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1. Introduction  
 

The Geumgwang reservoir located at 36.99ºN and 

127.33ºE is one of the largest reservoirs in South Korea 

with water storage capacity1059ha.m. The reservoir is 

supplying water for the agricultural purpose of 4830ha land. 

The release of the water is controlled by outlet work 

including intake tower. The intake tower plays a significant 

role in preventing the catastrophic failure of reservoir dam 

after an earthquake, by controlling the water level and 

reducing the corresponding hydrostatic pressure. A 

cantilever freestanding high-rise tower of height 62.07 m is 

modeled due to its high-water level. Due to its higher height 

and complexity, seismic risk analysis are the crucial factors 

taken into consideration. Seismic risk assessment method 

describes the potential damages and losses due to future 

earthquakes and their probabilities of occurrence in a given 

period. FEMA (2001) developed a comprehensive 

earthquake loss estimation methodology which is using by 

the state, regional and local government for planning and  
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earthquake loss mitigation. Multihazard Mitigation Council 

(2005) provided how to calculate expected annual losses 

including direct and indirect business interruption costs, the 

value of avoided statistical death and injuries and so on. 

The methodology for performance-based earthquake 

engineering and its application in seismic risk assessment 

was reviewed (Kalantari 2012). Many researchers studied 

on the seismic risk assessment of dam in Korea (Gun 2016, 

Ha et al. 2016, Alam et al. 2017a). However, limited 

guidance is available for especially assessing the seismic 

risk of intake tower. 

The seismic fragility of the structural system is the 

pivotal component of seismic risk assessment, which 

expresses the relationship between a ground motion 

intensity and the corresponding probability of failure in a 

specific performance criterion. The lognormal model is the 

commonly used method for calculating the structural 

fragility. Kennedy et al. (1980) was the first who present a 

detailed procedure for the estimation of median ground 

acceleration capacity. Shinouzuka et al. (2000) proposed the 

maximum likelihood estimation method to calculate the 

fragility parameter. An approximate approach to evaluate 

the seismic fragility curves for frame structures was 

developed based on the statistical characteristics of peak 

story drifts of frame structures during earthquakes (Lin 

2008). Seismic fragility of a high-rise telecommunication 

tower was investigated using the endurance time analysis 

(ETA) method (Hariri-Ardebili et al. 2014). Mehani et al. 

(2013) developed a framework for seismic fragility analysis 
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Abstract.  This research aims to assess the tight seismic risk curve of the intake tower at Geumgwang reservoir by considering 

the recorded historical earthquake data in the Korean Peninsula. The seismic fragility, a significant part of risk assessment, is 

updated by using Bayesian inference to consider the uncertainties and computational efficiency. The reservoir is one of the 

largest reservoirs in Korea for the supply of agricultural water. The intake tower controls the release of water from the reservoir. 

The seismic risk assessment of the intake tower plays an important role in the risk management of the reservoir. Site-specific 

seismic hazard is computed based on the four different seismic source maps of Korea. Probabilistic Seismic Hazard Analysis 

(PSHA) method is used to estimate the annual exceedance rate of hazard for corresponding Peak Ground Acceleration (PGA). 

Hazard deaggregation is shown at two customary hazard levels. Multiple dynamic analyses and a nonlinear static pushover 

analysis are performed for deriving fragility parameters. Thereafter, Bayesian inference with Markov Chain Monte Carlo 

(MCMC) is used to update the fragility parameters by integrating the results of the analyses. This study proves to reduce the 

uncertainties associated with fragility and risk curve, and to increase significant statistical and computational efficiency. The 

range of seismic risk curve of the intake tower is extracted for the reservoir site by considering four different source models and 

updated fragility function, which can be effectively used for the risk management and mitigation of reservoir. 
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of existing RC structure based on the post-earthquake 

recorded damage data. Moreover, the system fragility 

analysis approach was investigated for the purpose of risk 

management of critical facilities like piping system (Ju et 

al. 2013). The Incremental Dynamic Analysis (IDA) was 

used for performing a comprehensive assessment of the 

behavior of structure under seismic load (Vamvatsikos and 

Cornell 2002). The fragility parameters using these direct 

statistical methods require a large number of numerical 

analyses data which is not computationally efficient. The 

Bayesian inference method is used in this research for 

updating the fragility parameters from prior information. 

