced by SiO2 nanoparticles. Hajmohammad et 

al. (2018) presented the smart control and vibration analysis 

of laminated sandwich truncated conical shells with 

piezoelectric layers as sensor and actuator. The same author 

presented a numerical work on the dynamic response of 

cylindrical shells submerged in an incompressible fluid 

subjected to earthquake, thermal and moisture loads 

(Hajmohammad et al. 2018). A study of the seismic 

response of underwater fluid-conveying concrete pipes 

reinforced with nano-fiber reinforced polymer layer during 

the earthquake in Kobe was presented by Hajmohammad et 

al. (2018). A shear deformation theory with four variables 

was used by Yousfi et al. (2018) for the analysis of the 

vibratory behavior of porous FGM plates. Shahsavari et al. 

(2018) presented a novel quasi-3D hyperbolic theory for 

free vibration of FG plates with porosities resting on 

Winkler/Pasternak/Kerr foundation. Mokhtar et al. (2018) 

employed a novel shear deformation theory for buckling 

analysis of single layer graphene sheet based on nonlocal 

elasticity theory. Wave propagation is an important 

dynamic characteristic of functionally graduated structures, 

for which reason it is necessary to study this characteristic 

in this type of high-frequency structures in order to be able 

to use them in different domains. The study of wave 

propagation in FG plates has also received a lot of attention 

from various researchers. Han et al. (2000a, 2001b) used in 

an analytical-numerical method to study transient waves in 

a functionally graduated cylinder. Han et al. (2002) also 

proposed a numerical method for studying the transient 

wave in FG plates excited by impact loads. Boukhari et al. 

(2016) introduced an efficient shear deformation theory for 

wave propagation of functionally graded material plates. 

Kolahchi et al. (2017) studied a refined zigzag theory for 

wave propagation of embedded viscoelastic FG-CNT-

reinforced sandwich plates integrated with sensor and 

actuator. Sharma et al. (2017) studied vibroacoustic 

behavior of shear deformable laminated composite flat 

panel using BEM and higher order shear deformation 

theory. An analytical study of wave propagation and free 

vibration of FG porous beams by a new high order theory of 

four variables has been proposed by Ayache et al. (2018). 

Fourn et al. (2018) developed a new, refined theory of four-

variable plates for analyzing the wave propagation of FGM 

plates.  

As the review of the above literature shows, most 

research work on the study of wave propagation in FG 

structures is limited to plates without elastic foundations. In  

 

Fig. 1 Geometric configuration of FGMs plate with elastic 

foundation 

 

 

this work, we study free vibration and phase velocity 

characteristics in functionally graduated (FG) plates resting 

on elastic bases with simply supported edges. The base is 

described by Pasternak’s two-parameter model. The 

proposed higher shear strain theory (HSDT) has a new 

displacement field that includes indeterminate integrated 

terms and contains only four unknowns. The equations 

governing wave propagation in the functionally graded 

plate are derived using the Hamilton principle. Analytical 

dispersion relations of the functionally graded plate are 

obtained by solving a eigenvalue problem. The accuracy of 

the current model is checked against the results calculated 

with those of the literature. The influence of geometric 

parameters and elastic foundation on the frequency and 

phase velocity of wave propagation in FG plates are clearly 

discussed. 

 

 

2. Problem formulation 
 

Consider a solid rectangular plate of length a, width b 

and thickness h made of FGM with the coordinate system as 

shown in Fig. 1. It is assumed to be rested on a Winkler-

Pasternak type elastic foundation with the Winkler stiffness 

of kw and shear stiffness of kp. 

The ceramic is at the top surface (z =+ h/2) of the plate, 

and metal is at the bottom surface (z =- h/2).  

The material characteristics of this plate change across 

the plate thickness with different power law distributions of 

the volume fractions of the constituents of the two materials 

as: 

i. Power law distribution 

( )
p

mcm
h
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
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
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ii. Exponential law distribution 
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 
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z
p

h

mp z p e
 (2) 

Where is the power law index, which takes values 

greater than or equal to zero. Where denotes the effective 

material characteristic such as Young’s modulus and mass 

density subscripts and denote the metallic and ceramic 

components, respectively, and is the power law exponent. 

