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1. Introduction  
 

The functionally graded materials (FGM) which are 

known one of the next generation of engineering materials, 

renovate interface problems due to graded structures and 

provide high strength and thermal resistance in modern 

engineering applications. The characteristic properties of 

typical FGM are high bending-stretching coupling and 

thermal resistance due to their mechanical properties such 

as the volume fraction of constituent materials changes 

gradually. FGMs are usually made of a mixture of ceramic 

materials and metal materials. Because of the constant 

change in material properties, it is not possible to 

accumulate stress accumulations in the material. 

A considerable number of researchers employed 

different beam theories (Li 2008, Li et al. 2010, Li et al. 

2013, Bellifa et al. 2016, Hadji et al. 2016) and 

mathematical models (Chakraborty et al. 2003, Sina et al. 

2009, Kim and Reddy 2013) for analyses of FGM beams 

therefore they have been received great attention. 

In the literature, the Euler-Bernoulli beam theory (EBT) 

has been applied analyses of FGM beams by authors 

(Sankar 2001, Aydogdu and Taskin 2007, Lee and Lee 

2017). The theory disregards the effect of the transverse 

shear deformations and normal stresses. Because, the theory 

based on these assumptions; straight lines perpendicular to 

the transverse normal before deformation remain straight 

after deformation, the transverse normals are inextensible. 

So that it is only applied for thin beams, inapplicable for 

thick beams. 

In recent years it has been understood that EBT is not 
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sufficient in modeling static and dynamic behaviors of 

newly developed modern materials. To overcome this 

shortcoming, shear deformation beam theories have been 

developed and used for analyses of FGM beams. One of 

them the first order shear deformation beam theory (FSDT) 

has been used for thick FGM beams (Menaa et al. 2012, 

Murin et al. 2013, Nguyen et al. 2013, Kahya and Turan 

2017). The FSDT does not neglect the transverse shear 

deformation effects that consider a uniform transverse shear 

stress distribution through the beam thickness with using a 

shear correction factor. Therefore, it does not satisfy the 

condition of zero transverse shear stress at the surfaces of 

beam. 

In the last years, The high order shear deformation beam 

theories (HOBT) without the use of the shear correction 

factor have been developed to overcome all this deficiencies 

which are the function of the vertical coordinate 

components of the vertical displacement components. The 

HOBT does not neglect the effect of the transverse shear 

deformations and also satisfy the zero transverse shear 

stress on the surfaces of the beam because it includes non-

linear shear stress distributions provided by cubic, 

parabolic, trigonometric shear strain shape functions along 

the beam thickness. To mention some of works based on 

HOBT in the literature: The exact solutions for FGM beam 

analyses proposed by Zenkour (2006) based on HOBT 

using sinusoidal shape functions. Vo et. al. (2014) presented 

the refined shear deformation theory which does not require 

shear correction factor for static and dynamic analysis of 

FGM beams. Hadji et. al. (2016) developed a new HOBT 

model and obtained analytical solutions for static and 

dynamic analyses of FGM beams. Thai and Vo (2012) 

investigated bending and free vibration analyses of FGM 

beams by using various HOBTs. The study proposed satisfy 

the stress-free boundary conditions on the surfaces of the 

beam. Kadoli et. al. (2008) carried out displacement field 

based on HOBT for static behavior of FGM beams. They 
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derived two stiffness matrices. Filippi et al. (2015) 

developed the 1D Carrera unified formulation by using 

exponential and trigonometric functions for static analyses 

of FGM beams. 

The finite element method (FEM) is a well-known and 

highly effective technique for the computation of 

approximate solutions of complex and boundary value 

problems (Zienkiewicz et al. 1977). With the development 

and widespread use of FGMs, the FEM has begun to be 

used in the analysis of FGMs. For instance, Alshorbagy et 

al. (2011) used FEM to detect the free vibration 

characteristics of a FGM beam based on Euler-Bernoulli 

beam theory. Both axial and transverse material graduations 

based on a power-law are considered. Shahba et al. (2011) 

investigated free vibration and stability analysis of axially 

FGM tapered beams using classical and non-classical 

boundary conditions through FEM. The exact shape 

functions for uniform homogeneous Timoshenko beam 

elements are used to formulate the proposed element. 

Mohanty et al. (2011) presented an investigation of the 

dynamic stability of FGM ordinary beam and sandwich 

beam on Winkler’s elastic foundation using FEM. Niguyen 

et. al. (2016) investigated free vibration of thin-walled 

FGM open-section beams. Governing differential equations 

were derived by means of Hamilton’s principle. A FEM was 

developed to formulate the problem.  

