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1. Introduction  
 

The plate bonding technique is used to increase the 

strength and the stiffness or repair the existing reinforced 

concrete structure. The use of the composite fiber-

reinforced plastic (FRP) become more and more very 

effective given its simplicity. Many studies have been 

conducted, to predict the interfacial stresses, see, for 

example, those by Tounsi et al. (2007), Tounsi (2006), 

Benyoucef et al. (2006), Vilnay (1988), Roberts (1989), 

Roberts et al. (1989), Malek et al. (1994), Robinovitch et 

al. (2000), Ye (2001), Smith et al. (2001), Barnes et al. 

(2001), Stratford et al. (2006). Bouazaoui (2008) have 

studied the interfacial shear strength between the steel bar 

surface and concrete surface of steel rods bonded into 

concrete. Many approximate closed-form solutions have 

been developed in the past decade for the interfacial stresses 

in beams bonded with a steel or FRP plate (Vilnay 1988, 

Roberts 1989, Roberts et al. 1989, Taljsten 1997, Smith et 

al. 2001, Tounsi 2006).  

The solution presented by Smith et al. (2001) seems to 

be the more accurate widely applicable solution, 

particularly when the flexural stiffness of the bonded plate 

becomes significant. Rabinovich et al. (2000) has presented 

a higher order analysis in which the adhesive layer was 

treated as an elastic medium with negligible longitudinal 

stiffness. This leads to uniform stresses and linearly varying 

normal stresses through the thickness of the adhesive layer. 

The significance of their solution is that it is the first 

solution that satisfies the stress-free boundary condition at 

the ends of the adhesive layer. Using the same approach, 

they investigated the effects of an uneven adhesive layer  
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Rabinovich et al. (2001) and material nonlinearity 

Rabinovich et al. (2001). Shen et al. (2001) proposed an 

alternative analytical complementary energy approach, 

which resulted in closed-form expressions. Recently, many 

authors have conducted a numerical study in different 

directions to illustrate the principal parameters in order to 

estimate the distributions of interfacial stress in beams 

reinforced with composite plates (Daouadji 2017, Bouakaz 

et al. 2014, Krour et al. 2014, Touati et al. 2015, Hadji et al. 

2016, Kara 2016, Elamary et al. 2016). The analytical 

models present often the assumption of constant 

environment conditions, while the RC beam and the FRP 

are subjected to changing temperature and moisture 

conditions and it should be including in the analysis Gibson 

(1994). In this paper, the hygrothermal effects in the 

concrete beam and the soffit plate will be included to 

estimate the interfacial shear and normal stresses. For this 

case, we introduce an analytical solution which include the 

mechanical properties of the beam, the plate and the 

adhesive layer under thermal (temperature effect) and 

hygroscopic (moisture effect) conditions. The most used 

solution is Teng’s solution Smith et al. (2001). This solution 

doesn’t consider the fibre orientation contrary to Tounsi 

(2006) solution which will be used in this paper. The total 

interfacial stress is the sum of Tounsi solution and the 

additional one due to the hygrothermal deformation of the 

beam and the plate (Bouderba et al. 2013, Bousahla et al. 

2016, Beldjelili et al. 2016, Menasria et al. 2017, Chikh et 

al. 2017).  

We can use more advanced theory, for example, those 

by El-Haina et al. (2017), Younsi et al. (2018), Bouhadra et 

al. (2018), Benchohra et al. (2018), Bourada et al. (2018).   

Results have been presented to show the hygro-thermal 

effect on the interfacial shear and normal stresses. 
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Fig. 1 Soffit-plated beam 

 

 

Fig. 2 Differential segment of a soffit-plated beam 

 

 

As shown in Fig. 1, a concrete beam (Adherend 1) 

strengthened by FRP plate (Adherend 2) and bounded by an 

adhesive layer is considered. This beam is simply supported 

reinforced beam and subjected to a uniform distributed 

load. Geometry and cross-sections are shown in Fig. 1. 

The following assumptions are used: 

• The materials concrete beam, FRP plate and adhesive 

are linear elastic. 

• Shear and normal stresses in the adhesive layer are 

constant across its thickness. 

• The curvature in the beam and the plate are same.   

 

2.1 Governing differential equations 
 

The Fig. 2 represents a differential segment of plated 

beam. τ(x) and σ(x) are the interfacial shear and normal 

stresses respectively with positive sign convention for the 

bending moment, shear force, axial force and applied 

loading. The derivation of the new solution below is 

described in terms of adherends 1 and 2, where adherend 1 

is the beam and adherend 2 is the soffit plate.  

The shear strain γ in the adhesive layer can be written as 

dx

yxdv

dy

yxdu ),(),(
+=  (1) 

u(x,y) and v(x,y) are the horizontal and vertical 

displacements of the adhesive layer respectively. τ(x) is 

given as 
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where Ga is the shear modulus of the adhesive layer. 