This method is a powerful tool for updating fragility 

parameters when new information becomes available. Many 

researchers used Bayesian inference method for estimating 

fragility parameters. Pei and Van de Lindt (2009) applied 

Bayesian approach to update and develop the probabilistic 

capacity and demand model using experimental data of 

wood frame structure. Koursourelakis (2010) suggested a 

Bayesian framework considering four different ground 

motion intensity measure to calculate fragility parameters 

and applied it in geotechnical field. A Bayesian approach 

was illustrated for seismic collapse risk assessment on a 

four-story reinforced concrete moment frame building 

(Gokkaya et al. 2015). Alam et al. (2017b) applied 

Bayesian inference technique for the fragility analysis of 

intake tower. Most of these research works have a common 

theme, like estimating the seismic fragility by integrating 

the numerical analysis or different test results.  

In this study, total 30-time history analyses and a 

nonlinear static pushover analysis have been performed of 

the intake tower. Then conventional lognormal approach is 

used for constructing fragility curve from the both 

numerical analysis data. Afterward, the Bayesian inference 

method is used to update the fragility parameters by 

integrating both analyses data with the help of MCMC 

simulation. PSHA method is used to determine seismic 

hazard of the reservoir site. Four different seismic source 

models of Korea are considered for the hazard analysis 

which is developed based on historical and instrumental 

earthquake catalog (Choi et al. 2009). Also, the most 

probable earthquake scenario of the reservoir site is shown 

by hazard deaggregation. Finally, the seismic risk curve of 

intake tower is developed by the convolution of updated 

fragility and hazard function. 

 

 

2. Seismic risk assessment 
 

Seismic risk assessment is used mostly to quantify the 

potential damages loss due to future earthquakes and their 

probabilities of occurrence in a given period (Brabhaharan 

et al. 2005). Sometimes it is very essential for earthquake 

engineers to know the probability that loss will exceed a 

particular value during a given time 𝑡 as a function of loss. 

In this research, the lognormally distributed loss measure 

method is used for estimating the risk curve of single 

structure (Porter 2016). The risk curve of the intake tower is 

expressed as the percentage of the probable loss (FEMA 

2001, Kalantari 2012, Farsangi 2014). Seismic risk curve 

can be calculated by integrating the seismic hazard function 

and seismic fragility function with respect to the ground 

motion intensity. 

𝑅(𝑦) =  ∫ −(1 − 𝑃(𝑌 ≤ 𝑦|𝐼𝑀 = 𝑥))
𝑑𝐺(𝑥)

𝑑𝑥
𝑑𝑥

∞

=0

 (1) 

where 𝑌 is the uncertain degree of loss, 𝑥 is a particular 

value of the ground motion intensity, 𝑅(𝑦)  annual 

frequency with which loss of degree y is exceeded, 𝐺(𝑥) is 

the mean annual frequency of shaking exceeding intensity x 

and 𝑃(𝑌 ≤ 𝑦|𝐼𝑀 = 𝑥)  is the cumulative distribution 

function of 𝐼𝑀 evaluated at 𝑦 for given shaking 𝑥. Risk 

curve can be estimated by numerically integrating of the 𝑛 

discrete values of earthquake intensity 𝑥 (Porter 2016). 

𝑅(𝑦) =  ∑ (𝑝𝑖−1(𝑦)𝑎𝑖

𝑛

𝑖=1

−
Δ𝑝𝑖(𝑥)

Δ𝑠𝑖

𝐺𝑖−1 (exp(𝑚𝑖Δ𝑠𝑖) (Δ𝑠𝑖

−
1

𝑚𝑖

) +
1

𝑚𝑖

)) 

(2) 

where 

𝑎𝑖 = 𝐺𝑖−1(1 − exp(𝑚𝑖Δ𝑠𝑖)) 

𝑝𝑖(𝑦) =  𝑃(𝑌 ≤ 𝑦|𝐼𝑀 = 𝑥) = 1 − 𝜙 (
ln (

𝑦
𝜃(𝑥𝑖)

)

𝛽(𝑥𝑖)
) 

