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1. Introduction  
 

Typically, the Buckling is a phenomenon of elastic 

instability of a plate which is subjected on their edges to 

external in-plane compressive and shear loads acting strictly 

in the middle plane of the plate, it becomes unstable and 

begins to buckle. The magnitude of the compressive axial 

load at which the plate passes into unstable is termed the 

critical buckling load. If the load is increased beyond this 

critical buckling load, it results in a large deflection and the 

plate seeks another equilibrium configuration. Hence, the 

load at which a plate becomes unstable is of practical 

importance in design. However, a buckling analysis of 

plates has been an important part of research in the area of 

solid mechanics for a long time. The major fields of 

applications of supported plates and design of steel 

structures as structural members include aeronautical, 

automotives, marine, civil and mechanical engineering 

structures. 

The increasing importance of plates in these engineering 

applications has led to predict the buckling behaviour of 

isotropic, orthotropic and laminated composite plate, so that 

a variety of plate theories have been developed based on 

considering the transverse shear deformation effect. The  
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buckling problem for a simply supported plate subjected to 

the direct, constant compressive forces acting in one and 

two directions was first solved by Bryan (1981) using the 

energy method. The buckling behaviour of a rectangular 

plate with varying edge conditions under uniform 

compressive in-plane load was studied by Timoshenko and 

Gere (1961). Their work confirmed that when a simply 

supported plate buckles elastically, the out-of-plane 

displacement profile forms sinusoidal waves along the 

length and width of the plate. It should be noted that the 

classical plate theory (CPT), which is based on the 

Kirchhoff hypothesis, ignores the transverse shear 

deformation and gives good results only for the buckling of 

thin plates, but not be suitable for moderately thick or thick 

plates in which the transverse shear deformation effects are 

more significant. Yet, for the vast majority of experiments 

have shown that Kirchhoff’s classical plate theory 

underestimates deflections and overestimates natural 

frequencies and buckling loads for moderately thick plates. 

The first order shear deformation plate theory (FSDT) 

developed by Reissner (1945) and Mindlin (1951) includes 

the effect of transverse shear deformation by the way of 

linear variation of in-plane displacements through the 

thickness but does not satisfy shear stress-free conditions at 

top and bottom surfaces of the plate, which requires the 

addition of a shear correction factor in order to rectify the 

unrealistic variation of the shear strain-stress across the 

thickness, hence, this factor depend not only on material 
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and geometric parameters but also on the loading and 

boundary conditions. To overcome the limitations of CPT 

and FSDT, many polynomial and non-polynomial higher 

order shear deformation theories (HSDTs) have been 

developed in the past few decades to prevent the use of the 

shear correction factor and have a better representation of 

the bending, buckling and vibration analysis of isotropic 

and advanced composite plates (Tounsi et al. 2013, Zidi et 

al. 2014, Mahi et al. 2015, Attia et al. 2015, Bounouara et 

al. 2016, Bellifa et al. 2016, Beldjelili et al. 2016, Boukhari 

et al. 2016, Bousahla et al. 2016, Klouche et al. 2017, 

Benadouda  et al. 2017, Menasria et al. 2017, Besseghier 

et al. 2017, Attia et al. 2018, Belabed et al. 2018, Bouadi et 

al. 2018, Bouhadra et al. 2018, Bourada et al. 2018, 

Bourada et al. 2019). Reddy and Phan (1985) used a higher-

order shear deformation theory to determine the natural 

frequencies and buckling loads of simply supported plates, 

in which a parabolic distribution of the transverse shear 

strains through the thickness of the plate is accounted and 

stress-free boundary conditions are satisfied. Shufrin and 

Eisenberger (2005) have applied a first order shear 

deformation plate theory and the higher order shear 

deformation plate theory of Reddy in order to calculate the 

natural frequencies and buckling loads of thickelastic 

rectangular plates with various combinations of boundary 

conditions. The numerical results for buckling analysis of a 

simply supported isotropic and orthotropic rectangular 

plates subjected to in-plane loading has been obtained by 

Kim et al. (2009) using the two variable refined plate theory 

and the Navier method. Sayyad and Ghugal (2012) used a 

displacement based an exponential shear deformation 

theory (ESDT) for the buckling analysis of thick isotropic 

square plates with all simply supported edges subjected to 

uniaxial and biaxial in-plane loads. Analytical solutions for 

bending, buckling, and vibration analysis of thick 

rectangular plates with two opposite edges simply 

supported and the other two edges having arbitrary 

boundary conditions are presented by Thai and Choi (2013) 

