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1. Introduction  
 

Vibration mitigation and structural control have drawn 

the attention of many researchers over the last decades as an 

effective method for dissipating vibration energy. The 

necessity of reducing building vibrations has motivated 

researchers into developing various control schemes such as 

active, semi-active, and passive methods, with the first two 

being proposed more recently. These systems are 

characterised by adaptive mechanisms in which control 

forces are generated by employing external power (Yeganeh 

Fallah and Taghikhany 2014, Askari et al. 2016, Marian and 

Giaralis 2017, Younespour and Ghaffarzadeh 2016).  

The active structural control process requires measuring 

the structural response, determining the force from the 

measurements, and applying a designed load to obtain the 

controlled or desired structural response. Adaption to 

structural changes and environment relies on the algorithm 

used as a processor in the active control mechanisms, which 

can strongly impact the performance of the control system. 

Fisco and Adeli (2011a) carried out a review study on active 

and semi-active control of structures performed from 1997. 

In a companion paper, the authors also reviewed variously 

improved and new control strategies developed for civil 

structures (Fisco and Adeli 2011b). The key element to 

achieve a proper control requires selecting an effective 

control algorithm for obtaining the control force that needs  
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to be applied to the structural system.  

The sliding mode control (SMC) method, as a nonlinear 

algorithm, was introduced to active control of civil 

structures by Yang et al. (1995) and Adhikari and 

Yamaguchi (1997), and is based on high-frequency 

switching (Solea and Nunes 2007). The variable structure of 

the SMC makes it capable of switching between different 

control laws. Since the SMC is insensitive against changes 

and external excitation, it has become a competitive choice 

among other control methods. Several applications can be 

highlighted (Yu et al. 2016, Yeganeh Fallah and Taghikhany 

2015, Wu and Yang 2004, Lee and Chen 2011, Baradaran-

nia et al. 2012, Yang et al. 2015). 

Even though the SMC has many advantages, the 

chattering phenomenon associated with the switches in the 

control force can negatively impact the actuators during the 

dynamic mitigation and is often pointed out as the major 

drawback for practical implementation. Various alternatives 

were proposed to improve the control performance of 

conventional SMC, for example, based on the boundary 

layer method (Adhikari and Yamaguchi 1997), higher order 

SMC (Ozer et al. 2017), gain adaption (Wang and Adeli 

2012), and neural networks (Yakut and Alli 2011, Li et al. 

2000).  

Having into account the current state of knowledge, a 

different approach is proposed in this paper to achieve a 

chattering-free SMC. The method is based on a fuzzy logic 

model to estimate and replace the discontinuity of the SMC 

law, i.e., the source of the chattering, by a smoother 

approximation. Fuzzy logic control (FLC) as a smart 

control technique has been used for active control in 

structures (Guclu and Yazici 2008, Yu et al. 2016, 

Ghaffarzadeh and Aghabalaei 2017, Gu et al. 2019). Human  
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Fig. 1 Active tendon system 
 

 

knowledge base and less mathematical effort made it a 

convenient control technique. The method uses an 

approximation reasoning and applies linguistic statements 

to the relationship between system variables.  In this paper, 

the CFSMC is applied to a control system based on active 

tendons. Such system uses pre-stressed cables or diagonal 

bracings located between floors of a structure or at the ends 

of cables in cable-stayed bridges that can be activated 

axially by servo-controlled hydraulic actuators to quickly 

adjust the stress state. The method proposed in the 

following sections is validated using a numerical example 

under earthquake excitations where uncontrolled and 

controlled responses are analyzed.   
 

 

2. Control system model 
 

The motion equation for a controlled structural system 

with n-degrees of freedom can be written as 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐵𝑢(𝑡) + 𝑀𝑅�̈�𝑔(𝑡), (1) 

where M, C, and K are (𝑛 × 𝑛)  mass, damping and 

stiffness matrices, respectively, �̈�(𝑡) ,  �̇�(𝑡)  and 𝑥(𝑡)  are 

the (𝑛 × 1)  acceleration, velocity and displacement 

vectors, respectively, B is a (𝑛 × 𝑟) location matrix of r 

controllers, and R is a (𝑛 × 1)  vector denoting the 

influence of the earthquake excitation �̈�𝑔 with terms equal 

to -1.  