𝑚𝑖 =  
ln

𝐺𝑖

𝐺𝑖−1

Δ𝑠𝑖

 for 𝑖 = 1,2, … … 𝑛 

 

 

3. Seismic structural fragility 
 

Seismic structural fragility defines as the probability of 

failure, that the seismic demand placed on the structure (𝐷) 

is greater than the capacity of structure (𝐶). The governing 

mathematical expression is as follows 

G(𝐶, 𝐷)  =  𝐶 –  𝐷 (3) 

where damage gate G(𝐶, 𝐷) is a function of at least two 

variables representing various experimental, material, 

modeling and loading uncertainties for the structure. The 

probability statement is controlled by a selected intensity 

measure (𝐼𝑀)  parameter represents the seismic loading 

(Tadinada 2012). 

Seismic fragility = 𝑃[𝐷 ≥ 𝐶|𝐼𝑀] = 𝑃[𝐶 –  𝐷 ≤
0|𝐼𝑀] 

(4) 

The capacity C also called strength of a structure can be 

defined as the maximum seismic load that the structure can 

resist without occurring any damage. The capacity is 

assumed to be deterministic. The fragility of structure is 
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assumed to follow some probability distribution function 

which is identified from both damage state and ground 

motion intensity. 

𝑃[𝐷 ≥ 𝐶|𝐼𝑀] = 𝐹𝑖𝑗(𝐶𝑖) (5) 

where 𝐹𝑖𝑗 expresses the cumulative distribution function. 

Lognormal distribution is commonly used to represent the 

collapse fragility curve (Bradley 2008, Baker 2013) and is 

used in this study. 

𝑃(𝐶|𝐼𝑀) = 𝐹𝑖𝑗(𝐶𝑖) = 𝜙 (
ln 𝐼𝑀 − ln 𝑥𝑚

𝛽
) (6) 

where 𝐹𝑖𝑗(𝐶𝑖) denotes the fragility function for ground 

motion IM, 𝜙() denotes the standard normal cumulative 

distribution function(CDF), 𝑥𝑚 is the median value of the 

distribution function, and 𝛽  denotes the logarithmic 

standard deviation or dispersion of ln 𝐼𝑀. 

 

3.1 Incremental dynamic analysis (IDA) 
 

There are different methods for estimating the two main 

parameters 𝑥𝑚  and 𝛽  of fragility curve based on 

lognormal model. IDA is a method of determining fragility 

parameters that is utilized to estimate the seismic 

performance of structural systems. IDA method involves 

scaling each ground motion in a suite until it causes 

collapse of the structure ((Vamvatsikos and Cornell 2002). 

The intensity measure of the ground motion is gradually 

increased and applied into the structural model until the 

collapse is occurred for lateral displacement.   

Fragility parameters can be estimated from analyses data 

by taking logarithms of each ground motion’s IM value 

associated with onset of collapse and computing there mean 

and standard deviation (Ibarra and Krawinkler 2005). Let, 

𝑀 be the number of specimen tested to failure, 𝑖 is the 

index of specimen (𝑖 = 1,2, … . . 𝑀) and 𝐼𝑀 is the value 

associated with the beginning of collapse for the 𝑖th 

ground motion (Ang and Tang 2006). 

𝑥𝑚 = 𝑒𝑥𝑝 (
1

𝑀
∑ 𝑙𝑛𝐼𝑀𝑖

𝑀

𝑖=1

) (7) 

𝛽 = √
1

𝑀 − 1
∑ (𝑙𝑛

𝐼𝑀𝑖

𝑥𝑚

)
2𝑀

𝑖=1

 (8) 

The fragility parameters are updated and fitted by using 

IDA with the help of Bayesian inference and MCMC 

simulation. 

 

3.2 Bayesian inference 
 

The structural fragility model 𝑃(𝐶/𝐼𝑀) depends on a 

vector of random variable 𝜃𝑖. The prior relative likelihood 

and joint density function can be expressed as 𝑝𝑖 = 𝑃(Θ =
 𝜃𝑖) and 𝑓Θ

′(𝜃1, 𝜃2, . . ). The prior information is generally 

available from experimental studies, professional 

knowledge of expert, past studies etc. (Tadinada 2012). The 

prior information may be updated formally through the 

Bayes theorem using additional observed data 

(𝑓Θ
′′(𝜃1, 𝜃2, . . |𝑌))  (Ang and Tang 2006, Box and Tiao 

1973). 