using two variable refined plate theory. Grover et al. (2013) 

proposed a new inverse hyperbolic shear deformation 

theory for static and buckling analysis of laminated 

composite and sandwich plates, which gives non-linear 

distribution of transverse shear stresses and also satisfies the 

zero tangential traction boundary conditions on the surface 

of the plate. Ait Amar Meziane et al. (2014) developed an 

efficient and simple refined shear deformation theory for 

the bucking and free vibration analysis of exponentially 

graded material sandwich plates resting on two-parameter 

elastic foundations under various boundary conditions. 

Nguyen et al. (2015) presented a refined higher-order shear 

deformation theory for bending, vibration and buckling of 

functionally graded material sandwich plates using a 

hyperbolic shape function. Sayyad et al. (2016) applied a 

simple trigonometric shear deformation theory for the 

bending, buckling and free vibration responses of cross-ply 

laminated composite plates. This theory involves four 

unknown variables and four governing differential 

equations. Bourada et al. (2016) proposed a novel four 

variable refined plate theory for the buckling analysis of 

isotropic and orthotropic rectangular plates under the axial 

loading. Using the previous theory, Hebali et al. (2016) 

studied the bending, buckling, and vibration responses of 

functionally graded plates. Tounsi et al. (2016) presented a 

new three unknowns non-polynomial shear deformation 

theory for the buckling and vibration analysis of FGM 

sandwich plates. 

Recently, Meksi et al. (2019) developed a new simple 

higher order shear deformation theory for the bending, 

buckling and free vibration of FG sandwich plates. Based 

on the visco-nonlocal-refined Zigzag theories, dynamic 

buckling responses was examined by Kolahchi et al. (2017) 

for a sandwich nanoplate subjected to harmonic 

compressive load and resting on visco-Pasternak’s 

foundation. Chikh et al. (2017) presented a simplified 

higher order shear deformation theory (HSDT) with four 

unknowns for thermal buckling analysis of simply 

supported isotropic, orthotropic and cross-ply laminated 

plates under uniform temperature rise. El-Haina et al. 

(2017) studied the thermal buckling response of FG 

sandwich plates by using a novel and simple higher shear 

deformation theory in which a trigonometric variation of 

transverse shear stress is considered. Hajmohammada et al. 

(2018a) presented a dynamic buckling analysis of 

Multiphase nanocomposite viscoelastic laminated conical 

shells subjected to magneto-hygrothermal loads. It is noted 

that recently, different authors developed new types of 

HSDTs for investigating mechanical behavior of structures 

(Ahmed 2014, Akavci and Tanrikulu 2015, Kar and Panda 

2016a, Aldousari 2017, Bellifa et al. 2017a, b, Zine et al. 

2017, Fakhar and Kolahchi 2018, Hajmohammada et al. 

2018b, Karami et al. 2018). 

Also, some essential theories related to the mechanical 

behavior of advanced composite structures like, the first 

shear deformation theory and the higher-order shear 

deformation theory with or without zig-zag function, 

nonlocal theories, Visco-nonlocal-piezoelectricity theory, 

visco-nonlocal-refined zigzag theory and some innovative 

studies are given in references (Kolahchi and Bidgoli 2016, 

Kolahchi et al. 2016a, b, Kolahchi 2017, Kolahchi et al. 

2017a, b, c, Katariya et al. 2017a, Hajmohammad et al. 

2017, Hajmohammad et al. 2018c, d) which are applied on 

the advanced composite structures. 