The value of equal to zero indicates a fully ceramic plate, 

whereas infinite represents a fully metallic plate. Since the 

influences of the variation of Poisson’s ratio on the 
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behavior of FG, plates are very small (Yang et al. 2005, 

Kitipornchai et al. 2006), it is supposed to be constant for 

convenience. 

i. Power law distribution 

1
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ii. Exponential law distribution 
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3. Mathematical formulation 
 

3.1 Theoretical formulation 
 

In this article, further simplifying supposition are made 

to the conventional HSDT so that the number of unknowns 

is reduced. The displacement field of the conventional 

HSDT is given by (Bouchafa et al. 2015, Baseri et al. 2016) 
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Where u0, v0, w0, φx, φy are five unknown displacements 

of the mid-plane of the plate, f(z) denotes shape function 

representing the variation of the transverse shear strains and 

stresses within the thickness. By considering that 

= dxyxx ),(  and = dyyxy ),( , the displacement 

field of the present model can be expressed in a simpler 

form as (Bourada et al. 2016, El-Haina et al. 2017, Bourada 

et al. 2018, Meksi et al. 2019) 
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The shape function f(z) is chosen to satisfy the boundary 

conditions without stress on the upper and lower surfaces of 

the plate. Therefore, a shear correction factor is not 

necessary. In this study, this shape function is chosen based 

on the higher-order shear deformation plate theory (HSDT) 

of Reissner (1945). This equation is expressed as 
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It can be seen that the displacement field in Eq. (5) 

introduces only four unknowns (u0, v0, w0 and θ). The 

nonzero strains associated with the displacement field in 

Eq. (5) are 
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And the integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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Where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A , 'B , k1 and k2 are expressed as 

follows 
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Where κ1 and κ2 are the wave numbers of wave 

propagation along x-axis and y-axis directions respectively. 

For elastic and isotropic FGMs, the constitutive 

relations can be expressed as 
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(11) 

where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress 

and strain components, respectively. Using the material 
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properties defined in Eqs. (1)-(2), stiffness 

Coefficients, Cij, can be given as  

11 11 222

12 12 122

44 44 55 66

( )
,

1

( )
,

1

( )
,

2(1 )









= =
−

= =
−

= = =
+

E z
Q Q Q

E z
Q Q Q

E z
Q Q Q Q  

(12) 

 
3.2 Equations of motion 

 
Using Hamilton’s energy principle we derive the 

equation of motion of the FG plate (Hachemi et al. 2017, 

Bellifa et al. 2017b, Klouche et al. 2017, Kaci et al. 2018, 

Belabed et al. 2018, Youcef et al. 2018, Cherif et al. 2018, 

Bouadi et al. 2018, Yazid et al. 2018, Bakhadda et al. 2018, 

Kadari et al. 2018, Karami et al. 2018a, Bourada et al. 

2019) 

0

( ) 0+ − =
t

efU U K dt  (13) 

Where: 

δU: Variation of energy deformation of the FG plate, 

Uef: Variation of the energy deformation of the elastic 

medium, δK: Variation of kinetic energy. 

The Variation of energy deformation of the FG plate is 

given by 

(

)

      

   

= + +

+ +

 xx xx yy yy xy xy

V

yz yz xz xz

U

dV
 

0 0 0(

)

    

   

 

= + + + +

+ + + +

+ +


b b b b

x x y y xy xy x x y y

A

b b s s s s s s
xy xy x x y y xy xy

s s s s
yz yz xz xz

N N N M k M k

M k M k M k M k

R R R R dA
 

(14) 

Where A is the top surface and the stress resultants N, 

M, and R are defined by 

( )

( )

/2

/2

/2

/2

, , (1, , ) , ( , , )

, ( , )



 

−

−

= =

=





h

b s

i i i i

h

h

s s

xz yz xz yz

h

N M M z f dz i x y xy

R R g dz  

(15) 

The Variation of the deformation energy of the elastic 

medium (Pasternak foundation) can be expressed as 

2 2

2 2
( )  

 
= − + 

 
ef w p

A

d w d w
U K w w K w dA

dx dy
 (16) 

With Kw and Kp are the transverse and shear stiffness 

coefficients for the elastic medium respectively. If the 

foundation is modelled as the linear Winkler foundation, the 

coefficient kp in Eq. (16) is zero. 