The state space form of Eq. (1) can be expressed as 

follows 

�̇�(𝑡) = 𝐴𝑧(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2�̈�𝑔(𝑡), (2) 

where 

𝐴 = [
𝑜 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
],     𝐵1 = [

𝑜
𝑀−1𝐵

] 

𝐵2 = [
𝑜

𝑀−1𝑅
],                          𝑧(𝑡) = {

𝑥(𝑡)
�̇�(𝑡)

}, 

and A is a (2𝑛 × 2𝑛) plant matrix of the system, 𝐵1 is a 

(2𝑛 × 𝑟)  control location matrix, 𝐵2  is an excitation 

influence vector of size (2𝑛 × 1) , 𝑧(𝑡)  is a (2𝑛 × 1) 
state vector related to the floor displacements and velocities, 

and 𝑢(𝑡) refers to the control law making Eq. (2) solvable. 

In this paper, an active tendon configuration is proposed 

to apply the control force on the structure. Since such 

system is based on diagonal elements, which already exist 

in many structures after stiffening and strengthening, it 

becomes an attractive practical solution. Fig. 1 shows the 

control mechanism. 

As it is shown in Fig. 1, tendons are installed between 

two stories. The hydraulic actuator is comprised of an 

actuator, a servo valve, and a fluid pumping system attached 

to the lower floor. One end of the tendon is connected to the 

upper floor and the other end to the piston. The relative 

movement due to inter-story drift caused by structural 

vibration alters the tension state of the tendons, which 

generates a dynamic force to mitigate the response.  

 

 

3. Sliding mode control 
 

The basic strategy of the SMC is based on enforcing the 

system to move towards a steady state regime by defining a 

suitable control force. The steady state is known as the 

sliding switching surface. In the SMC, the structure of the 

controller is purposely changed by a switching feedback 

law to drive the trajectories of the controlled system onto 

the specified sliding surface, known as reaching phase, and 

enforce them to remain on the surface sliding towards the 

equilibrium point. Such condition is known as sliding mode 

(Slotine and Li 1991).  

The sliding surface is herein set as a linear function of 

system states 

𝜎(𝑧) = 𝑆𝑧, (3) 

where S is the sliding surface coefficient matrix (𝑟 × 2𝑛). 
A suitable choice of S together with constraint conditions in 

Eq. (4) leads the trajectories to reach the sliding surface and 

slide over it 

�̇�(𝑧) = 0      and      𝜎(𝑧) = 0. (4) 

The linear quadratic regulator (LQR) method is used to 

determine S and design the sliding surface (Yang et al. 

1995), where the integral of the quadratic function of the 

state vector is minimised to derive the sliding surface 

coefficient matrix. 

𝐽 = ∫ 𝑍(𝑡)𝑇𝑄𝑍(𝑡)𝑑𝑡
∞

0

. (5) 

In Eq. (5), Q denotes a (2𝑛 × 2𝑛) positive definite 

diagonal weighting matrix. Using transformation matrix, D, 

the state equation and the sliding surface can be written in 

terms of a transformed state vector Y, 

𝑌 = 𝐷𝑍,                                     𝑍 = 𝐷−1𝑌 

𝐷 = [
𝐼2𝑛−𝑟 −𝐵1𝐵2

−1

0 𝐼𝑟
] ,       𝐵1 = [

𝐵11
𝐵12
], 

(6) 

where 𝐼2𝑛−𝑟  and 𝐼𝑟  are (2𝑛 − 𝑟) × (2𝑛 − 𝑟)  and 

(𝑟 × 𝑟)  identity matrices, respectively. 𝐵11 = (2𝑛 −
𝑟) × 𝑟  and 𝐵12 = 𝑟 × 𝑟  sub-matrices are obtained from 

the partition of 𝐵1 in Eq. (2). Hence, 

x(t) 

Actuator 

Active 

m,c,k 

�̈�𝒈 
u(t) 