𝑓𝛩
′′(𝜃1, 𝜃2, . . |𝑌) =  

𝑃(𝜃1, 𝜃2, . . |𝑌)𝑓𝛩
′(𝜃1, 𝜃2, . . )

𝑃(𝑌)
 (9) 

𝑃(𝑌) = 𝐸(𝜃𝑖|𝑌) =  ∫ 𝑃(𝜃1, 𝜃2, . . |𝑌) 𝑓Θ
′(𝜃1, 𝜃2, . . )𝑑𝜃𝑖 (10) 

where 𝑃(𝜃1, 𝜃2, . . |𝑌)  is referred to as the likelihood 

function of the random parameter. 

 

3.3 Markov chain monte carlo (MCMC) 
 

The posterior distribution 𝑓Θ
′′(𝜃1, 𝜃2, . . |𝑌)  are 

accounted by numerically generating a large number of 

sample from probability distribution using a special class of 

computational algorithms called Markov Chain Monte 

Carlo (Brooks 1998). There are several standard methods 

available for designing Markov chain with required 

stationary distribution 𝑃(𝜃|𝑌). Gibbs sampling is a special 

case of the Metropolis-Hastings algorithm which generates 

a Markov chain by sampling from full conditional 

distribution (Casella and George 1992). Let us assume a 

vector 𝜃 consist of 𝑘  sub-components, 𝜃 =
(𝜃1, 𝜃2, … . , 𝜃𝑘). 

Step 1 Choose starting values 𝜃1
(0)

, 𝜃2
(0)

, … … … 𝜃𝑘
(0)

 

Step 2 
Sample 𝜃1

(1)
 from 

𝑃(𝜃1|𝜃2
(0)

, 𝜃3
(0)

… … … 𝜃𝑘
(0)

, 𝑌) 

 
Sample 𝜃2

(1)
 from 

𝑃(𝜃2|𝜃1
(1)

, 𝜃3
(0)

… … … 𝜃𝑘
(0)

, 𝑌) 

 ……….......... 

 
Sample 𝜃𝑘

(1)
 from 

𝑃(𝜃𝑘|𝜃1
(1)

, 𝜃2
(1)

… … … 𝜃𝑘−1
(1)

, 𝑌) 

Eventually, we can obtain the posterior distribution 

sample from 𝑃(𝜃|Y) by repeating the step 2 many times. 

MCMC simulation method enabled quantitative researchers 

to use highly complicated model and estimate the 

corresponding posterior distribution with accuracy 

(Ntzoufras 2009). 

 

 

4. Probabilistic seismic hazard analysis (PSHA) 
 

To assess the seismic risk of any structure, the 

estimation of the annual probability or rate of exceedance of 

ground motion intensity for a specific site is a crucial factor 

for the earthquake engineer. PSHA aims to estimate the 

seismic hazard corresponding specific ground motion and to 

quantify the uncertainty about the location, size and 

resulting shaking intensity of future earthquakes. 

 

4.1 Seismic source map 
 
Korea is known as a low and moderate seismicity zone 

because of no strong earthquake record was measured. In 

addition, no active faults were identified in Korea.  
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Therefore, the Poisson type PSHA method is used in 

Korea, in which all the earthquakes are presumed to occur 

according to a stationary process in the time domain (Choi 

et al. 2005). Recently, the seismicity expert teams proposed 

the four seismic source maps for the PSHA. Most of the 

seismic source map was proposed by using a historical and 

instrumental earthquake data without a distinct seismo 

tectonic environment. More than 2000 earthquake data were  

used for development the seismic source model, in which 

more than 1800 earthquake data had been taken from the 

historical earthquake records (Seo et al. 1999). Fig.1 shows 

the four-seismic source model of Korea that is used in this 

study (Choi et al. 2009). In each source area, the 

distribution of the earthquake size was assumed to follow 

the Gutenberg-Richter recurrence law and the hypocenters 

were assumed to be distributed uniformly and randomly 

(Gutenberg and Richter 1944). Table 1 shows the seismicity 

parameters for the four-seismic source model provided by 

CRIEPI32. 