The variation of kinetic energy of the plate can be 

expressed as 

( )   = + +
V

K u u v v w w dV

 
( )

( )

( )

( )
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 


 

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    
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    

   
+  

   
 

   + +     

=     
+ + 

    


+

I u u v v w w

w w w w
I u u v v

x x y y

k A u u
x x

J

k B v v
y y

w w w w
I

x x y y

K k A ( )

( )

( )

2
'

2

' 0 0

1

2

' 0 0

2

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 +             
 

     
+   

      −        + +         


V

dV

k B
x x y y

w w
k A

x x x x
J

w w
k B

y y y y

 

(17) 

Where (.) indicates the differentiation with respect to the 

time variable t and (Ii, Ji, Ki) are mass inertias expressed by 

( )

( )

/2

2

0 1 2

/2

/2

2

1 2 2

/2

, , (1, , ) ( )

, , ( , , ) ( )

−

−

=

=





h

h

h

h

I I I z z p z dz

J J K f zf f p z dz

 (18) 

By substituting Eqs. (14), (16) and (17) into Eq. (13), 

the following can be derived 

'0

0 0 0 1 1
1

'0

0 0 0 1 2

1

2 22

0 0 02 2

2 2
2 ' '0 0

1 2 0 2 1 22 2

:

:

: 2








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

  
+ = − +

   

   
+ = − +

   

 
+ + =

  

     
+ + −  + +  

      
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b bb
xy yx

N wN
u I u I J k A

x y x x

N N w
v I v I J k B

y x y y
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w I w

x yx y

u v
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x y x y
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2

' '

1 2 1 2

' ' ' '0 0

1 2 1 1 2

2 2
2 2
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2 1 22 2

2 2
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2 1 22 2

: ( )

 


− − − + +

 

    
+ = − + 

    

  
− + 

  

  
+ + 
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s

xys s

x y

SS
yzxz

M
k M k M k A k B

x y

R u vR
k A k B J k A k B

x y x y

K k A k B
x y

w w
J k A k B

x y

 (19) 

Substituting Eq. (8) into Eq. (11) and the subsequent 

results into Eqs. (15), the stress resultants are obtained in 

terms of strains as following compact form 

,





    
        = =   
    
        

s

b s b s

s s ss s

N A B B

M B D D k S A

B D HM k
 

(20) 

In which   
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   

 

, , , ,= =

=

tt
b b b b

x y xy x y xy

t
s s s s

x y xy

N N N N M M M M

M M M M  

   
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0 0 0, , ,
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=
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s s s s

x y xy
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   0 0 44
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0
, ,

0
  

 
= = =  

 

s

s s s

xz yz xz yz s

A
S R R A
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In addition, stiffness component are given as follows 

( )

11 11 11 11 11 11

12 12 12 12 12 12

66 66 66 66 66 66

/2

2 2
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1, , , ( ), ( ), ( )
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s s s

A B D B D H

A B D B D H
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2
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[ ( )]
−

= = 
h

s s

h

A A Q g z dz  (22c) 

Introducing Eq. (20) into Eq. (19), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations take the form 

( )

( ) ( )( )
( )

11 11 0 66 22 0 11 66 12 0 11 11 0

' '
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Where dij, dijl and dijlm are the following differential 

operators 

2 3

4

, ,

, ,( , , , 1,2).

 
= =
    

 
= = =
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i j i j l
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i j l m i

d d
x x x x x

d d i j l m
x x x x x

 (24) 

 

3.3 Dispersion relations 
 

The solution for equations of motion are assumed to 

resolve using dispersion relations that describe propagation 

wave in plane x-y 

 
 
 
 

1 20

1 20

1 20

1 2

exp (  )( , , )
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 + − 
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U i x y tu x y t

V i x y tv x y t

W i x y tw x y t

X i x y tx y t

 
(25) 

where U, V, W and X are the coefficients of the wave 

amplitude, κ1 and κ2 are the wave numbers of wave 

propagation along x-axis and y-axis directions respectively, 

ω is the frequency, 1−=i  the imaginary unit. 