Response sensors 

Control Computer 
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�̇� = �̄�𝑌 + �̄�𝑈,    𝜎 = �̄�𝑌 = 0, (7) 

in which 

�̄� = 𝐷𝐴𝐷−1,    �̄� = 𝑆𝐷−1,    �̄� = [
0
𝐵12
]. (8) 

The performance index J defined earlier then becomes 

𝐽 = ∫ [𝑌1′, 𝑌2′]′𝑇 [
𝑌1
𝑌2
] 𝑑𝑡

∞

0

, (9) 

where 𝑌1  and 𝑌2  are (2𝑛 − 𝑟)  and 𝑟  vectors, 

respectively, and 

𝑇 = [(𝐷−1)′𝑄𝐷−1],     𝑇 = [
𝑇11 𝑇12
𝑇21 𝑇22

]. (10) 

𝑇11  and 𝑇22  are (2𝑛 − 𝑟) × (2𝑛 − 𝑟)  and (𝑟 × 𝑟) 
matrices, respectively, and by minimizing Eq. (9), S can be 

obtained from Eq. (8) as 𝑆 = �̄�𝐷.  

To calculate the control law, Eq. (2) is replaced into 

�̇�(𝑧) = 0 as follows 

�̇�(𝑧) = 𝑆�̇� = 𝑆(𝐴𝑧 + 𝐵1𝑢 + 𝐵2�̈�𝑔) = 0, (11) 

𝑢𝑒𝑞 = −(𝑆𝐵1)
−1(𝑆𝐴𝑧 + 𝑆𝐵2�̈�𝑔). (12) 

Since the earthquake excitation is not known 

beforehand, the control law in Eq. (12) cannot be directly 

used, and the disturbance (𝐵2�̈�𝑔) has to be neglected. To 

account for the earthquake excitation and compensate the 

uncertainties in the disturbances, a discontinuous control 

law can be obtained via the known system parameters and 

under appropriate conditions (Slotine and Li 1991). To 

guarantee the existence and reachability of the sliding 

mode, the control law is implemented with the following 

inequality 

𝜎𝑇(𝑧)�̇�(𝑧) < −𝜂|𝜎|, (13) 

where 𝜂 is a positive constant value. Substituting Eq. (2) 

into Eq. (13), we get 

𝜎𝑇(𝑧)𝑆(𝐴𝑧 + 𝐵1𝑢 + 𝐵2�̈�𝑔) < −𝜂|𝜎|. (14) 

Considering 𝑢(𝑡) as 

𝑢(𝑡) = −(𝑆𝐵1)
−1𝑆𝐴𝑧 − (𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎𝑇𝑆𝐵1)

𝑇  
= 𝑢𝑒𝑞 − (𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎

𝑇𝑆𝐵1)
𝑇 , 

(15) 

where 𝛾 is the bound on excitation vector, and ‘sgn’ stands 

for the sign function, Eq. (14) can be written as 

𝜎𝑇�̇� = 𝜎𝑇(𝑆𝐴𝑧 − 𝑆𝐵1[(𝑆𝐵1)
−1𝑆𝐴𝑧 

         −(𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎𝑇𝑆𝐵1)
𝑇] + 𝑆𝐵2�̈�𝑔) 

          = 𝜎𝑇(−𝑆𝐵1(𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎
𝑇𝑆𝐵1)

𝑇 + 𝑆𝐵2�̈�𝑔) 

         = −𝜂|𝜎𝑇𝑆𝐵1| − 𝛾|𝜎
𝑇𝑆𝐵1| + 𝜎

𝑇𝑆𝐵2�̈�𝑔 

         = −𝜂|𝜎𝑇𝑆𝐵1| − 𝛾|𝜎
𝑇𝑆𝐵1|(1 −

𝜎𝑇𝑆𝐵2�̈�𝑔

𝛾|𝜎𝑇𝑆𝐵1|
) 

         < −𝜂|𝜎𝑇𝑆𝐵1|. 

(16) 

Therefore, considering 𝑢(𝑡)  given by Eq. (15) and 

satisfying Eq. (13) guarantees the existence and reachability 

of a sliding mode. For 𝐾 = 𝜂 + 𝛾, the control law can 

finally be rewritten as 

 

Fig. 2 Block diagram of SMC 

 

 

Fig. 3 Sliding surface with chattering and boundary layer 

 

 

𝑢 = 𝑢𝑒𝑞 − 𝐾 𝑠𝑔𝑛( 𝜎
𝑇𝑆𝐵1)

𝑇 . (17) 

Fig. 2 illustrates the block diagram of the SMC. 

