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1. Introduction  
 

Numerous studies have been conducted to investigate 

the material properties related to fatigue crack propagation 

as well as predicting fatigue life of structures. However, it 

still remains a challenging task because fatigue crack 

propagation involves various sources of uncertainty, and 

fatigue life assessment continues to be a hot spot in 

structural engineering research because of its importance to 

understanding fatigue mechanisms in detail and thus 

preventing damage in various areas of engineering (Byers et 

al. 1997). For example, the impact of fatigue can be 

observed in steel bridges owing to repetitive vehicle loading 

(Lee and Cho 2016), in aircraft wings owing to service 

loads (Millwater and Wieland 2010), in offshore oil or gas 

p lat fo rms owing to  oceani c  waves  o r  cur rents 

(Karamchandani et al. 1992), and in offshore wind turbines 

owing to aerodynamic loads (Dong et al. 2012). These 

examples illustrate the significance of understanding fatigue 

as well as its impact on various engineering fields and 

applications. Indeed, damage due to fatigue could lead to 

catastrophic consequences that may result in fatalities or 

severe economic losses. According to a study conducted by 

the American Society of Civil Engineers (ASCE)  

                                           

Corresponding author, Associate Professor 

E-mail: ylee@unist.ac.kr 
aPh.D. Student 
bAssistant Research Professor 

 

 

Committee on fatigue and fracture reliability, 80%-90% of 

failures in steel structures were found to be related to 

fatigue and fracture (ASCE 1982). Therefore, it is necessary 

to develop advanced methodologies to improve the 

reliability of structures by conducting probabilistic studies 

and reliability assessments. 

The approaches for fatigue life assessment can be 

categorized into two groups. The methods in the first 

category are relying on the S-N curve, which has been 

reported in a number of published works (Suresh 1998, 

Stephens et al. 2000, Sonsino 2007, Dong 2015, Pradan et 

al. 2017, Qian et al. 2014, Keating and Fisher 1986). The S-

N curves are established based on the stress-life method, 

which is developed to a “safe-life” approach to design 

against fatigue. These approaches employing the S-N curve 

has been shown to be practical and effective, and they have 

been applied to various structural problems. 

The approaches in the second category are adopting 

models based on fatigue crack propagation and linear elastic 

fracture mechanics such as Paris’ law (Paris and Erdogan 

1963), which accounts for the crack propagation rate. 

Development of Paris’ law was an important breakthrough, 

because this law facilities the characterization of fatigue 

crack growth and enables the rigorous assessment of service 

life or inspection intervals of structures, especially while 

they are in use. Thus, Paris’ law has been applied to various 

steel structures including bridges, ship structures, offshore 

platfoms, and wind turbine blades (Lee and Song 2014, 

Zhao et al. 1994, Soares and Garbatov 1996, Sørensen 

2009, Karamchandani et al. 1992, Moan and Song 2000).  

In these previous studies, one of the important procedures 
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of applying the Paris’ law is the determination of the Paris’ 

law parameters. Experiments for determining these 

parameters involve considerable uncertainty in terms of 

measuring the crack growth rate and stress intensity factor 

(Virkler et al. 1979). Because of the uncertainties involved 

in fatigue crack growth and experimental processes, the 

Paris’ law parameters need to be represented using a 

probabilistic distribution and the related statistical 

parameters rather than using deterministic values. 

This paper proposes a new probabilistic method, termed 

the S-N Paris law (SNPL) method, which probabilistically 

determines the statistical parameters (e.g., mean and 

standard deviation) of the Paris’ law parameters from the S-

N curve data by using a Bayesian approach. In the proposed 

method, stress level and fatigue life obtained from the S-N 

data are provided as inputs. Based on this data, limit-state 

functions are constructed and then used to construct an 

objective function representing the likelihood of observing 

the given S-N data. Through a series of steps and by using a 

Bayesian approach, the SNPL method quantifies the 

underlying uncertainties in the Paris’ law material 

parameters, by finding the best estimates of their statistical 

parameters, which will maximize the likelihood of 

observing the given S-N data. Thus, the SNPL method 

allows to obtain the statistical parameters of the Paris’ law 

parameters from the S-N curve data, which involve many 

uncertainties, as stated previously. In addition, the SNPL 

method quantifies the uncertainty in transition crack length 

from crack initiation to crack propagation by finding the 

best statistical parameter(s). Another advantage of the 

SNPL method is the use of a Bayesian approach, by which 

the prior statistical parameters of the Paris’ law parameters 

can be updated when additional S-N data are available. 