 

 
 
4.2 Overview of PSHA 
 
The probability of exceedance of a particular value of 𝑥 

of ground motion parameter (𝐼𝑀) can be calculated by 

multiplying the probability of specific earthquake 

magnitude that would occur at a particular location to the 

probability of one possible earthquake and one possible 

location of source. The process is then repeated for all 

possible earthquake magnitude and sources and summed 

(Baker 2015, Kramer 1966). In general, PSHA can consider 

the aleatory uncertainties of earthquake magnitude (𝑀), 

source to site distance (𝑅)  and wave attenuation. The 

governing equation is as follows (McGuire 1976) 

𝜆(𝐼𝑀 > 𝑥) =  ∑ 𝜈𝑖

𝑁𝑠

𝑖=1

∑ ∑ 𝑃(𝐼𝑀 > 𝑥|𝑚𝑗 , 𝑟𝑘)𝑃(𝑀𝑖

𝑁𝑅

𝑘=1

𝑁𝑀

𝑗=1

= 𝑚𝑗)𝑃(𝑅𝑖 = 𝑟𝑘) 

(11) 

where 𝑁𝑠 , 𝑁𝑀  and 𝑁𝑅  are the number of potential  

  
(a) Model A (b) Model B 

  
(c) Model C (d) Model D 

Fig. 1 Seismic source models of Korea for seismic hazard analysis 
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Table 1 Seismicity parameters for the seismic source 

models 

Source 

model 
Source ID 

Seismicity 

parameters Max. 

Magnitude 

Min. 

Magnitude 
𝑎 𝑏 

Model A 

RS1 4.28 1.12 6.6 

3.8 

RS2 3.53 0.92 6.9 

RS3 2.59 0.69 7.1 

RS4 2.34 0.66 6.7 

RS5 3.10 0.87 7.1 

RS6 2.12 0.66 6.7 

RS7 1.70 0.59 7.2 

Model B 
RS1 2.93 0.76 6.7 

3.0 
RS2 2.53 0.75 6.5 

Model C 

RS1 3.09 0.8 6.3 

3.5 
RS2 2.98 0.8 6.3 

RS3 2.51 0.7 7.0 

RS4 1.55 0.6 6.5 

Model D 

RS1 1.09 0.58 7.0 

3.0 
RS2 1.97 0.58 6.8 

RS3 2.58 0.58 6.8 

RS4 2.29 0.58 6.5 

 

 

earthquake sources, different earthquake magnitudes and 

different source to site distances respectively; 𝑃(𝐼𝑀 > 𝑥) 

is the probability that a ground motion parameter (𝐼𝑀) 

will exceed a particular value of 𝑥 (Baker 2015, Kramer 

1966). 

𝑃(𝐼𝑀 > 𝑥)

=  ∫ ∫ 𝑃(𝐼𝑀 > 𝑥|𝑚𝑗 , 𝑟𝑘)𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑟𝑑𝑚

𝑟𝑚𝑎𝑥

0

𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

 (12) 

where 𝑓𝑀(𝑚)  and 𝑓𝑅(𝑟)  are the probability density 

function for magnitude and distance respectively and 

𝑃(𝐼𝑀 > 𝑥|𝑚𝑗, 𝑟𝑘) comes from ground motion model. 𝜈𝑖  

from Eq. (11), commonly express as the annual rate of 

earthquake occurrence, governed by Gutenberg and Richter 

(1944) as follows 

𝜈𝑖 = 10𝑎−𝑏𝑚𝑖  (13) 

where 𝑎  and 𝑏  values are known as the Gutenberg -

Richter recurrence parameters. The resulting probability 

distribution of magnitude for the Gutenberg-Richter law can 

be determined by the ratio between the number of 

earthquake in a magnitude range prescribed to the total 

number of earthquakes (McGuire and Arabasz 1990).  