However, the direct implementation of Eq. (15) causes the 

chattering phenomenon due to the discontinuous part of the 

equation ( 𝑠𝑔𝑛( 𝜎𝑆𝐵1) ) which changes the sign of the 

control force within short time periods generating high-

frequency switches.  

Chattering can be reduced by introducing a continuous 

approximation of the discontinuous sliding mode controller 

within a thin boundary layer neighbouring the sliding 

surface to smooth switches. One possible mathematical 

form of such solution is based on the replacement of the 

sign function with a term derived from the fuzzy inference 

mechanism as discussed in the next section. 

 

 

4. Chattering-free sliding mode control 
 

Among various techniques available to reduce 

chattering, the boundary layer method can approximate the 

sign function in Eq. (15) by using a saturation function. 

Accordingly, a thin boundary layer is defined in the 

neighbourhood of the sliding surface where chattering 

occurs. Fig. 3 indicates the schematic view of the chattering 

phenomenon and the boundary layer neighbouring the 

sliding surface. 

The saturation function is written as follows 

Controller 

−(𝑆𝐵1)
−1𝑆𝐴 

 Earthquake  

Excitation 

Building 

Structure 

𝜂 𝑆 

+ 

− 

𝑍 

�̇� 

𝑥   
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System   Defuzzification   

  

Knowledge Base 

 

Fig. 4 Linear approximation of the sign function 

 

 

Fig. 5 Structure of a fuzzy logic system 
 

 

𝑠𝑎𝑡(𝜎/𝜀) = {
𝜎/𝜀 if|𝜎/𝜀| ≤ 1

𝑠𝑔𝑛( 𝜎/𝜀) otherwise
 (18) 

where 𝜀 is a positive constant and 2𝜀 is the thickness of 

the boundary layer. This method smooths the control signal 

by estimating and replacing the sign function with the 

saturation function illustrated in Fig. 4. 

Since the method creates the loss of accuracy in the 

control signal, a different approach is proposed in this paper 

based on a fuzzy inference system to estimate the 

discontinuous part of Eq. (15) and smooth the control 

signal. Fig. 5 shows a typical fuzzy logic system. 

The step of fuzzification converts crisp inputs into fuzzy 

sets and allocates a degree of membership to every fuzzy 

input value between 0 and 1. Each fuzzy set can make use 

of different types of membership functions such as 

triangular, trapezoidal, and Gaussian. The knowledge base 

unit consists of IF-THEN rules, each comprising antecedent 

and consequent propositions. A fuzzy rule based on SMC 

can be written as 

𝐼𝐹 𝜎 𝑖𝑠 𝐴1 𝑎𝑛𝑑 �̇� 𝑖𝑠 𝐴2⏟            
(1)

 𝑇𝐻𝐸𝑁 𝑢𝑓 𝑖𝑠 𝐵⏟    
(2)

, 

where 𝜎 is a switching variable, �̇� stands for its derivative, 

𝑢𝑓 is the fuzzy output, and 𝐴𝑖 and 𝐵 are the fuzzy input 

and output sets, and (1) and (2) represent the statements. 

The inference system performs fuzzy operations to map the 

fuzzy inputs to outputs. The defuzzification step maps the 

fuzzy output in a crisp value for the control law. 

To apply the SMC strategy, the fuzzy rules can be 

obtained based on the trajectories in the phase plane. 

Specifically, the control force is calculated to bring back the 

trajectory to a proper state leading to the desired control 

action. The fuzzy rules can be explained with respect to the 

various positions and directions of trajectories and without 

any trial and error as in conventional rule bases.  