Differentiating the expression (2) with respect to x gives 
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The curvature is function of the applied moment MT(x) 
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where (EI)t is the total flexural rigidity of the composite 

section. u(x,y) must vary linearly across the adhesive 

thickness ta, then 
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where u1(x) and u2(x) are the longitudinal displacements at 

the base of adherend 1 and the top of adherend 2, 

respectively. Eq. (3) can be rewritten as 
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The third term in parentheses in Eq. (7) can be ignored 

Smith et al. (2001) in the following derivation. The strains 

at the base of adherend 1 and the top of adherend 2 taking 

account the hygrothermal deformations are given as 
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Where α1 is the coefficient of thermal expansion and β1 

is the coefficient of hygroscopic expansion of the RC beam. 

ΔT and ΔC are the temperature and percent moisture change 

respectively. 

The laminate theory is used to estimate the strain of the 

symmetrical composite plate (Herakovich 1998), i.e., 
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 [A’] is the inverse of the extensional matrix [A]; [D’] is 

the inverse of the flexural matrix [D]; b2 is a width of FRP 

plate. Using CLT, the strain at the top of the FRP plate 2 is 

given as 
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Substituting Eqs. (9) in (10) gives the following 

equation 
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α2 is the coefficient of thermal expansion and β2 is the 

coefficient of hygroscopic expansion of the plate soffit. 

Considering horizontal equilibrium gives 
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The moments in the two adherends can be related as 
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with 
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R =  (15) 

and the moment equilibrium of the differential segment of 

the plated beam in Fig. 2 gives 
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The bending moment in each adherend is function of the 

total applied moment and the interfacial shear stress as 
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The first derivative of the bending moment in each 

adherend gives 

 ))(()(
1

)(
)(

2121
1

aT tyyxbxV
R

R
xV

dx

xdM
++−

+
==   (19) 

 ))(()(
1

1
)(

)(
2122

2
aT tyyxbxV

R
xV

dx

xdM
++−

+
==   (20) 

Substituting Eqs. (8) and (11) into Eq. (7) and 

differentiating the resulting equation once yields 
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Substitution of the shear forces (Eqs. (19) and (20)) and 

axial forces (Eq. (13)) in both adherends into Eq. (21) gives 

the following governing differential equation for the 

interfacial shear stress 
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For simplicity and for such loading, d2VT(x)/dx2=0, the 

general solution of Eq. (22) is given by 
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The general solution for the interfacial shear stress for a 

simply supported beam subjected to a uniformly distributed 

load is given as 
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The constants of integration need to be determined by 

applying suitable boundary conditions. 

At x=0, here the moment at the plate end 

M2(0)=N1(0)=N2(0)=0 and as a result 
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Substituting Eqs. (8) and (11) into Eq. (7) with the third 

term ignored, and applying the above boundary condition, 

gives 
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By substituting Eq. (23) into Eq. (28), B2 can be 

determined as 
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The normal stress in the adhesive layer, σ(x), is given as 
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E
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where v1(x) and v2(x) are the vertical displacements of 

adherend 1 and 2, respectively. 

Differentiating Eq. (31) twice results in 
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Considering the moment-curvature relationships for the 

beam to be strengthened and the external reinforcement, 

respectively 
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The equilibrium of adherend 1 and 2, leads to the 

following relationships: 
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Based on the above equilibrium equations, the 

governing differential equations for the deflection of 

adherends 1 and 2, expressed in terms of the interfacial 

shear and normal stresses, are given as follows: 

Adherend 1 

11

2

11

1
2

11

4

1

4 )(
)(

1)(

IE

q

dx

xd
b

IE

y
xb

IEdx

xvd
++−=


  (36) 

Adherend 2 

11

2

'

11

'

114

2

4 )(
)(

)(

IE

q

dx

xd
yDxD

dx

xvd
++−=


  (37) 

Substitution of Eqs. (36) and (37) into the fourth 

derivation of the interfacial normal stress obtainable from 

Eq. (31) gives the following governing differential equation 

for the interfacial normal stress 
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The general solution to this fourth-order differential 

equation is 
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For large values of x it is assumed that the normal stress 

approaches zero, and as a result C3=C4=0. The general 

solution therefore becomes 

 

qn
dx

xd
n

xCxCex x

21

21

)(

)sin()cos()(

−+

+= −



 

 (40) 
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As is described by Smith et al. (2001), the constants C1 

and C2 in Eq. (40) are determined using the appropriate 

boundary conditions 
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3. Results and discussion 
 

Numerical results are presented to illustrate and examine 

both thermal and hygroscopic effects on the interfacial 

shear and normal stresses. We consider for this work an RC 

beam of 3000 mm of length, a soffit plate of LP=2400 mm, 

a uniform distributed load q=50 KN/ml. The other 

geometric parameters and mechanicals properties are 

resumed in Table 1. All results are given for two cases of 

temperature and moisture change: 

• ΔT=0°C, ΔC=0% 

• ΔT=50°C, ΔC=1%   

The hygrothermal properties used in this study are: 