𝑃(𝑚1 ≤ 𝑀 < 𝑚2|𝑚0 ≤ 𝑚1, 𝑚2 ≤ 𝑚𝑚𝑎𝑥)

=
10−𝑏𝑚1 − 10−𝑏𝑚2

10−𝑏𝑚0 − 10−𝑏𝑚𝑚𝑎𝑥
 

(14) 

where 𝑚0 and 𝑚𝑚𝑎𝑥 are the lower threshold magnitude 

and maximum magnitude. Therefore, the seismicity 

parameters (𝑎, 𝑏, 𝑚0, 𝑚𝑚𝑎𝑥)  of each source model are 

pivotal part for probabilistic seismic hazard analysis (Wang 

et al. 2013). The accuracy of the numerical integration of 

Eq. (11) can be increased with the increasing of number of 

magnitude (𝑁𝑀) and distance (𝑁𝑅). 

 

4.3 Ground motion model 
 
Ground motion prediction model are generally 

developed using statistical regression of observed ground 

motion intensities. To describe the probability distribution 

function, prediction models consider the following general 

form (Baker 2015). 

ln𝐼𝑀 = ln𝐼𝑀̅̅ ̅̅ ̅̅ (𝑀, 𝑅, 𝜃) + 𝜎(𝑀, 𝑅, 𝜃). 휀 (15) 

where the terms ln𝐼𝑀̅̅ ̅̅ ̅̅ (𝑀, 𝑅, 𝜃)  and 𝜎(𝑀, 𝑅, 𝜃)  are the 

predictive mean and standard deviation respectively and 

which are the output of the ground motion prediction 

model. Over decades of development and refinement, many 

prediction models for the term ln𝐼𝑀̅̅ ̅̅ ̅̅ (𝑀, 𝑅, 𝜃)  and 

𝜎(𝑀, 𝑅, 𝜃) have been developed consisting many terms and 

tables containing a number of coefficient. In this paper, 

predictive model of Cornell et al. (1979) is used for the 

mean of log peak ground acceleration (in units of 𝑔). 

ln𝑃𝐺𝐴̅̅ ̅̅ ̅̅ ̅̅ =  −0.152 + 0.859𝑀 − 1.803ln (𝑅 + 25) (16) 

The standard deviation of  ln𝑃𝐺𝐴 is 0.57 in this model 

which is constant for all magnitudes and distances. 

 

4.4 Hazard deaggregation 
 
The seismic hazard analysis expresses the mean annual 

rate of exceedance for particular ground motion intensity at 

any specific site base on the different source and their 

magnitudes and distances. In some cases, it is very 

supportive to account the most likelihood earthquake 

magnitudes and the most likely source to site distance, 

which is contributing to maximum hazard for a particular 

ground motion parameter. The deaggregtion process reveals 

the mean annual rate of exceedance as a function of 

magnitude and distance (Baker 2015, Kramer 1966). 

𝜆(𝐼𝑀 > 𝑥, 𝑀 = 𝑚, 𝑅 = 𝑟) = 𝑃(𝑀𝑖 = 𝑚)𝑃(𝑅𝑖

= 𝑟 ∑ 𝜈𝑖𝑃(𝐼𝑀 > 𝑥|𝑚𝑗, 𝑟𝑘)

𝑁𝑠

𝑖=1

 (17) 

 

 

5. Structural analysis of intake tower 
 

In this research, the seismic risk assessment of high rise 

free standing intake tower is analyzed. The numerical 

analysis of intake tower is conducted by considering the 

lumped mass model in OpenSees. 

 

5.1 Tower geometry 
 
The details elevation of cantilever free standing intake  
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tower of height 62.7 0m is shown in Fig. 2(a). The cross-

sections of the tower are rectangular which varies from 

(13.50 m × 13.50 m) at the base to (12.0 m × 11.0 m) at the 

top as shown in Fig. 2(c). Moreover, the thickness of the 

tower differs from section to section. The thickness of the 

tower is 1.70 m and 0.70 m at the bottom and top section 

respectively. The tower has a 2.0 m deep concrete slab at 

the bottom and 0.70 m deep concrete slab at the top of the 

tower. 