Table 1 Knowledge base of fuzzy SMC 

�̇�/𝜎 PL PM PS Z NS NM NL 

PL NL NL NM NS NS Z Z 

PM NL NM NM NS Z Z PS 

PS NM NM NS NS Z PS PS 

Z NM NS NS Z PS PS PM 

NS NS NS Z PS PS PM PM 

NM NS Z Z PS PM PM PL 

NL Z Z PS PS PM PL PL 

 

 

Table 1 shows the fuzzy rule basis, where P, N, L, M, S, 

Z means Positive, Negative, Large, Medium, Small, Zero, 

respectively. Symbols represent linguistic values of 𝜎, �̇�, 

and 𝑢𝑓. For example, for a position in the trajectory far 

from the sliding surface and in the positive region (𝜎 = 𝑃𝐿) 

while moving from it (�̇� = 𝑃𝐿), a considerable control force 

is needed to restore the trajectory towards the sliding 

surface (𝑢𝑓 = 𝑁𝐿). 

The proper choice of membership functions can lead to 

the most suitable approximation of sign functions. In this 

study, Gaussian and singleton type membership functions 

are used for input and output fuzzy members, respectively. 

Moreover, by using singleton fuzzification, product 

inference, and center-average defuzzification, the fuzzy 

output can also be obtained as (Hsiao et al. 2005) 

𝑢𝑓 =
∑ 𝑤𝑗𝑐𝑗
𝑚
𝑗=1

∑ 𝑤𝑗
𝑚
𝑗=1

= 𝑣𝑇𝜓, (19) 

where 

𝑤𝑗 =∏𝜇
𝐹𝑖
𝑗(𝑥𝑖)

𝑛

𝑖=1

, 𝑣 = [𝑐1, . . . , 𝑐𝑚]
𝑇 , (20) 

𝜓 =
[𝑤1 . . . .  𝑤𝑚]

𝑇

∑ 𝑤𝑗
𝑚
𝑗=1

. (21) 

In Eqs. (19)-(21), m and n are the total number of fuzzy 

rules and input variables, respectively, 𝑐𝑗  represents the 

center of the membership function in the consequent part of 

the j-th rule, 𝜇
𝐹𝑖
𝑗(𝑥𝑖) denotes the membership value of the 

linguistic variable 𝑥𝑖 to the fuzzy set 𝐹𝑖 in the j-th rule, 

𝑤𝑗  represents the firing strength of the j-th rule, and 𝜓 is 

the firing strength vector.  

Based on the fuzzy control rules for 𝜎 ≠ 0, the fuzzy 

control output (𝑢𝑓) enforces the system trajectories to return 

to the sliding surface, which is in fact identical to the SMC 

inequality law, i.e., 𝜎(𝑧)�̇�(𝑧) < 0. Using the fuzzy model 

and replacing the sign function with 𝑢𝑓 then fulfills the 

reachability and existence of a sliding mode.  

The new control method can handle different control 

actions based on the different states of 𝜎 and �̇�, which 

implies a nonlinear mapping from 𝜎 and �̇� to 𝑢𝑓 . Hence, 

the chattering-free SMC (CFSMC) law can be written as 

shown in Eq. (22), and the nonlinear approximation of the 

sign function within the boundary layer  in the  

𝑠𝑎𝑡(𝜎/𝜀) 

𝜎 
+𝜀 

−𝜀 

𝜎, �̇� 𝒖𝒇 
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Fig. 6 Fuzzy approximation of the sign function 

 

Table 2 Mass, stiffness, and damping values of the building 

Story Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 345.6 3.4×105 490 

2 345.6 3.2×105 467 

3 345.6 2.85×105 410 

4 345.6 2.69×105 386 

5 345.6 2.43×105 349 

6 345.6 2.07×105 298 

7 345.6 1.69×105 243 

8 345.6 1.37×105 196 

 

Table 3 Properties of selected ground motions 

Earthquake El Centro Northridge 

Station 
Imperial Valley,  

Station No.117 

Alhambra, CA,  

Fermont School 

Magnitude 6.9 6.6 

Depth (km) 8.8 18 

PGA (cm/s2) 341.69 99.08 

PGV (cm/s) 33.45 10.89 

PGD (cm) 10.86 2.47 

 

 

neighbourhood of the sliding surface takes the shape 

illustrated in Fig. 6. 