Thus, information on the Paris’ law parameters can be 

obtained with greater reliability. 
 

 

2. Two classical approaches for fatigue analysis 
 

There have been numerous studies on fatigue failure in 

metallic structures (Schütz 1996, Suresh 1998, Paris and 

Erdogan 1963), and one of the most well-known and 

widely-used approaches to understand the fatigue behavior 

is the stress-life approach, which gives the relationship 

between the stress range and the number of cycles until 

failure. This relationship can be established experimentally 

and is represented in the form of an S-N curve, which is a 

log-log scale plot of the constant stress amplitude, S, versus 

the number of cycles until failure, N, for given material and 

detail. The curves are developed by conducting constant 

amplitude load tests at several load levels in the finite life 

region, where the number of cycles until failure at each load 

level is noted. A typical S-N curve is shown in Fig. 1. 

Another important concept based on the S-N curve is the 

fatigue limit (denoted by the horizontal line in Fig. 1). It 

means, if the stress range less than the fatigue limit is 

applied, no failure will occur, which indicates that the life 

of the specimen or structure can be infinite. 

The stress-life (S-N curve) method is mainly applied 

during the design stage or during the preliminary evaluation 

of fatigue life. Although this method is developed to a  

 

Fig. 1 Typical S-N curve 

 

 

Fig. 2 Relation between crack growth rate and stress 

intensity factor 

 

 

“safe-life” approach for structural design against fatigue, it 

does not provide any information about crack initiation or 

propagation, especially when the target structure is in use. 

Meanwhile, fracture mechanics theory deals with the 

study of crack propagation. Paris and Erdogan (1963) 

developed a relationship between the crack propagation rate 

(da/dN) and the range of stress intensity factor (∆K). This 

relationship is known as Paris’ law given as 

( )
mda

C K
dN

=   (1) 

where a is the crack length, N is the number of loading 

applications, and C and m are material parameters. The 

range of the stress intensity factor can be estimated using 

Newman’s approximation (Newman 1998) as 

( )K S Y a a =    (2) 

where ∆S is the range of the far-field stress (i.e., nominal 

stress) and Y(a) is the geometry function. Although nominal 
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stress is applied to this study, other types of stress such as 

hot-spot stress and notch stress (Oh et al. 2014) can also be 

applied if the stress intensity factor can be expressed by a 

function of the stress as in Eq. (2). A schematic log-log plot 

of the typical relationship between the crack growth rate 

and the range of stress intensity factor is shown in Fig. 2. 

In Fig. 2, Stage I is referred to as the crack initiation 

stage, which involves crack nucleation and short crack 

propagation. Stage II is referred to as the crack propagation 

stage, which involves propagation of long cracks; it is the 

stage where Paris’ law is applicable. Stage III is the fracture 

stage, in which the failure occurs due to extremely high 

crack propagation rate, and the number of load cycles in 

this stage is relatively small. 

Paris’ law has been applied to many structural problems. 

However, it is also known that it has a few limitations. For 

example, it is not applicable to the crack initiation stage 

wherein the crack growth rate is not proportional to stress 

intensity factor range (Dowling et al. 2009). 