The main scope of this study, by obtaining a functional 

of shear deformable FGM beams with general boundary 

conditions, it is aimed to provide a new contribution to the 

researches and to gain a different point of view for FGM 

beam. In this study, an alternative solution method proposed 

for analyses of FGM beams by using general shear 

deformation theories, in particularly HOBT, and FEM with 

general boundary conditions. The FSDT and HOBT used in 

same kinematic relations and variational equations and 

solution procedure. FGM structures, differential rather than 

being expressed in terms of equations and boundary 

conditions, analysis with energy methods it is much easier 

to make. The differential field equations was obtained by 

using the virtual displacement principle in energy principle. 

In the classical FEM solution, the stress-displacement and 

strain-displacement relationships are satisfied exactly. 

However, the differential equations in the boundary 

conditions are satisfied only in the limit as the number of 

element increases and the approximation spaces for the 

different set of unknowns does not obtained independently. 

The difficulties in developing compatible displacement-

based FEM that are computationally effective and the 

realization that by using variational approaches many more 

FEM discretization can be developed, led to large research 

efforts. In these activities various classes of new types of 

elements have been proposed (Bathe 2006). In this context, 

the mixed-type FEM model is far more efficient because of 

variables can be chosen independently and more sensitive. 

The mathematical analysis and applications of mixed-FEM 

have been widely developed since the seventies. 

Nevertheless, in the analysis of the FGM problems, studies 

using mixed-FEM method are rarely tried in the literature. 

One needs a method for the differential field equations used 

to transform to the functional in the mixed-type FEM. In  

 

Fig. 1 Geometry and coordinates of FGM beam 
 

 

this work, the partial differential field equations of FGM 

beam based on general shear deformation theories 

successfully transformed a complex refined functional with 

dynamic and geometric boundary conditions by using 

Gâteaux differential method (GDM). The mixed-FEM 

developed for analysis of FGM beams based on refined 

functional. The element has two nodes and total fourteen 

unknowns which are the displacement, rotation, shear force 

higher-order forces, normal moments and higher-order 

moments on the per-node. Using this method advantage, 

this freedoms are calculated independently. The element 

matrices transformed to system matrices by developed 

analyses program in FORTRAN language. The effects of 

material distributions, span-depth ratios, boundary 

conditions are presented and discussed. The performed of 

the derived element for FSDT and HOBT for static analysis 

of FGM beams is compared with numerical results of other 

studies. 
 

 

2. Theoretical formulations 
 

2.1 Material properties of FGM beam 
 

FGM structures, which are advanced composite 

materials, can be made of two or more materials. The 

variation coefficient is expressed by the formula expressed 

as “power-law”. In Fig. 1. shows the geometry model of the 

FGM beam composed of ceramic and metal. The x-y-z are 

global coordinates, and length is indicated by “L”, width is 

“b” and thickness is “h”. The continuous variation of 

material properties of FGM beam constituents in power-law 

which introduced by Reddy (2000) can be defined as given 

( )

1 1
( ) [1 ( ) ]

2 2
P P Pn n

z t b

z z

h h
= + + − +  (1) 

In Eq. (1), “Pt ” and “Pb ” denote the values of the 

mechanical properties of the top at “ 2
hz = ” and bottom at 

“ 2
hz −= ” respectively, such as Young’s modulus, 

Poisson’s ratio, material densities etc. of the FGM beam, 

which are often metal and ceramic materials. 

Variable “z” represents the distance to the mid-plane of 

the beam varying from “ 2
h− ” to “ 2

h ”. The effective 

material properties are evaluated using Eq. (1), the Young’s 

Modulus “ ( )zE ”, Poisson’s ratio “ ( )z ” and shear modulus 

“ ( )zG ” can be defined by 
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Fig. 2 Distribution of volume fraction exponent of FGM 

beam 

 

 

( )

1
( )( )

2
E n

z t b b

z
E E E

h
= − + +  (2a) 

( )

1
( )( )

2

n

z t b b

z

h
   = − + +  (2b) 

1
( ) ( )( )

2
G n

t b b

z
z G G G

h
= − + +  (2c) 

In power-law variation, “n” is a power-law exponent 

and it is a non-negative variable parameter (n ≥ 0). In Eq. 

(1) the parameter “
1

( )
2

nz

h
+ ” is called volume fraction and 

denoted “
tV ”. The variation of the volume fraction of FGM 

beam is shown in Fig. 2. In this study, the FGM beam is 

graded from zirconia oxide (ZrO2) and alumina (Al2O3) top 

surfaces to aluminum (Al) bottom surfaces. 

 
2.2 Kinematic relations based on FSDT and HOBT 

 

According to a generated shear deformation beam 

theory is employed to FGM beam in this study with 

displacement field in Eq. (3) to account for the effect of 

transverse shear strain deformation. The displacement 

components with respect to the x-y-z directions of any point 

on the U , V  and W , respectively. 