𝑢𝐶𝐹𝑆𝑀𝐶 = 𝑢𝑒𝑞 − (𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎
𝑇𝑆𝐵1)

𝑇 

= 𝑢𝑒𝑞 − 𝐾(𝑢𝑓). 
(22) 

 

   

5. Numerical study 
 

A numerical example based on an eight-story shear 

building equipped with active tendons in the first and eighth 

stories is used in this section to illustrate the application of 

the CFSMC and its effectiveness in avoiding chattering 

whilst reducing the dynamic responses. The method is also 

compared against conventional SMC.  

The dynamic properties of the structure selected for 

analysis are indicated in Table 2 (Yang et al. 1995). The 

earthquake records of El Centro (1940) and Northridge 

(1994) are used as dynamic excitation, as detailed in Table  

 

 

Fig. 7 Time histories of the selected ground motions 

 

 

Fig. 8 Structural model of the active tendon system 

 

 

3. The acceleration records of the two earthquakes are also 

depicted in Fig. 7. 

Fig. 8 illustrates the configuration of the building, where 

due to the significant values of the shear force and 

displacement in the first and eighth stories, respectively 

those floors are equipped with the active tendon systems. 

The standard response time of the actuator is considered 

between 6-16 milliseconds, in which case the active tendon 

system can be assumed to produce the desired control force 

instantly. 

With the SMC, the sliding surface is determined with 

the LQR method using a diagonal weighting matrix Q 

where 𝑄𝑖𝑖 = 10
6 for i=1, 2, ..., 8, and 𝑄𝑖𝑖 = 1 for i=9, 10, 

…, 16. For the configuration of the active tendon system 

shown in Fig. 8, i.e., with a 45° inclination angle, the 

sliding surface equation for the controller in the first floor 

becomes 

𝜎1 = 709.206(𝑧1) − 278.298(𝑧2) − 498.556(𝑧3) 
     +31.819(𝑧4) − 20.578(𝑧5) − 17.553(𝑧6) 
     −9.142(𝑧7) − 4.444(𝑧8) + 90.214(𝑧9) 

     +89.211(𝑧10) + 52.61(𝑧11) + 37.889(𝑧12) 
     +28.719(𝑧13) + 19.434(𝑧14) + 12.165(𝑧15) 

     +6.082(𝑧16). 
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Fig. 9 Membership functions: (a) input variables (𝜎, �̇�), (b) 

output variable (𝑢𝑓) 

 

 

 

Fig. 10 Displacement responses during El Centro 

earthquake 

 

 

For the controller installed on the eighth floor, the 

corresponding sliding surface equation is given by 

𝜎8 = 4.444(𝑧1) + 4.286(𝑧2) + 22.001(𝑧3) 
     +46.535(𝑧4) + 29.971(𝑧5) − 4.206(𝑧6) 
     −160.228(𝑧7) + 709.206(𝑧8) + 6.745(𝑧9) 
     +6.745(𝑧10) + 7.132(𝑧11) + 8.497(𝑧12) 
     +10.567(𝑧13) + 10.629(𝑧14) + 29.409(𝑧15) 

     +15.498(𝑧16). 

The FLC model is also designed using two input 

variables (𝜎 and �̇�) and one output variable (𝑢𝑓) each 

with seven membership functions. The functions chosen for 

both input and output variables are Gaussian-shaped and 

singleton functions, respectively, as shown in Fig 9. 

Therefore, the fuzzy model is constructed with 49 rules.  

 

 

Fig. 11 Acceleration responses during El Centro earthquake 

 

 

 

Fig. 12 Displacement responses during Northridge 

earthquake 

 

 

The values of 𝑣  are obtained according to the fuzzy 

control rules set in Table 1. Finally, it should be mentioned 

that K is considered as 200 for both SMC and CFSMC 

laws.  

Fig. 10 shows the uncontrolled and controlled 

displacements with the SMC and CFSMC for the first and 

the eighth stories during the El Centro excitation. From Fig. 

10 it can be concluded that both methods can decrease the 

displacements considerably.  

The acceleration responses are depicted in Fig. 11, 

where the high-frequency switches obtained with the SMC 

method are evident. During the Northridge earthquake, both 

control methods demonstrated a good performance (Fig. 

12). However, the high-frequency switches prevent the 

SMC to reduce the acceleration responses satisfactorily 

(Fig. 13).  