Substituting Eq. (25) into Eq. (23), the following 

problem is obtained 

11 12 13 14 11 13 14

12 22 23 24 22 23 242

13 23 33 34 31 32 33 34

14 24 34 44 41 41 43 44

0 0

0 0

0

0



        
        

       − =       
                       

S S S S m m m U
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(26) 

Where 
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(27b) 

The dispersion relations of wave propagation in the 

functionally graded beam are given by 

    0  2 =− MK 
 

(28) 

The roots of Eq. (28) can be defined by 

)(11  W= , )(22  W= , )(33  W= and )(44  W=  (29) 

Its roots correspond to the wave modes M1, M2, M3 and 

M4 respectively. The wave modes M1 and M4 correspond to 

the flexural wave, the wave mode M2 and M3 corresponds to 

the extensional wave. The phase velocity of wave 

propagation in the FG plate can be obtained by 

)4,3,2,1(   ,
)(

== i
W

C i
i



  (30) 

 

 

4. Numerical results 
 

In this work, the study of wave propagation and free 

vibrations in FG plates based on elastic foundation by a new 

theory of high order shear strain is proposed for 

investigation. The dispersion solutions for determining the 

phase velocities and frequencies of the FG plates are 

presented by solving eigenvalue equations. The Poisson’s 

ratio is fixed at ν=0.3. Comparisons are made with the 

solutions available in the literature. To verify the accuracy 

of this analysis, some numerical examples are solved. The 

properties of the materials used in this study are as 

follows(Yahia et al. 2015, Shahsavari et al. 2018). 

Ceramic (Alumina, Al2O3): Ec = 380 GPa, ν = 0.3 and ρc 

= 3800 kg/m3. 

Ceramic (Si3N4): Ec = 348.43 GPa, ν = 0.3 and ρc = 

2370 kg/m3. 

Metal (Aluminium, Al) Em = 70 GPa, ν = 0.3 and ρm = 

2702 kg/ m3. 

Metal (SUS304) Em = 201.04 GPa, ν = 0.3 and ρm 

=8166 kg/ m3. 

These properties change through the thickness of the 

plate according to the power law. The upper surface of 

FGM plate is rich in ceramic, while the lower surface of the 

FGM plate is rich in metal. The thickness of the 

functionally graded plate is taken h=0.2 and 0.1 m. In order 

to verify the effectiveness of the current theory in the study 

of wave propagation and free vibration of FG plates, 

numerical applications are presented and discussed. The 

study based on the proposed model is executed using the 

MAPLEprogram. 

For convenience, the following expressions to compute 

the non-dimensional natural frequencies and foundation 

parameters were used 

mm Eh /  = ,  

c

w
w

D

aK
K

4

= , 

c

p
p

D

aK
K

4

= ,
( )
( )( )2

3

112 c

m
c

hE
D

−
=  

 
4.1 Comparison of natural frequencies of P-FGM 

plates 

 
In order to study the effectiveness of the current theory 

in predicting the free vibration response of functionally 

graduated plates (P-FGM, Al/Al2O3) based on elastic 

foundations, the non-dimensionalfrequencies are computed 

and compared to those available to the literature. 

In this part, various numerical examples are described, 

discussed and compared with other existing theories such as 

the theory of hyperbolic shear of quasi-3D shear presented 

by Benahmed et al. (2017), the third order shear of flat 

theory (TSDT) proposed by Baferani et al. (2011) and the 

quasi-3D hyperbolic theory developed by Shahsavari et al. 

(2017). 

In Table 1, the natural frequencies of the square FG 

plates (Al/Al2O3) for different values of the power law p 

are compared with those of the quasi-3D of Benahmed et al. 

(2017), the third order shear deformation flat theory 

(TSDT) of Baferani et al. (2011) and quasi-3D of 

Shahsavari et al. (2017). Four thickness ratios (h/a) are 
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considered. From the results of the non-dimensional 

fundamental frequency presented in this table, we notice 

that the latter are almost identical to those obtained by the 

other theories of the literature for all ranges the values of 

the thickness ratio. In addition, it can be seen that the 

thickness ratio and the volume fraction index have a 

dominant role on the vibratory behavior of the FG plates 

rested on an elastic foundation. The results presented in this 

table also show that the frequencies of the P-FGM plate 

increase when the basic parameters increase. 