 0 1 ( ) 2

0

( , )

( , ) 0

( , )

U F

V
W

x x zx z z w

x z

x z w

    = − + +

=

=

 (3) 

where “ (.) x
 ” is the partial derivatives with respect to x axis, 

the unknown variables “ 0w ” is the transverse displacement, 

“ x ” is the total bending rotation of the cross-sections and “

 ” is the transverse shear strain of any point at any point 

on the neutral axis. The term “ ( )F z ” which is shape function 

determining the non-linear distribution of the transverse 

shear effects along the thickness of the beam. In this study it 

assumed cubic distribution 
2

( ) 2

4
(1 )

3
z

z
z

h
= −F  as Reddy 

(1984). The displacement field of general shear deformation 

theory in Eq. (3) contains the kinematics of the beam 

theories which are FSDT and HOBT obtained by 

substituting constants such as for FSDT “

0 1 20, 1, 0  = = = ” and for HOBT “

0 1 21, 0, 1  = = = ”. 

The strain-displacement relationships are 

(0) (1)

( )U Fx x x z xz  = = +  (4a) 

(0) (1)

( )U W Fxz z x xz z xz    = + = +  (4b) 

in where 

(0)

0 1x x xw    = − +  (5a) 

(1)

2x x  =  (5b) 

(0)

0 1xz x x xw w    = − +  (5c) 

(1)

2xz  =  (5d) 

The constitutive stress-strain relations for FGM beam by 

using Eqs. (4) based on a generalized Hooke’s law form can 

be written as follows 

11

55

0

0

C

C

x x

xz xz

 

 

        
=     
         

 (6) 

where “ x ” is normal stress and “ xz ” is transverse shear 

stress and elastic constants “Cij ” known as 

( )11 55 ( )

( )

( )
, ,

2(1 )

E
C C E z

z

z



 
=  
 + 

 (7) 

 

2.3 Variational formulation 
 

In this work, the governing equations are derived by 

using the principle of virtual displacement which can be 

expressed as (Reddy 2002) 

0I EW W W  = + =  (8) 

where the delta “ ” is called the variational operator, “

IW ” is the virtual work due to internal forces and “
EW ” 

is the virtual work due to the external forces which are 

obtained as 

 

0 1 2 ( )

0 1

0
2 ( )

( )

(

)

I x x xz xz

x x x z xL

xz x x x

A
z

d

z w z

w w dxdA

W      

      

     

  




+ 

  − + + 
 

 = + − + 
 + 

= 

 

F

F

 (9a) 
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( )

0

L

E xq wdxW  = −  (9b) 

The strain relations from Eq. (4) and stress resultants 

from Eq. (6) are replaced into Eqs. (9) and using Eq. (8), the 

Euler-Lagrange equations are obtained as 

0 0: 0 0 0x xz xzw M Q Q q x L    → − + − − =    (10a) 

1 1: 0 0 0x x xzM Q x L  → − + =    (10b) 

2 2: 0 0 0M Qx xz x L  → − + =    (10c) 

where “
xM ” and “

xzQ ” are the bending moment and  

shear force while “ xM ” and “ xzQ ” are the higher-order 

bending moment and shear force which are expressed as 

2

2
( )FM

h

h

x

x

zx

zM
dz

+

−

     
=   

      
  (11a) 

2

2
(z)

1

FQ

h

h

xz

xz

xz

Q
dz

+

−

     
=   

      
  (11b) 

By substituting Eq. (6) and Eq. (4) into Eqs. (11), the 

constitutive equations can be expressed following 

11 11 0 1

2 11 11 2

55 0 1

2 55 2

0 0

- 0 0

0 0 0

- 0 0 0

M

Q A

x x x

x x

xz x x x

xz

M D F w

F H

Q A w w

  

  

  

  

− +     
         =  
     − + 
        

 (12) 

where the rigidities “
11D ” denote the bending stiffness, “

11F ” and “
11H ” the high order stiffnesses, “

55A ” and “
55A ” 

normal and high order extensional stiffnesses defined as 

follows 

( ) ( )
2

2

2 2 2

( ) ( ) ( ), , , , , , ( ) ,1, ( )

h

h

ij ij ij ij ij ij z z zD F H A z z dz
−

= A C F F F  (13) 

 

2.4 The functional 
 

In the FEM based on the energy method, an appropriate 

energy expression is required from the field equations. 

Using the GDM, all field equations are enforced to the 

functional by systematic way and boundary conditions can 

be constructed (Eratli and Akoz 2002). Similar solution 

procedure was applied to laminated composite beams based 

many beam theories in a recent study (Özütok and Madenci 

2013, Ozutok et al. 2014, Özütok and Madenci 2017) by 

one of the co-authors. 