Although both the S-N curve and Paris’ law are effective 

bases for fatigue analysis, the use of Paris’ law can be often 

more effective, especially when the target structure is in 

use. It is because Paris’ law can characterize crack growth 

and facilitate the assessment of the remaining service life or 

the decision-making on the optimal inspection intervals 

under definite loading conditions and service environments 

(Lee and Song 2014, Zhao et al. 1994, Soares and Garbatov 

1996, Sørensen 2009). By substituting Eq. (2) into Eq. (1), 

one can obtain 

1

( )

m

m
da C S dN

Y a a
= 

 
 

  
(3) 

By integrating Eq. (3) from the transition (or initial) 

crack length (a0) through the critical crack length (ac), one 

can solve for the total number of loading applications 

required for the failure NP as follows 

( )( )0

1c

m

a

P

a

N da

C S Y a a
=

 
  (4) 

For a structure subjected to a cyclic load with frequency 

ν0, the time duration until crack failure T (i.e., fatigue life) 

can be described as 

( )( )0
0 0

1 1ca

P

m

a

N
T da

C S Y a a  
= =

 
  (5) 

Eq. (5) or a similar equation derived from Paris’ law can 

be useful in many structural problems, such as evaluating 

the fatigue life and determining the inspection intervals of 

various structures such as bridges, ship structures, aircraft, 

wind turbine blades, and offshore platforms (Lee and Song 

2014, Lee and Song 2012, Zhao et al. 1994, Soares and 

Garbatov 1996, Sørensen 2009, Karamchandani et al. 1992, 

Moan and Song 2000). 

However, a fatigue lifetime estimated using Paris’ law is 

sensitive to material parameters (i.e., C and m). Particularly, 

m is a very important parameter, because it is a power term 

in Paris’ law and thus becomes to have a dominant effect on 

the fatigue lifetime. 

Another advantage of approaches based on Paris’ law is 

its capability of updating the fatigue failure risk after 

observing various crack inspection results of the structure 

(Lee and Song 2014, Lee et al. 2017). This feature is 

beneficial in various structural problems, because the risk of 

fatigue failure can be updated according to Paris’ law and 

inspections can hence be scheduled in an optimized manner. 

Although Paris’ law is sufficiently powerful to predict 

crack growth, it involves many uncertainties. These 

uncertainties arise from determination of the material 

parameters C and m as well as from the initial crack length. 

The initial crack length can be considered as the transition 

crack length, a0, from Stage I to Stage II. While the material 

parameters can be determined experimentally through 

fatigue crack growth rate tests, the transition crack length is 

often challenging to obtain from such experiments. One of 

the uncertainties involved in obtaining deterministic values 

of C and m is the material inhomogeneity, which leads to 

variation in the crack growth rate each time the experiment 

is carried out (Virkler et al. 1979). Other uncertainties arise 

from measurement of the crack growth rate and stress 

intensity factor during the experiment (Virkler et al. 1979). 

The uncertainties involved in fatigue become more evident 

from observations of the scatter in the S-N data. Therefore, 

probability distributions can be used to describe these 

uncertainties (Wirsching 1983). It can be seen that for the 

same range of applied stress, the specimen fails after 

different numbers of cycles. A statistical and probabilistic 

approach is used to account for these uncertainties. Because 

S-N curve experiments have been conducted for most 

materials, a vast amount of S-N curve data is available, 

which helps to reduce the uncertainty in using S-N curves. 
 

 

3. SNPL method 
 

To derive the statistical parameters of the Paris’ law 

parameters from the S-N curve data, this paper proposes a 

new probabilistic method, termed the S-N Paris law (SNPL) 

method (Ramachandra Prabhu and Lee 2017). The proposed 

method consists of four steps, which are explained below in 

detail. 
 

Step 1: Divide the S-N curve data into two cases 

During the S-N test, different ranges of stress are 

applied to the specimen, and the number of cycles until 

failure is noted. The basic procedure is to start testing the 

specimen at a higher stress amplitude, where failure is 

expected in a relatively small number of cycles. The applied 

stress is then decreased for each succeeding specimen until 

one or two specimens do not fail within the threshold value 

of the number of cycles. This threshold, where the fatigue 

test is terminated, is called the runout number (NR). The 

runout number is influenced by the fatigue limit of the 

material, type of loading, and shape of the specimen 

(Weibull 2013). The fatigue limit is the maximum stress 

amplitude which the material does not fail. Therefore, the 

stress amplitude beyond the fatigue limit is ignored in the 
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proposed method. Because the runout number represents 

this information, it is used to divide the S-N data into two 

cases, namely failure and non-failure cases. If the specimen 

reaches the runout number, it is considered as a non-failure 

case; otherwise, it is considered as a failure case. In general, 

the runout number is set to one million cycles or two 

million cycles (Bannantine et al. 1990), and in this study, 

the failure and non-failure cases are described as follows: 

a. A non-failure case is a case in which the specimen 

does not fail within the runout number of cycles (NSN 

> NR); 

b. A failure case is a case in which the specimen fails 

within the runout number of cycles (NSN ≤ NR). 