In addition, it is noticed that the fundamental frequency 

without dimension increases when the foundation 

parameters increase. Compared with the effect of the 

Winkler parameter, it can be seen that the vibration 

responses of FG plates are more affected by the Pasternak 

foundation parameter than the Winkler parameter. 

 

4.2 Parametric study of P-FGM plates 
 

To further illustrate the precision of the theory proposed 

in this work for a wide range of thickness ratios (a/h), 

different gradient values of power law index (p), different  

 

 

values of the number of waves and different cases of 

foundation parameters (kw, kp), a variation analysis of the 

wave propagation frequency and phase velocity values 

calculated by the current theory for P-FGM 

(Si3N4/SUS304) plates have been presented in this section. 

In Fig. 2, we examine the influence of the presence of a 

base of resilient foundation on the fundamental frequency 

and the rate of the phase of the P-FGM plates. Several 

values of the index of the power law (p) are used. 

From the curves shown in Fig. 2, we see that the 

frequency of a plate resting on an elastic foundation is a 

little high compared to the other that does not take an elastic 

base. It is also noted that the fundamental frequency and the 

speed of the phase decrease with increasing values of the 

volume fraction index of the constituents of the material (P) 

and increase with the increase of the number of waves (κ). 

Fig. 3 illustrates the curves of the variation of the 

fundamental frequency and the phase velocity of the 

different plates FG with kw = 1000, kp = 100 and p = 2. It 

can be seen that the thickness of the plate has an effect on 

the wave propagation frequency in the FG plate for large 

wave numbers (κ). In contrast, the frequencies are reduced 

Table 1 Non-dimensional fundamental frequencies 
mm Eh /  = of square FG plates resting on Winkler-Pasternak 

foundations 

Kw Kp h/a Model 
p 

0 0.5 1 2 5 

0 0 

0.05 

(Benahmed et al. 2017) 0.0291 – 0.0226 0.0207 – 

(Baferani et al. 2011) 0.029 0.0249 0.0227 0.0209 0.0197 

(Shahsavari et al. 2018) 0.0291 0.0248 0.0226 0.0206 0.0195 

Present 0.0291 0.0246 0.0222 0.0202 0.0191 

0.2 

(Benahmed et al. 2017) 0.4174 – 0.3264 0.2965 – 

(Baferani et al. 2011) 0.4154 0.3606 0.3299 0.3016 0.2765 

(Shahsavari et al. 2018) 0.4168 0.3586 0.326 0.2961 0.2722 

Present 0.4150 0.3551 0.3205 0.2892 0.2667 

100 0 

0.05 

(Benahmed et al. 2017) 0.0298 – 0.0236 0.0218 – 

(Baferani et al. 2011) 0.0298 0.0258 0.0238 0.0221 0.021 

(Shahsavari et al. 2018) 0.0298 0.0257 0.0236 0.0218 0.0208 

Present 0.0299 0.0257 0.0234 0.0215 0.0215 

0.2 

(Benahmed et al. 2017) 0.4286 – 0.3431 0.3158 – 

(Baferani et al. 2011) 0.4273 0.3758 0.3476 0.3219 0.2999 

(Shahsavari et al. 2018) 0.4284 0.3734 0.3431 0.3159 0.295 

Present 0.4269 0.3702 0.3381 0.3097 0.2901 

100 100 

0.05 

(Benahmed et al. 2017) 0.0411 – 0.0386 0.0383 – 

(Baferani et al. 2011) 0.0411 0.0395 0.0388 0.0386 0.0388 

(Shahsavari et al. 2018) 0.0411 0.0393 0.0386 0.0383 0.0385 

Present 0.0411 0.0392 0.0384 0.0381 0.0383 

0.2 

(Benahmed et al. 2017) 0.6089 – 0.5794 0.5752 – 

(Baferani et al. 2011) 0.6162 0.6026 0.5978 0.597 0.5993 

(Shahsavari et al. 2018) 0.6137 0.594 0.5856 0.5815 0.5843 

Present 0.6156 0.5950 0.5852 0.5800 0.5834 
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Fig. 2 Variation of frequency and phase velocity of different 