The objective of this study is to propose a novel refined 

shear deformation theory for the buckling analysis of thick 

isotropic plates. The proposed theory is based on a new 

displacement field with only two unknowns by considering 

undetermined integral terms, which is even less than the 

other Higher order shear deformation theories , the 

hyperbolic shape function is attributed according to the non-

linear distribution of shear stress through the thickness of 

the plate, and satisfies the zero traction boundary conditions 

without using shear correction factors. The utilization of the 

integral term in the proposed kinematic led to a reducing in 

the number of variables and governing equations. Hence, 

the proposed theory has only four unknowns and four 

governing equations. The plate governing equations and its 

boundary conditions are derived by utilizing the principle of 

virtual works. Navier-type analytical solution is obtained 

for simply supported isotropic plates subjected to the 

uniaxial and biaxial loading conditions. Numerical results of  
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Fig. 1 Rectangular plate subjected to in-plane loads 

 

 

the critical buckling load for thick to thin isotropic square 

plates are presented and compared with other shear 

deformation theories to demonstrate the validity and 

efficiency of the present theory. 

 

 

2. Theoretical formulation 
 

2.1 Isotropic plate under consideration 
 

Consider an elastic isotropic rectangular plate of the 

length a, width b and a constant thickness h in z-direction as 

shown in Fig. 1. The plate is simply supported on all four 

edges and subjected to various in-plane distributed loads

),( 00
yx NN . It is noted that the in-plane shear forces are not 

included )0( 00 == yxxy NN . The plate under consideration 

occupies the region 0 ≤ x ≤ a, 0 ≤ y ≤ b, -h/2 ≤ z ≤ h/2 in 

Cartesian coordinate system. 

 
2.2 Kinematic and constitutive relations 
 
In this present study, the conventional higher order shear 

deformation theory presented by Sayyad and Ghugal (2012) 

is modified by introducing some simplifying suppositions in 

order to reduce the number of unknown variables. The 

displacement field of the existing HSDT is defined by 
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where u, v and w denote the displacement components 

along the x, y and z coordinate directions, respectively, ϕ 

and ψ represents the rotations about the y and x axes, 

whereas f(z) denote a shape function determining the 

distribution of the transverse shear strains and the stresses 

through the thickness of the plate. By employing that

dxyx ),(=  and dyyx ),(=  , the new displacement 

field of the proposed hyperbolic shear deformation theory 

(HySDT) can be expressed only with two unknowns in the 

form as 
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where w0 and θ are two unknowns displacement functions 

of middle surface of the isotropic plate. The constants k1 

and k2 depends on the geometry. In this work, the present 

theory is obtained by putting 
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The integrals adopted in the previous relations shall be 

resolved by a Navier solution and can be determined by 
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Fig. 2 The loading conditions of isotropic square plate for 

(a) uniaxial compression, (b) biaxial compression and (c) 

tension in the x direction and compression in the y direction 
 

 

where the parameters α and β are defined as 
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The stress-strain relationships accounting for transversal 

shear deformation in the isotropic plate coordinates, can be 

written as 
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where E and v are Young’s modulus and Poisson’s ratio, 

respectively. 

 

2.3 Governing equations 
 
In the proposed theory, the principle of virtual work is 

used to obtain the governing equations and boundary 

conditions for the isotropic plate under consideration. The 

principle can be stated in analytical form as 
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Where δ is a variational operator, A is the top surfaceof 

the plate, q and ),,( 000

xyyx NNN  are transverse and in-

plane distributed loads, respectively. By substituting the 

expressions for virtual strains given in Eq. (4) into Eq. (11), 

the principle of virtual work can be rewritten as 
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where Mb, Ms and Ss are the stress resultants defined by the 

following integrations 
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Substituting stress-strain relations from Eq. (10) into the 

Eq. (13), the stress resultants are obtained in terms of strains 

as following form 
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where Dij, Fij, Hij and s

ijA  are the plate stiffness coefficients 

given by 
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Substituting strain-displacement and stress-strain 

relations from Eq. (5) and (10) of the proposed theory into 

Eq. (12) and integrating by parts and collecting the 

coefficients of δw0 and δθ, the governing differential 

equations in terms of stress resultants are obtained as 

follows 
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Using Eqs. (5) and (14), the governing differential 

equations Eq. (16) based on the present shear deformation 

theory can be rewritten in terms of displacement variables 

(w0, θ) as 
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2.4 Buckling analysis of isotropic plates using Navier 
solution 
 

Buckling analysis of simply supported isotropic square 

plate is obtained using Navier solution procedure. The plate 

is subjected to in-plane distributed loads

)0,,( 0
02

0
01

0 === xyyx NNNNN  , as shown in Fig. 2. 