In the proposed method, for a failure case, the number 

of load cycles obtained from the S-N curve, NSN, is used, 

while runout number, NR, is introduced for a non-failure 

case. 

 

Step 2: Calculate the number of cycles for crack 

propagation, NP 

When it is assumed that the number of load cycles for 

ultimate fracture stage (i.e., Stage III in Fig. 3) is relatively 

small, the number of cycles obtained from the S-N data can 

be divided into the number of cycles for crack initiation and 

the number of cycles for crack propagation. 

Since Paris’ law (in Eq. (1)) and the total number of 

loading applications until failure (in Eq. (4)) are applicable 

only to the Stage II, the number of cycles for crack 

propagation has to be calculated from the total number of 

cycles to failure obtained from the S-N data. This can be 

done either by using the empirical technique proposed by 

Manson (1966) or by using the acoustic emission method 

proposed by Singh (2002). The empirical technique 

proposed by Manson is used in this study. Based on a large 

number of test results obtained by conducting a two-load-

level test, Manson proposed an equation for initiation and 

propagation lives that would best fit his data. Manson’s 

equation for calculating the number of cycles for a failure 

case, NPF, is given by 

0.614PF SNN N=   (6) 

Likewise, the number of cycles for a non-failure case, 

NPNF, can be calculated as 

0.614PNF RN N=   (7) 

It should be noted that the parameters in the Manson’s 

equation could be different from material types. The 

parameters for the structural steel are shown in the equation. 

The parameters in the equation were determined by fatigue 

testing from limited types of materials. Thus, if the values 

of the parameters are known for a particular material, the 

parameters could be changed.  

 

Step 3: Construct the likelihood function for both 

cases 

The concept of the limit-state function, which has 

evolved from structural reliability theories, is used in this 

step. Lee and Cho (2016) and Lee and Song (2014) derived 

a series of formulations for estimating the structural risk of 

fatigue-induced failure. These formulations are introduced 

to derive limit-state functions in the present study. With 

regard to structural reliability, in general, the limit-state 

function is the criterion that determines when the load effect 

exceeds the resistance of a structure. The mathematical 

representation of the limit-state function is given by 

( ) ( ) ( ) 0g R S= − X X X  (8) 

where g is the limit-state function, R is the resistance of the 

structure, S is the load effect, and X is the vector of random 

variables. 

Based on this definition of the limit-state function, the 

probability of fatigue failure Pf is calculated as 

( )( ) ( ) 0fP P R S= − X X  (9) 

This concept of constructing a limit-state function and 

finding the probability of fatigue failure is used in the SNPL 

method for two cases. The first case is called the inequality 

case, which represents non-failure cases, and the second 

case is called the equality case, which represents failure 

cases. 

 

Case 1: Inequality case 

When failure is not observed until a certain number of 

load applications in an S-N test, it is considered as the 

inequality case. The case means that not as many load 

cycles as required for failure were not given in the S-N 

experiment, and it is called the inequality case because an 

inequality sign is included in the limit-state function gNF 

which is given as 

( ) ( ) 0NF PNF Pg N N= − X X  (10) 

Based on the limit-state function given by Eq. (10), the 

probability of the non-failure case is calculated as 

( )( )0PNN F PFP P N N= − X  (11) 

It should be noted that NPNF and NP can be expressed by 

Eqs. (7) and (4), respectively, and the probability PNF can be 

calculated using conventional reliability analysis methods, 

such as the first order reliability method (FORM) (Lee and 

Song 2014, Lee et al. 2008, Kang et al. 2012). 