 

5.2 Hydrodynamic masses 
 
The refine method (USACE 2003) is used to calculate 

the inside and outside hydrodynamic masses of the intake 

tower. In short, this method is carried out by converting 

each uniform section of the tower, first into an equivalent 

uniform elliptical section and then into a corresponding 

equivalent circular section. The normalized hydrodynamic 

added mass 𝑚∞
0 /𝜌𝑤𝐴0 due to outside water is calculated 

from the width to depth ratio of the average cross-section. 

Finally, the absolute added hydrodynamic mass can be 

calculated by multiplying 𝜌𝑤𝐴0 with the normalized added 

mass, where 𝜌𝑤 and 𝐴0 are the water mass density and 

outside area of the average section. 

 

5.3 Failure identification 
 
According to  USACE guidance document,  a 

displacement based dynamic analysis may be used to 

identify the failure of the intake tower. If the displacement 

demand (𝛿𝐷)at the top of the tower surpass the ultimate 

displacement capacity (𝛿𝑢) is considered as the failure 

criteria. The maximum top deflection of the tower named as 

the displacement demand estimated using time history 

analysis with linear spring properties, beam column 

elements properties and added hydrodynamic mass due to  

 

 

circumambient or contained water. The ultimate 

displacement capacity at the top of the tower is allied to the 

height of the tower, the width of the plastic hinge and the 

fracture strain capacity.  

𝛿𝑢 =
∅𝐸𝑙2

3
+ 𝜃𝑝𝑙2 (18) 

𝛿𝑢∅𝐸 =
𝑀

𝐸𝐼𝑔

 (19) 

where  𝛿𝑢 is the ultimate displacement capacity, ∅𝐸 = the 

elastic curvature at cracking (at the base of the tower), ∅𝑝 is 

the plastic rotation at failure, 𝑀 is the moment at the base 

of the tower and 𝑙 = the height of the tower above the 

crack. The ultimate deflection capacities at the top of the 

tower are calculated as 10.1 cm and 12.8 cm about the 

strong axis and weak axis, respectively. 

 

 

6. Results and discussion 
 

The Bayesian inference with MCMC simulation is used 

to update the seismic fragility from prior information. Prior 

information is usually estimated from the existing studies of 

similar structure, professional experience or any simplified 

analysis method. In this study, nonlinear static pushover 

analysis and 30 number of time history analyses are 

performed as prior information. 

The nonlinear static pushover analysis is used in this 

study, because the analysis is generally performed before 

the dynamic analysis and is not computationally 

demanding. Vamvatsikos and Cornell (2005) provided a fast 

and accurate method named SPO2IDA to estimate the 

seismic demand and capacity. The method makes the 

connection between the Static Pushover (SPO) and the  

 
 

 

(a) Elevation (b) lumped-mass 

model 

(c) Typical section and dimension of intake tower 

Fig. 2 Details of intake tower model 
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Fig. 4 Lognormal fragility curve with 95% confidence band 

region using from 30-time history analyses 

 

 

Incremental Dynamic Analysis (IDA) and infers nonlinear 

dynamic response using pushover analysis result. 16, 50 and 

84% fractal IDA curves are obtained using SPO2IDA 

method from the data of static pushover analysis as shown 

in Fig. 3(a). This IDA curves lead to lognormal fragility 

function having median collapse capacity 0.96g and 

dispersion of 0.39. Fig. 3(b) illustrates the 95% confidence 

bound of median fragility curve using the fragility 

parameters mention above. 

In case of IDA, fragility parameters are calculated by 

taking logarithms of each ground motion associated with 

onset of collapse. Thirty number of time history analyses 

are performed on the intake tower model and among them 

13 number of collapses are experienced on the basis top 

tower displacement limit measure. Lognormal fragility 

parameters having median collapse parameter 1.02 g and 

dispersion 0.42 are calculated using the collapse number. 

Fig. 4 describes the fragility curve with 95% confidence 

bound using IDA methods. 