The field equations which are Eqs. (10) and Eqs. (12) 

including boundary conditions for FGM beam can be 

written in operator form as “ P Ly f= − ” where L is the 

differential operator, y is the unknown freedoms and f is the 

external influence vectors as summarized by Oden and 

Reddy (1976). This form can be written in matrices form as 

follows 

1,4 1,5 1,6 1,7 1

2,4 2,5 2,6 2

3,4 3,5 3,7 3

4,1 4,2 4,3 4,4 4,5 4

5,1 5,2 5,3 5,4 5,5 5

6,1 6,2 6,6 6

7,3 7,7 7

0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0 0

1 0 0 0

L L L L y

L L L y

L L L y

L L L L L y

L L L L L y

L L L y

L L y

  
  
  
 
 
 
 
 

 
 
 
 
 

 
 −
 

− 

w

M

R

0

0

0

0

0

0

q  
  
  

   
   
   
   
   

=  
   
   
   
   
   
   −
   

−   

R

M

w

 (14) 

where boundary conditions are written in symbolic form 

such as 0M M− =  and 0R R− = are dynamic boundary 

conditions terms, 0w w− + =  and 0−+ = are 

geometric boundary conditions terms and “ iy ”and “ iL ” are 

obtained following 

1 0 2 1 3 2

11 11 11 11
4 0 5 02 2

11 11 11 11 11 11

6 1 7 2

55 55

; ; ;

; ;

;

x

x x x x

xzxz

y w y y

F H M D F M
y y

D H F D H F

Q
y y

A

   

 

 

 
 

= = = 
 

   − − 
= =    

− −    
 

    = =        

M M

Q
A

 (15a) 

2 2

1,4 11 1,5 11 1,6 552 2

55 1 1
1,7 2,4 11 2,5 11

2 0 0

2 2
2,6 55 3,4 11 3,5 11

0 0

2

3,7 55 4,1 11 4,2 11 4,3 112

11 11
4,4 4,5

0 0

; ; ;

; ;

; ; ;

; ; ;

;

L D L F L A
xx x

L L D L F
x x x

L A L F L H
x x

L L D L D L F
x xx

D F
L L

 

  

 

 

 

  
= = − = −

 

  
= = = −

  

 
= = = −

 

  
= = = − = −

 

= − =

A

A

2

5,1 11 5,2 112

2 2
5,3 11 5,4 11 5,5 11

0 0

55 55
6,1 55 6,2 55 6,6

0 1

7,3 55 7,7 55

; ;

; ; ;

; ; ;

;

L F L F
xx

L H L F L H
x

A A
L A L A L

x x

L L

 

 

 













 

= − = 
 


= = =

 


  = − + = − =
 


= = − A A

 (15b) 

The mathematical procedure of GDM is explained in 

detail by references (Aköz and Kadioğlu 1996, Aköz and 

Özütok 2000, Özütok and Madenci 2017). If the operator P 

is a potential, then the functional corresponding to the field 

equations will be given as Eq. (16) 
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Fig. 3 Dimensionless coordinate system of FGM beam for 

shape functions 

 

 

1

0

( ) [P( , ), ]s ds= I y y y y  (16) 

For FGM beam based on general shear deformation 

beam theory, the functional is obtained with the appropriate 

boundary conditions as Eq. (17a) 

     

 

   

 

   

0 1 1 2

1 2

( ), , ,

, , ,

, , ,
2 2 2

, (w w),R ( ),M
2

R, w M, ,

x xz x xz x x xy

xz x xz x x

x x x x xz xz

xz xz

I M Q w Q

Q M

A
M M Q Q

q w

 

 

     

   


   = + + +   


+ + −    −     


  

−   − −  


 
 + − + −    


  − −  −  

M

Q M

M M

Q Q

 (17a) 

where parentheses with the subscripts notations “ ” and “

 ” indicate the boundary conditions, and coefficients are 

given as Eq. (17b) 

2 11 1 2 11

2 2

1111 11 11 11 11 11

2 11 1 2

2

55 5511 11 11

; ;

;

D H

DD H F D H F

F

AD H F

  

  


 =  = + − − 


 =  = +
− A

 (17b) 

 

2.5 The mixed-FEM and element matrices 
 

In this part, the mixed element matrix is presented for 

FGM beam based on FSDT and HOBT. Using the 

interpolation functions the variable expressed such as “

i iu=u ” at the FGM element nodes. Where “ ,i j ” 

denote the interpolation functions. The variables can be 

written in vector form for one FGM beam element as 

      1 2
;

e e e

i
=u u u  (18a) 

where 

   M Q
e

x x x x x x xz xzi
w w M M Q     =u  (18b) 

It is possible to express element coordinates and element 

unknowns in isoparametric finite element definition by 

using natural coordinate system. 