However, in case of static buckling problem, all other loads 

acting on plate are assumed to be zero (q=0). The simply 

supported boundary conditions on all four edges of the 

square plate can be expressed as 

at edges (x=0, a)
   

00 ==== s

x

b

x MMw  (18a) 

at edges (y=0, b)
  

00 ==== s
y

b
y MMw  (18b) 

Based on this procedure, the solution of the 

displacement variables satisfying the boundary conditions 

given by Eq. (18), and can be expressed in the double-

Fourier sine series as
   

Based on this procedure, the solution of the 

displacement variables satisfying the boundary conditions 

given by Eq. (18), and can be expressed in the double-

Fourier sine series as 
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where Wmn and Φmn are unknown coefficients, so the 

parameters α and β are already defined in Eq. (9). 

Substitution of this solution of Eq. (19) into the governing 

equations Eq. (17), the critical buckling loads of isotropic 

plates can be obtained from the following matrix form 
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3. Numerical results and discussions 
 

To prove the validity and efficiency of the proposed 

hyperbolic shear deformation plate theory applied for the 

buckling analysis of isotropic plates subjected to in-plane 

loading conditions, the results obtained for critical buckling 

load are compared and discussed with those obtained by the 

classical plate theory (CPT), FSDT of Mindlin (1951), 

HSDT of Reddy (1984) and the exponential shear 

deformation theory (ESDT) developed by Sayyad and 

Ghugal (2012). Since the exact elasticity solution for plate 

buckling analysis is not available in the literature. The 

description of various plate theories used in this study are 

listed in Table 1.  

The following material properties are used to obtain the 

numerical results. 

Material 1: steel plate 

3.0    ,210 == GPaE  (22) 

Material 2: aluminum plate 

33.0    ,70 == GPaE  (23) 

For convenience, the following non-dimensional critical 

buckling load is used in presenting the numerical results 
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Table 1 Displacement models 

Model Theory Unknowns 

CPT Classical plate theory 3 

FSDT 
First-order shear deformation theory 

(Mindlin 1951) 
5 

HSDT 
Higher-order shear deformation theory 

(Reddy 1984) 
5 

ESDT 
Exponential shear deformation theory 

(Sayyad and Ghugal 2012) 
3 

Present Hyperbolic shear deformation theory 2 

 

Table 2 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to uniaxial compression 

( 0,1 21 =−=  , material 1) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present (HySDT) 2.9512 3.4224 3.5649 3.6071 3.6132 

Sayyad and Ghugal 

(ESDT) (a) 2.9603 3.4242 3.5654 3.6072 3.6132 

Reddy (HSDT) (a) 2.9512 3.4224 3.5649 3.6068 3.6130 

Mindlin (FSDT) (a) 2.9498 3.4222 3.5649 3.6071 3.6130 

Kirchhoff (CPT)(a) 3.6152 3.6152 3.6152 3.6152 3.6152 

(a) Results taken from reference Ghugal and Sayyad (2012) 

 

Table 3 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to biaxial compression (

1,1 21 −=−=  , material 1) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present (HySDT) 1.4756 1.7112 1.7825 1.8035 1.8066 

Sayyad and Ghugal 

(ESDT) (a) 1.4802 1.7121 1.7827 1.8038 1.8065 

Reddy (HSDT) (a) 1.4756 1.7112 1.7825 1.8034 1.8065 

Mindlin (FSDT) (a) 1.4749 1.7111 1.7825 1.8035 1.8065 

Kirchhoff (CPT)(a) 1.8076 1.8076 1.8076 1.8076 1.8076 

(a) Results taken from reference Ghugal and Sayyad (2012) 

 

 

3

2

0

Eh

aN
Ncr =  (24) 