 

 

Fig. 5 Updated fragility curve with 95% confidence interval 

using Bayesian inference and MCMC simulation 

 

 

Fig. 6 PGA seismic hazard curve at the Geumgwang 

reservoir located at 36.990N and 127.330E for four seismic 

source models of Korea 

 

 

The fragility curves from both analyses are noticed the 

wide confidence interval which indicate large uncertainty of  

  
(a) 16, 50 and 84% fractal IDA curves (b) 95% confidence bound of fragility curves 

Fig. 3 Lognormal fragility curves with 95% confidence interval from pushover analysis using SPO2IDA software by 

Vamvatsikos and Cornell (2005) 
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the median fragility curve. A large number of additional 

data is required for reducing the uncertainty using these 

conventional fragility model which increase the 

computational time and cost. Bayesian inference is 

employed for integrating data from static pushover analysis 

and time history analysis with the help of MCMC 

simulation. Fig. 5 illustrates the 95% confidence band of 

median fragility curve using Bayesian Inference and 

MCMC simulation which express the reduction of 

uncertainty of median fragility curve. 

The seismic hazard curves are developed using the four-

seismic source model of Korea. Fig. 6 shows the seismic 

hazard curve for PGA as ground motion intensity measure 

at the Geumgwang reservoir site for the four-seismic source 

model. From the hazard curve, we can see that the annual 

rate of exceedance for model D is higher than any other 

sources which means the highest hazard contribution is 

from source model D. It is because the source model D 

includes some earthquake record data from far sources i.e., 

some part of Japan and Yellow sea. A mean seismic hazard 

curve is extracted due its variation of exceedance rate for 

different sources model and to consider the uncertainty of 

the source model (Fig. 6).  

Hazard deaggregation are generally estimated for six 

default hazard rates as follows: 0.1, 0.01, 0.0021, 0.001, 

0.0004 and 0.0001 (Wang et al. 2013). The annual rate of 

0.0021 and 0.0004 are the two customary hazard levels 

equivalent to 10% and 2% exceedance probabilities within 

in 50 years for Poisson process recommended by Kramer 

(1966), which are used for this study. Fig. 7 shows the 

respective PGA hazard deaggregation at the two hazard 

levels for the highest contribution hazard source model D. 

Seismic source model D is considered for hazard 

deaggregation because of the higher hazard rate. From Fig. 

7, it is found that 90% of hazard are contributed by 

magnitudes (5.0-6.5𝑀𝑤) occurring relatively close to the 

site (i.e., 0-50 km). 

The seismic risk curves, as shown in Fig. 8 are 

calculated by integrating the seismic hazard probability and  

 

 

Fig. 8 Seismic risk curve of intake tower at the Geumgwang 

reservoir for four different source models 

 

 

the updated fragility function corresponding to similar 

intensities. The mean seismic risk curve of intake tower as 

shown in figure is recommended for reservoir site to 

decrease the source model uncertainty due to the variation 

of hazard rate for different source model. From Fig. 8, we 

can easily predict the future loss of the structure due to 

earthquake hazard corresponding design service life. It also 

illustrates the life cycle cost that can be used in the life 

cycle management and maintenance of the structural 

system. 

 

 

6. Conclusions 
 

The focus of this study is to quantify the seismic risk of 

the intake tower at Geumgwang reservoir in Korea for 

managing the risk associated with the reservoir. The seismic 

risk of the intake tower is assessed by updating the fragility 

functions using Bayesian inference and MCMC simulation. 

The method provides a worthy way to embody the different 

types of risk data and to update the fragility parameters 

  
(a) (b) 

Fig. 7 Hazard deaggregation for Geumgwang reservoir at two customary hazard levels: (a) 10% exceedance probability in 50 

years, and (b) 2% exceedance probability in 50 years 
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when new information become available. Seismic hazard is 

analyzed by using the PSHA method for four different 

seismic source models of Korea. The hazard deaggregation 

has been performed at two customary hazard levels to show 

the hazard contribution for different earthquake magnitude 

and distance. The mean hazard curve is extracted for the 

risk assessment due to the variation of the hazard curve for 

different sources. The uncertainty associated with the 

median fragility curve for both static pushover analysis and 

dynamic analysis is shown by the 95 percent confidence 

bound. The confidence bound associated with each fragility 

curves appears quite wide indicating large uncertainties. 

Updating fragility curve obtaining from combining the 

analysis results by Bayesian inference shows the significant 

reduction of uncertainty of the 95 percent confidence band 

region. The mean risk curve of intake tower is suggested for 

the reservoir site which can play a significant role for risk 

management and mitigation of reservoir system. 
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