The interpolation functions used to obtain element 

matrices can be defined by using a dimensionless and 

normalized coordinate system (in Fig. 3) as Eq. (19) 

Table 1 Material properties 

Material No 
Top Material 

tE  (GPa) 

Bottom Material 

bE  (GPa) 

Poisson’s 

ratio 

t bv v=  
L h  

Material 1 200 (ZrO2) 70 (Al) 0.3 4-16 

Material 2 380 (Al2O3) 70 (Al) 0.3 5-20 

 

 

   1 2

1
, 1

2
  =   (19) 

where “  ” is the dimensionless local coordinate. The 

interpolation function expressions and their partial 

derivatives are required for the calculation of the integration 

element matrix on the FGM beam element. To give an 

explicit form of the element matrix for FGM beams, the 

following sub matrices are defined as Eq. (20a-c) 

    ( )
1

1

1

3 6
, 1,2

6 3

i j

L L

k dx i j
L L

 

−

 
 

= = = 
 
  

  (20a) 

    ( )
1

2

1

1 1

, 1,2
1 1

i j
L L

k dx i j

L L

 

−

 
− 

 = = = 
 −
  

  (20b) 

    ( )
1

3

1

1 1

2 2
, 1,2

1 1

2 2

i jk dx i j 

−

 
− 

= = = 
 −
  

  (20c) 

Thus, the mixed-FEM matrices of FGM beam element 

based on generation shear deformation which has seven 

degree-of-freedom at the per node is obtained as 

 

         

             
           

         
       

     
   

 

 
 
 
 
 
 
 

1

2 3 1 2

1 2 1 1

2 2 2 1

1 1

1

1

1

0 0 0 0 0
0

0 0 0 0
0

0 0 0 0

0 0 0

0 0 0

. 0 0

x x x xz xz

T

T

el

w M Q
q k

k k

k k

k kk

k k

k

sym k

k

 

 

 

 

      
   
   
   
   
   

=    
   − 
   

−   
   −
   

−  

M Q

 
(21) 

 
 

3. Numerical results and discussion 
 

In this section, the performance of the functional and 

element matrices of the mixed-FEM solutions based on 

FSDT and HOBT are evaluated with several numerical 

examples in bending of the FGM beams. The FGM beam is 

taken to be made of ceramic and metal riches with the 

following material properties which are change through the  
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Table 2 Maximum non-dimensional transverse deflections 

of the S-S FGM beams by FSDT 

Power-law index 

L/h=4 L/h=16 

Present 

FSDT 

Vo et al. 

(2014) 

Present 

FSDT 

Vo et al. 

(2014) 

0n =  

(Full Ceramic) 
0.40465 0.40460 0.35382 0.35341 

0.2n =  0.46862 0.46874 0.40833 0.41133 

0.5n =  0.53165 --- 0.46634 --- 

1n =  0.64127 0.64281 0.56418 0.56698 

2n =  0.73477 0.73516 0.64051 0.64483 

5n =  0.82332 0.82401 0.71158 0.71232 

10n =  0.89765 0.89517 0.77238 0.77004 

Full Metal 1.06427 1.06500 1.00503 1.00406 

 

 

thickness of the beam according to power-law given in 

Table 1. 

For convenience, the following non-dimensional terms 

are used, the vertical displacement and stresses of FGM 

beams under the uniformly distributed load q 

2 24
늿 ?; ( , ); (0,0)Al hL

x x xz xz

E Iw h h
w

K qL qLqL
   


= = = 


 (22) 

where “
3 12I bh= ” and “  5 384; 1 8; 1 384K = ” for 

simply-supported (S-S), cantilever (C-F) and clamped-

clamped (C-C) boundary conditions, respectively. 

In the numerical examples, two type material properties 

are considered: Aluminum (Al) is as metal, Zirconia (ZrO2) 

and Alumina (Al2O3) are as ceramic of FGM beam and 

other properties are given in Table 1. Using the relation in 

Eq. (2) it is possible to obtain an insight into the variation of 

the material properties across the thickness of the beam for 

different power-law exponents. Fig. 4. illustrates the 

variation of Young’s modulus of Zirconia/Aluminum 

(ZrO2/Al) and Alumina/Aluminum (Al2O3/Al) FGM beams, 

respectively. 

The first example is about the non-dimensional 

maximum displacement of FGM beams according to 

different parameters which are boundary conditions, power-

law exponent, shear correction factors and span-depth ratio.  

 

Table 3 Maximum non-dimensional transverse deflections 

of the C-C FGM beams by FSDT 

Power-law index 

L/h=4 L/h=16 

Present 

FSDT 

Vo et al. 

(2014) 

Present 

FSDT 

Vo et al. 