 

Case 2: Equality case 

When failure is observed after a certain number of load 

applications in an S-N test, it is considered as the equality 

case, and the limit-state function is given as 

( ) ( ) 0F PF Pg N N= − =X X  (12) 

Based on the limit-state function given by Eq. (12), the 

probability of the failure case is expressed by 

( )( )0F PF PP P N N= − =X  (13) 

Unlike Eq. (11), Eq. (13) represents an equality 

condition, and thus the probability is mathematically zero. 

Hence, to proceed with this term, an alternative formulation 

technique of taking its derivative (Lee and Song 2014, 

Straub 2011) is adopted as follows 
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( )( )
θ 0

θ 0
θ

F FP P g
=

 
 = +    

X  (14) 

In Eq. (14), an infinitesimal quantity θ is added to the 

limit-state function to eliminate the equality sign. Thus, one 

can establish inequality information, which will give a non-

zero probability. Hence, Eq. (14) can be rewritten as 

( )( )
θ 0

θ 0
θ

F PF PP P N N
=

 
 = − +    

X  (15) 

Note that PF in Eq. (15) can be calculated by taking the 

numerical differentiation of the probability results obtained 

from conventional reliability analysis methods, such as the 

first order reliability method (FORM) (Lee and Song 2014). 

If there are multiple inequality and equality cases, the final 

probability Pfinal is the product of individual probabilities 

PNF,i and PF, j: 

,

1

,

1

FNFN N

final N j

i

F i F

j

P P P
= =

=   (16) 

where NNF and NF are the number of inequality cases (i.e., 

non-failure cases) and the number of equality cases (i.e., 

failure cases), respectively. 

 

Step 4: Optimization 

The SNPL method attempts to find the best statistical 

parameters of the Paris’ law parameters through an 

optimization process, which maximizes the probability that 

the given S-N test results are observed (i.e., Pfinal in Eq. 

(16)). It means Pfinal is introduced as the objective function 

of the optimization. To reduce computational errors during 

the optimization process, the natural logarithm of Pfinal is 

introduced as the objective function 

( ) ( ) ( ), ,

1 1

ln ln 
NF F

NF i

N

F j

j

N

i

L P P
= =

= + X θ X θ X θ  (17) 

where θ is the vector of statistical parameters of the Paris’ 

law parameters. 

To find the best estimates of the statistical parameters of 

the transition crack length a0 and material parameters C and 

m, optimization based on based on Eq. (17) is performed as 

follows 

( ) ( )

( )

max ,

1

,

1

max ln 

ln 

nofail

fail

nofail i

i

fa j

N

il

N

j

L P

P

=

=


= 




+ 







X θ X θ

X θ

 
(18) 

In this study, the Nelder-Mead simplex algorithm from 

MATLAB’s Optimization Toolbox is used as the 

optimization solver. It determines the best statistical 

measures by satisfying Eq. (18). 

Fig. 3 shows the flowchart of the proposed SNPL 

method. A significant advantage of the SNPL method is that 

the current statistical parameters can be updated when  

 

Fig. 3 Flowchart of SNPL method 

 

Table 1 Material properties and approximate Paris’ law 

material parameter values of 40H and 20G steel 

Material 

Yield 

strength Sy 

(MPa) 

Ultimate 

strength Su 

(MPa) 

C 
(m/(cycle·MPa·m0.5)) 

m 

40H steel 780 980 3.96×10−12 2.97 

20G steel 280 460 2×10−11 3 

 

 

additional S-N data becomes available, and this is because 

the SNPL method is adopting a Bayesian approach. Steps 1-

4 can be repeated by incorporating the new S-N data, which 

helps to further reduce the uncertainties and thus provides 

more reliable data for the Paris’ law parameters. 

 

 

4. Application of SNPL method 
 

The proposed SNPL method was tested by applying it to 

40H steel and 20G steel, whose Paris’ law material 

parameters have already been determined experimentally. 