FG plates as a function of wave number (kw = 1000, kp = 

100) 
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Fig. 3 Variation of frequency and phase velocity of FG 

plates as a function of wave number. (kw=1000, kp=100, 

p=2) 
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Fig. 4 The dispersion curves of the different plates FG rest 

on elastic foundation. (kw = 1000, kp = 100) 
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Fig. 5 The phase velocity curves of different functionally 

graded plates rest on elastic foundation. (kw = 1000, kp = 

100) 
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Fig. 6 Comparisons of frequencies and phase velocity of P-

FGM and E-FGM plates (a/h=5, p=3) 
 
 

when the thickness decreases. For the curves of the phase 

velocity, we see that the latter decreases with the decrease 

in the thickness of the plate. It should also be noted that for 

large values of the wavenumber, the phase velocities 

converge whatever the thickness. 

In Fig. 4, the variation of the natural frequency of the 

different plates FG as a function of the number of waves 

presented. It can be noted that the propagation frequency of 

the waves in the plate FG increases with the decrease of the 

index of the power law, whatever the wave mode. In 

addition, the propagation frequency of the wave becomes 

maximum in the homogeneous plate (p = 0). 

The variation of the phase velocity of the different plates 

FG according to the number of waves is represented in Fig. 

5. From the curves shown in this figure, the similarities can 

be identified in the evolution of the parameters of the speed 

of propagation of FG plates. 

It may be noted that the phase velocity of wave 

propagation in the plate FG increases when the index of the 

power law p decreases for the same wave number k. The 

phase velocity of the second and third waveform of the 

plate (p = 0) is constant, but the latter decreases when the 

index of the power law p becomes different from zero (p ≠ 

0), this decrease becomes more visible in the fourth mode. 

In addition, for the homogeneous plate (p = 0), the phase 

velocity takes the maximum among those of all the other 

compositions. 
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Fig. 7 Comparisons of frequencies and phase velocity of P-

FGM and E-FGM plates (κ =10, p =3) 

 

 

3.3 Comparative parametric study of P-FGM and E-
FGM plates 
 

The effect of the foundation on free vibration and wave 

propagation in thick P-FGM and E-FGM plates is shown in 

Fig. 6 (a/h = 5 and P = 3). 

In Fig. 7, a comparison of the variation of the dispersion 

and the phase velocity of the plates P-FGM and E-FGM as 

a function of the thickness ratio (a/h) was presented. The 

number of waves and the index of power law are taken here 

equal, respectively, to 10 and 3. The results presented in 

both Figs. 6 and 7 show that the frequency and phase 

velocity parameters of the P-FGM plates are larger than 

those of the E-FGM plate. With this, it is to ensure a regular 

distribution of properties of the material along the 

thickness. 

 

 

5. Conclusions  
 

The present work focuses on the analysis of dynamic 

response and wave propagation in FG plates based on an 

elastic basis using a theory of high order shear strain with 

an integral displacement field. The main advantage of the 

proposed theory over existing higher order shear 

deformation theories is that the current theory involves 

fewer unknowns as well as the effect of the elastic 

foundation has been taken into account. The cost of 

calculation can be reduced. The equations of motion are 

obtained according to Hamilton's principle. These equations 

are solved using the dispersion relation, and then the 

fundamental frequencies and phase velocities are found by 

solving the eigenvalue problem. The results obtained were 

compared to those reported by other literature theories. The 

non-dimensional frequencies obtained are compared with 

others and a very good agreement has been found, which 

proves the precision of the proposed theory. A parametric 

study was carried out which made it possible to highlight 

the various factors influencing the vibratory behavior and 

wave propagation in FG plates. It is indicated that the 

responses to wave propagation in FG plates are affected by 

various parameters such as elastic foundation constants, 

gradient index, and thickness-to-length ratio. An 

improvement of present formulation will be considered in 

the future work to consider the thickness stretching effect 

by using quasi-3D shear deformation models (Hamidi et al. 

2015, Larbi Chaht et al. 2015, Bennoun et al. 2016, Sekkal 

et al. 2017b, Bouafia et al. 2017, Abualnour et al. 2018, 

Bouhadra et al. 2018, Benchohra et al. 2018, Karami et al. 

2018b, Mahmoudi et al. 2019, Zaoui et al. 2019). 
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