(2014) 

0n =  

(Full Ceramic) 
0.62623 0.62300 0.37050 0.36706 

0.2n =  0.71356 0.71366 0.42656 0.42663 

0.5n =  0.81418 --- 0.48740 --- 

1n =  0.96750 0.96628 0.58858 0.58711 

2n =  1.12050 1.12044 0.66908 0.66879 

5n =  1.29475 1.30041 0.74638 0.74200 

10n =  1.42787 1.42898 0.80168 0.80335 

Full Metal 1.78137 1.78000 1.05786 1.04875 

 

Table 4 Maximum non-dimensional transverse deflections 

of the C-F FGM beams by FSDT 

Power-law index 

L/h=4 L/h=16 

Present 
FSDT 

Vo et al. 
(2014) 

Present 
FSDT 

Vo et al. 
(2014) 

0n =  

(Full Ceramic) 
0.37315 0.37275 0.35191 0.35142 

0.2n =  0.42966 0.43209 0.40567 0.40910 

0.5n =  0.49091 --- 0.46370 --- 

1n =  0.59270 0.59564 0.56117 0.56404 

2n =  0.67450 0.67897 0.63685 0.64134 

5n =  0.75364 0.75453 0.69710 0.70800 

10n =  0.80968 0.81732 0.75771 0.76518 

Full Metal 1.06604 1.06500 1.00474 1.00406 

 

 

Material properties chosen as Material-1 (ZrO2/Al), three 

different boundary conditions and the two span-depth ratio 

that thick (L/h = 4) and thin (L/h = 16) FGM beams are 

considered in the analysis. Present numerical results are 

compared with the finite element solutions based on FSDT 

and HOBT theories results by reference (Vo et al. 2014) are 

shown in Tables 2-7. 

The non-dimensional vertical displacements along the 

length of the beam are plotted with simply-supported 

boundary conditions in Fig. 5(a)-5(b). for thick and thin 

  
(a) ZrO2/Al (b) Al2O3/Al 

Fig. 4 Variation of the Young’s modulus of ZrO2/Al (a) and Al2O3/Al (b) along the FGM beam with power-law exponent 
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Table 5 Maximum non-dimensional transverse deflections 

of the S-S FGM beams by HOBT 

Power-law index 

L/h=4 L/h=16 

Present 

FSDT 

Vo et al. 

(2014) 

Present 

FSDT 

Vo et al. 

(2014) 

0n =  

(Full Ceramic) 
0.41067 0.40452 0.35356 0.35341 

0.2n =  0.46912 0.46805 0.41218 0.41129 

0.5n =  0.52120 --- 0.47364 --- 

1n =  0.65005 0.64269 0.56702 0.56698 

2n =  0.73900 0.73884 0.64565 0.64507 

5n =  0.83661 0.83544 0.71278 0.71305 

10n =  0.91000 0.90566 0.77100 0.77071 

Full Metal 1.06540 1.06321 1.00536 1.00403 

 

Table 6 Maximum non-dimensional transverse deflections 

of the C-C FGM beams by HOBT 

Power-law index 

L/h=4 L/h=16 

Present 

FSDT 

Vo et al. 

(2014) 

Present 

FSDT 

Vo et al. 

(2014) 

0n =  

(Full Ceramic) 
0.60854 0.60773 0.36704 0.36676 

0.2n =  0.69502 0.69410 0.42777 0.42611 

0.5n =  0.81121 --- 0.51202 --- 

1n =  0.94416 0.94365 0.58712 0.58667 

2n =  1.11100 1.11025 0.67000 0.66943 

5n =  1.31887 1.31813 0.74496 0.74488 

10n =  1.43888 1.43793 0.80656 0.80586 

Full Metal 1.73638 1.73637 1.04810 1.04789 

 

Table 7 Maximum non-dimensional transverse deflections 

of the C-F FGM beams by HOBT 

Power-law index 

L/h=4 L/h=16 

Present 
FSDT 

Vo et al. 
(2014) 

Present 
FSDT 

Vo et al. 
(2014) 

0n =  

(Full Ceramic) 
0.37254 0.37212 0.35148 0.35141 

0.2n =  0.43331 0.43209 0.41002 0.40907 

0.5n =  0.51268 --- 0.47962 --- 

1n =  0.59602 0.59471 0.56488 0.56402 

2n =  0.68111 0.67937 0.64196 0.64141 

5n =  0.75889 0.75773 0.70901 0.70827 

10n =  0.82112 0.81997 0.76603 0.76543 

Full Metal 1.06354 1.06321 1.00444 1.00403 

 

 

FGM beams according to changes of power-law exponent. 

All the displacements increase with the increase of the 

power-law exponent value. 

The effect of elasticity ratio (
t bE E ) on the FGM beam 

are investigated base on power-law exponent. Tables 8-9. 

show the maximum non-dimensional displacement of 

simply-supported FGM beams are presented with effect of 

the Young’s modulus ratio for material-1. It can be seen 

that for a constant power-law exponent, the displacement 

 

Fig. 5(a) Non-dimensional displacements along the FGM 

beam length with L/h = 4 

 

 

Fig. 5(b) Non-dimensional displacements along the FGM 

beam length with L/h = 16 

 

 

decreases with increasing elasticity ratio. Also, the 

displacements decrease with the increase of the power-law 

exponent value for ( 1t bE E  ) while, the displacements 

increase with the increase of the power-law exponent value 

for ( 1t bE E  ), and the displacements does not change 

with the increase of the power-law exponent value for (

1t bE E = ). 