In the first section, the results of the non-dimensional 

critical buckling load of simply supported steel plates 

subjected to the uniaxial and biaxial loading conditions for 

different values of side-to-thickness ratio (a/h=5, 10, 20, 50, 

100) are given in Tables 2 to 4. The theoretical values of 

critical buckling load were also plotted in Figs. 3 

through6according to the variation of ratio (a/h). In order to 

verify the accuracy of the present theory in predicting the 

mechanical buckling behaviour, another comparison is 

carried out for the aluminum plates subjected to in-plane 

loads, as presented in Tables 5 to 7. The mode for the plate 

considered in this analysis is (1, 1) when the plate is 

subjected to uniaxial or biaxial compressions (see Figs. 2(a),  

Table 4 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to biaxial compression (

1,1 21 −==  , material 1) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 2) 

Present (HySDT) 4.8272 6.6024 7.2754 7.4895 7.5212 

Sayyad and Ghugal 

(ESDT) (a) 4.8798 6.6133 7.2777 7.4898 7.5212 

Reddy (HSDT) (a) 4.8274 6.6024 7.2754 7.4893 7.5201 

Mindlin (FSDT) (a) 4.8158 6.6010 7.2753 7.4895 7.5211 

Kirchhoff (CPT)(a) 7.5317 7.5317 7.5317 7.5317 7.5317 

(a) Results taken from reference Ghugal and Sayyad (2012) 

 

Table 5 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to uniaxial compression 

( 0,1 21 =−=  , material 2) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 

(HySDT) 
2.9893 3.4866 3.6383 3.6832 3.6897 

Sayyad and 

Ghugal 

(ESDT) (a) 

2.9991 3.4886 3.6388 3.6833 3.6898 

Reddy (HSDT) 
(a) 

2.9893 3.4866 3.6383 3.6833 3.6896 

Mindlin 

(FSDT) (a) 
2.9877 3.4865 3.6383 3.6832 3.6900 

Kirchhoff 

(CPT)(a) 
3.6919 3.6919 3.6919 3.6919 3.6919 

(a)Results taken from reference Ghugal and Sayyad (2012) 

 

Table 6 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to biaxial compression (

1,1 21 −=−=  , material 2) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 

(HySDT) 
1.4947 1.7433 1.8192 1.8416 1.8448 

Sayyad and 

Ghugal 

(ESDT) (a) 

1.4995 1.7443 1.8194 1.8416 1.8449 

Reddy (HSDT) 
(a) 

1.4947 1.7433 1.8192 1.8416 1.8448 

Mindlin 

(FSDT) (a) 
1.4939 1.7433 1.8192 1.8415 1.8450 

Kirchhoff 

(CPT)(a) 
1.8459 1.8459 1.8459 1.8459 1.8459 

(a) Results taken from reference Ghugal and Sayyad (2012) 

 

 

2(b)), and (1, 2) when the plate is subjected to tension      

in x-direction and compression in y-direction (see Fig. 2(c)). 

According to the analytical solutions provided in Tables 

2 to 7, it can be observed that, the non-dimensional critical 

buckling load obtained by present theory (HySDT) and 

Reddy’s theory (HSDT) is in good agreement with each 

other for all loading cases ranging from thick to thin plates, 

on the other hand, it should be noted that the numerical 

results of present theory are even better than those reported 

by Sayyad and Ghugal (2012) based on ESDT, especially for 

the case of very thick square plates with (a/h=5). From these  
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Table 7 Comparison of non-dimensional critical buckling 

load crN of square plates subjected to biaxial compression (

1,1 21 −==  , material 2) 

Mode Theory 
a/h 

5 10 20 50 100 

(1, 2) 

Present 

(HySDT) 
4.8521 6.7054 7.4184 7.6464 7.6802 

Sayyad and 

Ghugal 

(ESDT) (a) 

4.9083 6.7172 7.4208 7.6468 7.6803 

Reddy (HSDT) 
(a) 

4.8523 6.7055 7.4184 7.6465 7.6804 

Mindlin 

(FSDT) (a) 
4.8398 6.7040 7.4183 7.6465 7.6810 

Kirchhoff 

(CPT)(a) 
7.6915 7.6915 7.6915 7.6915 7.6915 

(a) Results taken from reference Ghugal and Sayyad (2012) 

 

 

 