The Paris’ law parameters of these materials were derived 

using the SNPL method, and the results were compared 

with the known experimental values. Because the S-N data 

for these materials were not available, synthetic S-N data 

were generated using a method adopted in previous studies 

(Juvinall and Marshek 2006, Lee et al. 2011, VDME 2003, 

Ramachandra Prabhu and Lee 2017). This method gives an 

empirical relationship between the ultimate tensile strength 

and the fatigue limit over one million cycles. The material 

properties of 40H steel and 20G steel, along with the 

approximate Paris’ law material parameter values, are 

summarized in Table 1 (Szata and Lesiuk 2009). 
 

4.1 Generation of S-N curve data for 40H steel and 
20G steel 
 

The synthetic S-N data were generated as recommended 

by (Juvinall and Marshek 2006) for ductile materials. The  
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Table 2 Stress amplitudes for 103 and 106 cycles 

Material 
Ultimate Strength 

Su (MPa) 

Stress amplitude 

for 103 cycles Sc 

(MPa) 

Stress amplitude 

for 106 cycles, Sn 

(MPa) 

40H steel 980 735 397 

20G steel 460 345 186 

 

Table 3 S-N curve data for 40H steel and 20G steel 

40H steel 20G steel 

Stress amplitude 

(MPa) 

Number of 

cycles 

Stress amplitude 

(MPa) 

Number of 

cycles 

735 1×103 345 1×103 

636.68 5×103 298.95 5×103 

598.51 1×104 281.02 1×104 

518.47 5×104 243.44 5×104 

487.38 1×105 228.84 1×105 

422.2 5×105 198.24 5×105 

396.9 1×106 186.36 1×106 

 

 

following factors were considered for both 40H steel and 

20G steel. 

• The specimen is axially loaded for stress ratio (R) of -1 

• The specimen has a commercially polished surface 

• Cross section diameter < 50.8 mm (i.e., 2 inch) 

• Gradient correction factor, CG, = 0.9; temperature 

correction factor, CT, = 1.0; reliability correction factor, CR, 

= 1.0; and load correction factor, CL, = 1.0 

• Surface factor, CS, = 0.9 since Su < 1100 MPa 

Based on the factors mentioned above, the 103-cycle 

stress amplitude for an axially loaded ductile material was 

calculated as (Bannantine 1990) 

0.75c uS S=  (19) 

The 106-cycle stress amplitude for an axially loaded 

ductile material was calculated as (Bannantine 1990) 

'

n n L G S T RS S C C C C C=  (20) 

where 𝑆𝑛
′  is given by 

' 0.5n uS S=  (21) 

Based on these calculations, the following values were 

obtained for 40H steel and 20G steel (see Table 2). 

Based on the values listed in Table 2, a straight line was 

drawn between Sc and Sn to obtain the S-N curve. Based on 

the equation of the line, the stress amplitude corresponding 

to various numbers of cycles until failure were obtained 

(see Table 3). 

For a set of experimental S-N data, as described in Sec. 

2, there is scatter in the number of cycles until failure for 

the same stress amplitude in general, which involves 

uncertainty in fatigue. To introduce this uncertainty into the 

current S-N data, 10 samples were generated for each stress 

amplitude with a c.o.v. of 0.3, following a lognormal 

distribution (Wirsching 1983). It was observed in a 

preliminary analysis that at least 50 samples are required to  

 

Fig. 4 S-N curve for 40H steel 

 

 

Fig. 5 S-N curve for 20G steel 

 

 

provide a reasonable estimation of the Paris’ law 

parameters, so a total of 70 samples were used for each of 

40H steel and 20G steel. 

Based on these S-N data, S-N curves were plotted for 

40H steel and 20G steel, as shown in Figs. 4 and 5, 

respectively. The SNPL method is applied to these S-N 

curves. 