To better illustrate the chattering phenomenon in the  
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Fig. 13 Acceleration responses during Northridge 

earthquake 
 

 

 

Fig. 14 Control force with SMC during El Centro 

earthquake 
 

 

conventional SMC, the time histories for the control forces 

are represented in Figs. 14 and 15 for both floors. 

Considerable switches are present in the time histories of 

the control forces with the SMC, which can lead to reduced 

control accuracy and high wear of moving mechanical 

parts, thus preventing the actuators from generating the 

desired control force in a non-simulated situation.  

Fig. 16 shows the forces for first and eighth stories 

during the El Centro excitation with the CFSMC, whereas 

Fig. 17 shows the same output for the Northridge excitation. 

Comparison with Figs. 14 and 15 allows concluding that 

chattering is effectively eliminated with the CFSMC due to 

the replacement of the sign function with the fuzzy output 

without losing accuracy. The maximum response quantities 

registered during both earthquakes-see Tables 4 and 5-are 

also significantly smaller with the CFSMC.   

 

 

Fig. 15 Control force with SMC during Northridge 

earthquake 

 

 

 

Fig. 16 Control force with CFSMC during El Centro 

earthquake 

 

 

The performance of the control system given by the root 

mean square (RMS) of uncontrolled and controlled 

responses for both SMC and CFSMC methods is 

represented in Figs. 18 and 19. Even though the 

displacement responses in both approaches are identical, the 

chattering negatively impacts the RMS values obtained with 

the SMC, which is evident in Fig. 19. 

Finally, an indication about the energy consumption of 

the control method can be derived from the RMS for the 

control forces shown in Fig. 20. The CFSMC requires 

smaller forces to achieve suitable dynamic performance in 

comparison to the SMC. The proposed method not only 

reduces the dynamic responses with less amount of energy, 

but also removes chattering in the actuator, which could 

cause a control system malfunction in practical applications. 
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Fig. 17 Control force with CFSMC during Northridge 

earthquake 

 

Table 4 Maximum response quantities during El Centro 

earthquake 

 Story No control SMC CFSMC 

𝑥 (𝑐𝑚) 
1 4.63 2.41 2.41 

8 27.16 7.48 7.48 

�̈� (𝑐𝑚/𝑠2) 
1 496 568 459 

8 1,230 792 643 

𝑈 (𝑁) 
1 - 10,790 10,587 

8 - 2,141 1,940 

 

Table 5 Maximum response quantities during Northridge 

earthquake 

 Story No control SMC CFSMC 

𝑥 (𝑐𝑚) 
1 1.81 0.93 0.93 

8 11.56 3.1 3.1 

�̈� (𝑐𝑚/𝑠2) 
1 152 191 133 

8 375 385 241 

𝑈 (𝑁) 
1 - 3,660 3,492 

8 - 839 641 

 

 

6. Conclusions 
 

A chattering-free sliding mode control (CFSMC) 

methodology is presented in this paper to improve the 

performance of the conventional SMC. The proposed 

approach takes advantage of a fuzzy model for designing a 

chattering-free SMC effectively avoiding excessive 

switches. Moreover, using the concept of the sliding mode 

for constructing the fuzzy rules basis, a trial-and-error 

process is avoided. To validate the proposed method, the 

CFSMC was employed to reduce the seismic responses of 

an eight-story building equipped with an active tendon 

system. Results demonstrate the performance of the 

proposed method against the SMC to eliminate chattering  

 

 

Fig. 18 RMS of displacements 

 

 

 

Fig. 19 RMS of accelerations 

 

 

 

Fig. 20 RMS of control forces 
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with high accuracy, whilst reducing the dynamic responses. 

It was demonstrated that the CFSMC is an effective strategy 

for enhancing the performance of the conventional method 

in seismic isolation of structures.  

While this study focussed on the dynamic response of 

structures due to seismic excitation, some important issues 

will require further studies to fully assess the proposed 

control strategy, such as stability analysis, nonlinearity, and 

uncertainty in the structural properties. The proposed 

method could also be extended to time-delay problems and 

structures with material deterioration under strong 

excitations.  
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