The non-dimensional axial stresses and transverse shear 

stresses in FGM beams are presented for material-2 in 

Table 10. Present results compared with other results of 

references. In Table 10., dimensionless axial stresses values 

of simply supported FGM beam at point ( 2, 2x L z h= = ), 

transverse shear stresses (
xz ) at point ( 0, 0x z= = ) with 

changes of power-law exponent for thick ( 5L h = ) and 

thin ( 20L h = ) FGM beams presented and results are 

compared with FEM solutions based on FSDT and HOBT 

of references. The shear correction factor is not effective on 

the axial stress. 

The Figs. 6(a)-6(b) show the non-dimensional axial 

stress distributions of simply-supported FGM beam based 

on FSDT and HOBT at mid-span and ( 5L h = ) for various  
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Fig. 6(a) Non-dimensional axial stress 

x  distributions of 

S-S FGM beam with the power-law exponent, FSDT 

 

 

values of power-law exponent. The axial stress distributions 

of FGM beams are different from isotropic beam such as  

 

 

 
Fig. 6(b) Non-dimensional axial stress 

x  distributions of 

S-S FGM beam with the power-law exponent, HOBT 

 

 

full ceramic. 

The Figs. 7(a)-7(b) shows the non-dimensional shear  

Table 8 Effects of Young’s Modulus ratio on non-dimensional mid-span displacements of S-S FGM beams with 

4L h =  

t bE E  Theory 
Power-law exponent, n  

0n =  0.2n =  0.5n =  1n =  2n =  5n =  10n =  

0.25 
Present FSDT 4.62500 2.89700 2.20620 1.85150 1.63820 1.45250 1.34100 

Present HOBT 4.64101 2.90156 2.23554 1.87654 1.64201 1.46321 1.34752 

0.5 
Present FSDT 2.31450 1.92970 1.69420 1.54300 1.43870 1.33820 1.27320 

Present HOBT 2.32125 2.00547 1.79854 1.56235 1.45215 1.35021 1.29203 

1.0 
Present FSDT 1.06427 1.06427 1.06427 1.06427 1.06427 1.06427 1.06427 

Present HOBT 1.06540 1.06540 1.06540 1.06540 1.06540 1.06540 1.06540 

2.0 
Present FSDT 0.57850 0.64270 0.70850 0.77150 0.83220 0.91250 0.98020 

Present HOBT 0.57901 0.65333 0.72004 0.79016 0.84845 0.92456 0.99016 

4.0 
Present FSDT 0.28920 0.34020 0.39900 0.46300 0.53300 0.64300 0.75320 

Present HOBT 0.29116 0.34202 0.41203 0.46895 0.54652 0.64752 0.75852 

6.0 
Present FSDT 0.19280 0.23130 0.27770 0.33070 0.39220 0.49720 0.61320 

Present HOBT 0.20120 0.24015 0.28121 0.33846 0.41053 0.50125 0.62123 

Table 9 Effects of Young’s Modulus ratio on non-dimensional mid-span displacements of S-S FGM beams with 

16L h =  

t bE E  Theory 
Power-law exponent, n  

0n =  0.2n =  0.5n =  1n =  2n =  5n =  10n =  

0.25 
Present FSDT 4.04390 2.50780 1.91400 1.61720 1.44330 1.28510 1.18350 

Present HOBT 4.04562 2.53125 2.0112 1.63258 1.45236 1.30125 1.19235 

0.5 
Present FSDT 2.02140 1.67870 1.47460 1.34760 1.26360 1.17920 1.12010 

Present HOBT 2.12035 1.69045 1.49235 1.36254 1.26895 1.18562 1.132015 

1.0 
Present FSDT 1.00503 1.00503 1.00503 1.00503 1.00503 1.00503 1.00503 

Present HOBT 1.00536 1.00536 1.00536 1.00536 1.00536 1.00536 1.00536 

2.0 
Present FSDT 0.50540 0.56290 0.62060 0.67400 0.72240 0.78710 0.84620 

Present HOBT 0.51523 0.57201 0.63125 0.68420 0.74023 0.79684 0.85623 

4.0 
Present FSDT 0.25270 0.29840 0.35020 0.40440 0.45990 0.54560 0.63830 

Present HOBT 0.26321 0.30230 0.36895 0.42132 0.47235 0.55896 0.64251 

6.0 
Present FSDT 0.16840 0.20300 0.24390 0.28880 0.33740 0.41750 0.51260 

Present HOBT 0.17125 0.22145 0.25645 0.29865 0.34125 0.42785 0.52123 
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stress distributions of simply-supported FGM beam based 

on FSDT and HOBT at 0x =  and 5L
h =  for various 

power-law exponent. The non-dimensional shear stresses of 

the isotropic beam (the full ceramic beam) come across 

with each other, and they are symmetric about the mid-

plane of the beam. Also, as is known from strength of 

materials, it can be observed from this figure that the value 

of the shear stresses is maximum on the neutral axis of the 

beam. But, the shear stress distributions of FGM beams are 

greatly influenced by the power-law exponent. 