• α1=11*10-6/°C and β1= *10-4(Edward G.N. (2008)), 

• α2=9*10-6/°C (Schmit 1998) and β2=1.89*10-3 

(Vaddadi et al. 2007) 

Figs. 3 to 12 shows the hygrothermal effect for various 

parameters. The maximum interfacial stresses increase  
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Table 1 Geometric and mechanicals properties 

Component 
Width 

(mm) 

Depth 

(mm) 

Young’s Modulus 

(GPa) 

Poisson’s  

ratio 

RC beam 200 300 30  

Soffit plate 200 4 50  

Adhesive layer 200 4 3 0.35 

 

Table 2 Maximum interfacial shear and normal stresses 

 max (MPa) max (MPa) 

Denton et al. (2001) 2.418 1.982 

Deng et al. (2004) 2.410 2.007 

Present (0/90)s 2.959 1.392 

 

 
Fig. 3 Effect of fibre orientations on shear stress for an RC 

beam with a bonded composites laminates plate [/90]s for 

different hygroscopic cases 

 

 

considerably with considering the hygrothermal effect. 

 

3.1 Comparison studies 
 

In order to validate the accuracy of the present method, 

a comparison has been carried out with previously 

published results by Denton et al. (2001) and Deng et al. 

(2004) for ΔT=50°C. Comparison results of the maximum 

interfacial shear and normal stresses are shown in Tables 2. 

It can be observed a good agreement between the present 

study and those given by Denton et al. (2001) and Deng et 

al. (2004). 

 
3.2 Fibre orientation 

 

The fibre orientation affects significantly the 

development of interfacial stresses. It’s shown in Figs. 3 

and 4 that the shear and normal stresses decrease when the 

angle of orientation increases. 

 

3.3 Plate thickness 
 

Figs. 5 and 6 show the effects of the plate thickness on 

the interfacial stresses. It seen that this plate affects 

considerably the normal stress and hardly the shear stress 

concentration. The normal stress increase with increasing 

the plate thickness. 

 
Fig. 4 Effect of fibre orientations on normal stress for an 

RC beam with a bonded composites laminates plate [/90]s 

for different hygroscopic cases 

 

 

Fig. 5 Effect of plate thickness on shear stress for an RC 

beam with a bonded composites laminates plate [0/90]s 

under hygrothermal effect 

 

 

Fig. 6 Effect of plate thickness on normal stress for an RC 

beam with a bonded composites laminates plate [0/90]s 

under hygrothermal effect 

 

 

3.4 Adhesive layer thickness 

 

It’s shown in Figs. 7 and 8 that the level of interfacial 

stresses is influenced considerably by the thickness of the 

adhesive layer. The interface shear and normal stresses 

decrease with increasing the thickness of adhesive layer.  
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Fig. 7 Effect of adhesive layer thickness on shear stress for 

an RC beam with a bonded composites laminates plate 

[0/90]s under hygrothermal effect 

 

 

Fig. 8 Effect of adhesive layer thickness on normal stress 

for an RC beam with a bonded composites laminates plate 

[0/90]s under hygrothermal effect 

 

 

Fig. 9 Effect of external layer number on shear stress for an 

RC beam with a bonded composites laminates plate [0/90m]s 

under hygrothermal effect 

 

 

3.5 Number of laminate layers 

 

The number of laminate layers have an important effect 

in the distribution of the interfacial stresses. Figs. 9 and 10 

show a decreasing in both shear and normal stresses with 

increasing the number of external layers. On the other  

 

Fig. 10 Effect of external layer number on normal stress for 

an RC beam with a bonded composites laminates plate 

[0/90m]s under hygrothermal effect 

 

 

Fig. 11 Effect of internal layer number on shear stress for an 

RC beam with a bonded composites laminates plate [0n/90]s 

under hygrothermal effect 

 

 

Fig. 12 Effect of internal layer number on normal stress for 

an RC beam with a bonded composites laminates plate 

[0n/90]s under hygrothermal effect 

 

 

hand, it’s shown in Figs. 11 and 12 that normal and shear 

stresses increase when the number of internal layers 

increase. 

 

 

4. Conclusions 
 

A simple solution has been presented in this paper in 
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order to calculate the interfacial stresses of retrofitted RC 

beam strengthened with a soffit plate under hygrothermal 

and mechanical loads with taking into account the fibre 

orientation. The following are the main conclusions. 

• The inclusion of hygrothermal effect increases 

considerably the maximum interfacial shear and normal 

stresses. 

• It’s found that increasing the angle of fibre orientation 

reduces the interfacial stresses. 

• The interfacial stresses increase with increasing the 

thickness of the FRP plate. No change has been found in the 

distribution of the shear stresses. 

• Increasing the thickness of adhesive layer has a great 

role in the reduction of the interfacial shear and normal 

stresses. 

• The interfacial stresses decrease with increasing the 

number of external layers and increases with increasing the 

number of internal layers. 
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