Fig. 3 The effect of side-to-thickness ratio on the critical 

buckling load of square plates subjected to uniaxial 

compression. (a) material 1 and (b) material 2 

 

 

figures and tables the effect of the ratio (a/h) may be 

analyzed too. It can be seen that the value of critical 

buckling load obtained using various shear deformation 

plate theories (i.e., HySDT, ESDT, HSDT, and FSDT) is 

increased with increase in ratio (a/h), whereas the CPT 

overestimates the critical buckling loads for all side-to-

thickness ratio due to neglect of the transverse shear 

deformation effect. However, the comparison of Tables 3 

and 6 with Tables 4 and 7 shows that the critical buckling 

load for the plate under biaxial compression, is less than the 

corresponding values for the plate subjected to tension in x- 

 

 

Fig. 4 The effect of side-to-thickness ratio on the critical 

buckling load of square plates subjected to biaxial 

compression. (a) material 1 and (b) material 2 

 

 

direction and compression in y-direction and a good 

agreement has been achieved between HySDT and HSDT 

solutions.  

It is evident from Figs. 3 through 5, that the results 

obtained by the different theories are more or less identical 

for the higher value of ratio (a/h). 

 

 

4. Conclusions 
 

In this work, the buckling behaviour of isotropic plates 

subjected to the uniaxial and biaxial loading conditions is 

studied based on the novel refined hyperbolic shear 

deformation theory, in which the displacement field 

contains a smaller number of unknowns with an 

undetermined integral term. The proposed theory satisfies 

the shear stress-free boundary conditions on the top and 

bottom surfaces of the plate, without using any shear 

correction factors. The governing differential equations and 

boundary conditions of simply supported square plates are 

derived by utilizing the principle of virtual work and solved 

using Navier’s solution method. The numerical results of 

the critical buckling load for isotropic plates are verified by 

comparing them with various available results in the 

literature. Lastly, it can be said that the novel refined shear 

deformation theory with only two unknowns is not only 

more accurate but also simple than the conventional higher 

order shear deformation theory in predicting the buckling  
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Fig. 5 The effect of side-to-thickness ratio on the critical 

buckling load of square plates subjected to tension in the x-

direction and compression in the y-direction. (a) material 1 

and (b) material 2 

 

 

response of thick isotropic plates. Finally, the formulation 

lend sit self particularly well to study several problems 

related to the mechanical behaviour of concrete structures 

retrofitted with nano-fiber (Arani and Kolahchi 2016, 

Bilouei et al. 2016, Zamanian et al. 2017, Bakhadda et al. 

2018), also by using various shear deformation theories 

with and without stretching effect to predict the static, 

mechanical buckling,  thermal buckling and free vibration 

behavior of multilayered structures (Panda and Singh 2009, 

Panda and Singh 2010, Bousahla et al. 2014, Hebali et al. 

2014, Belabed et al. 2014, Ait Yahia et al. 2015, Zemri et 

al. 2015, Bourada et al. 2015, Larbi Chaht et al. 2015, 

Hamidi  et al. 2015, Bennoun et al. 2016, Katariya and 

Panda 2016, Draiche et al. 2016, Kar et al. 2016, Ahouel et 

al. 2016, Kar and Panda 2016b, Houari et al. 2016, Kar et 

al. 2017, Katariya et al. 2017b, Fahsi et al. 2017, Hachemi  

et al. 2017, Zidi et al. 2017, Abdelaziz et al. 2017, Sekkal et 

al. 2017a, b, Abualnour et al. 2018, Benchohra et al. 2018, 

Draiche et al. 2016, Fourn et al. 2018, Kaci et al. 2018, 

Karami et al. 2018a, b, Zaoui et al. 2018, Younsi et al. 

2018, Karami et al. 2019), which will be considered in the 

near future. The present computations also provide a solid 

benchmark for verification of finite element and other 

numerical simulations of nanostructures (Khetir et al. 2017, 

Mokhtar et al. 2017, Mouffoki et al. 2017, Yazid et al. 

2018, Youcef et al. 2017, Mehar et al. 2018, Cherif et al. 

2018, Kadari et al. 2018, Mahmoudi et al. 2019). 
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