 

4.2 Analysis results 
 

Through the analysis employing the SNPL method, the 

statistical parameters of the Paris’ law material parameters 

(C and m) and the transition crack length (a0) are 

determined. In addition, the proposed method determines 

the correlation between C and m. In the analysis, C and m 

were considered to be lognormally distributed, and the 

transition crack length was considered to be exponentially 

distributed, following previous studies (Lee and Song 2012, 

2014). In the calculations, the width of the specimen (W) 

was taken as 30 mm, and the critical crack length was taken  
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Table 4 Results from SNPL method 

Material 

C (lognormal distribution) 

m  

(lognormal 

distribution) 

Correlation 

coefficient 

between C 

and m 

a0  

(exponential 

distribution) 

Mean 

(m/(cycle·MPa·m0.5)) 
c.o.v. Mean c.o.v. Mean (mm) 

40H steel 4.46×10−12 0.57 3.05 0.04 −0.9 1.18×10−1 

20G steel 2.42×10−11 0.49 3.14 0.06 −0.87 1.92×10−1 

 

 

as 15 mm. An edge crack was assumed and the following 

crack geometry function Y(a) (Tada et al. 2000) was 

selected 
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(22) 

The SNPL method was tested with the generated sets for 

20G and 40H steels. Each of the steps explained in Sec. 3 

was carried out. The first step in the SNPL method is to 

divide the S-N data into failure and non-failure cases. The 

runout number was selected as 1 million. Based on the S-N 

data for both 40H steel and 20G steel, 56 samples were 

failure cases and 4 samples were non-failure cases. The next 

step is to divide the number of cycles from the S-N data into 

the number of cycles for crack initiation and the number of 

cycles for crack propagation based on Manson’s equation. 

Then, step 3 was carried out based on the calculations for 

the equality and inequality cases as described in Sec. 3 by 

inputting various values for C, m, and a0. Lastly, 

optimization (step 4) was carried out based on the best 

outputs. The best results of the statistical measures for C, m, 

and a0 were obtained after optimization, which maximized 

the likelihood of observing the given S-N data. The analysis 

results are summarized in Table 4. 

The SNPL method results were compared with the 

experimental results shown in Table 1, and it is observed 

that the results in Table 4 showed good agreement with the 

experimental results. In particular, the errors of m which is 

an exponential term in Paris’ law (i.e., Eq. (1)) and thus has 

a dominant effect on crack growth rate and fatigue life were 

estimated to be 2.69% and 4.67% for 40H steel and 20H 

steel, respectively. 

In addition, it has been reported that there is a strong 

negative correlation between C and m of metals (Lee and 

Song 2012), which can also be found from the result (i.e., 

−0.9 for 40H steel and −0.87 for 20G steel). Moreover, the 

SNPL method provides the c.o.v.s of the Paris law 

parameters which are not obtainable from the S-N curve. 

Thus, it can be inferred that the SNPL method predicts the 

values of the Paris’ law material parameters accurately 

when S-N data are available, and the results can be 

compared with the values provided by several engineering 

standards such as BS 7910 (British Standard Institution 

2015). 
The SNPL method can also quantify the uncertainty in 

the transition crack length, which is otherwise an unknown 

parameter based on crack propagation data. As shown in 
Table 4, the mean values of the initial crack length for 40H 
steel and 20G steel are estimated to be 0.118 mm and 0.192 
mm, respectively, in the application example. Although 
there was no experimental results to compare, it was 
reported in several previous studies that the initial crack 
length of steel were estimated to be 0.1-0.2 mm 
(Karamchandani et al. 1992, Moan and Song 2000, Lee and 
Song 2011, Sova et al. 1976, McCarver and Ritchie 1982). 
Thus, it can be inferred that the initial crack lengths 
obtained from the proposed method are in a reasonable 
range. 
 

 

4. Conclusions 
 

A novel probabilistic method, termed the SNPL method, 
was developed to derive Paris’ law parameters from S-N 
curve data. Based on a Bayesian approach, the SNPL 
method considers the uncertainties in the S-N data to 
provide meaningful derivations of the statistical parameters 
of the Paris’ law parameters and the transition crack length. 
The validation results showed that the statistical parameters 
of the Paris’ law parameters and the transition crack length 
derived by the SNPL method from the S-N curve data are in 
good agreement with the actual experimental results. In 
addition, when additional S-N data are available, the 
statistical parameters of the Paris’ law parameters and the 
transition crack length can be updated. Thus, the 
uncertainties can be reduced further and results that are 
more accurate can be obtained. In summary, the proposed 
method is a useful approach to get the statistical 
information on crack growth rate when S-N data are 
available. 
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