 

 
4. Conclusions 
 

In this study, generalized shear deformation beam 

theory with the total fourteen unknowns is used to analyze 

the bending of FGM beams with mixed-FEM. The 

kinematic relations written based on FSDT and HOBT, 

together. By using the Gâteaux differential method to 

partial differential field equations, the refined complex 

general functional is obtained for thick-thin FGM beams. It 

provides the consistency of the field equations and does not  

Table 10 Non-dimensional axial stress 2 2( , )hL
x and shear stress (0,0)xz of S-S FGM beam 

Power-law index Theory 
L/h=5 L/h=20 

x  
xz  

x  
xz  

0n = (Full Ceramic) 

Present FSDT 3.7500 0.6000 15.0000 0.6000 

Present HOBT 3.8017 0.7500 15.0101 0.7500 

FSDT (Vo et al. 2015) 3.7520 0.5850 15.0100 0.5850 

HOBT (Li et al. 2010) 3.8020 0.7500 15.0130 0.7500 

HOBT (Thai and Vo 2012) 3.8020 0.7332 15.0129 0.7451 

HOBT (Vo et al. 2015) 3.8040 0.7335 15.0200 0.7470 

0.2n =  
Present FSDT 4.2010 0.6211 17.4043 0.6211 

Present HOBT 4.2200 0.7204 17.4100 0.7204 

0.5n =  

Present FSDT 5.0002 0.6271 19.6210 0.6271 

Present HOBT 5.0202 0.7512 19.6875 0.7512 

HOBT (Li et al. 2010) 4.9925 0.7676 19.7005 0.7676 

HOBT (Thai and Vo 2012) 4.9924 0.7504 19.7004 0.7620 

1n =  

Present FSDT 5.8003 0.6000 23.1333 0.6000 

Present HOBT 5.8916 0.7500 23.2189 0.7500 

FSDT (Vo et al. 2015) 5.7990 0.5850 23.2000 0.5850 

HOBT (Li et al. 2010) 5.8837 0.7500 23.2054 0.7500 

HOBT (Thai and Vo 2012) 5.8836 0.7332 23.2053 0.7451 

HOBT (Vo et al. 2015) 5.8870 0.7335 23.2200 0.7470 

2n =  

Present FSDT 6.7653 0.5150 27.0814 0.5150 

Present HOBT 6.8985 0.6789 27.1105 0.6789 

FSDT (Vo et al. 2015) 6.7710 0.4978 27.0800 0.4978 

HOBT (Li et al. 2010) 6.8812 0.6787 27.0989 0.6787 

HOBT (Thai and Vo 2012) 6.8826 0.6706 27.0991 0.6824 

HOBT (Vo et al. 2015) 6.8860 0.6700 27.1100 0.6777 

5n =  

Present FSDT 7.9864 0.3929 31.6459 0.3929 

Present HOBT 8.1176 0.5800 31.8256 0.5800 

FSDT (Vo et al. 2015) 7.9470 0.3832 31.7900 0.3832 

HOBT (Li et al. 2010) 8.1030 0.5790 31.8112 0.5790 

HOBT (Thai and Vo 2012) 8.1106 0.5905 31.8130 0.6023 

HOBT (Vo et al. 2015) 8.1150 0.5907 31.8300 0.6039 

10n =  

Present FSDT 9.6028 0.4296 38.1115 0.4296 

Present HOBT 9.7201 0.6439 38.1363 0.6439 

FSDT (Vo et al. 2015) 9.5290 0.4189 38.1100 0.4189 

HOBT (Li et al. 2010) 9.7063 0.6436 38.1372 0.6436 

HOBT (Thai and Vo 2012) 9.7122 0.6467 38.1385 0.6596 

HOBT (Vo et al. 2015) 9.7170 0.6477 38.1600 0.6682 
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Fig. 7(a) Non-dimensional axial stress 

xz  distributions of 

S-S FGM beam with the power-law exponent, FSDT 

 

 
Fig. 7(b) Non-dimensional axial stress 

xz  distributions of 

S-S FGM beam with the power-law exponent, HOBT 

 

 

exhibits shear locking problem. By applying the mixed-

FEM, the FGM beam element matrices was derived. The 

FGM beam element has a total fourteen degree-of-freedoms 

and they are calculated independently. This element 

matrices are provided convenience for analysis of FGM 

beams and add innovation in literature. Using the obtained 

mixed-FEM matrices of FGM beam, influence of power-

law exponent, side to thickness ratio, shear correction 

factor, boundary conditions on displacement and stresses of 

FGM beams have been investigated and discussed. The 

obtained results show good agreement with those available 

in the literature. 
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