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1. Introduction  
 

The design of a long-span or lightweight floor is often 

governed by the vibration serviceability requirement rather 

than by the strength one (Chen et al. 2013, Wang and Chen 

2017). This presents a more involved structural assessment. 

As part of the entire task, the free vibration analysis for a 

building floor is an essential step for studying the human-

induced vibration problem. Such analysis typically requires 

the determination of natural frequencies and mode shapes. 

The rectangular floor is usually idealized as an anisotropic 

plate to investigate the human-induced vibration from 

walking, running, or other rhythmic movement. 

Several methods and techniques have been developed 

and used to determine the natural frequencies and natural 

mode shapes of a multi-span continuous anisotropic plate, 

particularly the analytical ones. For example, Veletsos and 

Newmark (1956) used the Holzer method for torsional 

vibration of shafts to determine the natural frequencies of a 

simply-supported plate. Ungar (1960) developed a simple 

semigraphical method for calculating the natural 

frequencies of a two-plate system. Lin et al. (1964) and 

Mercer and Seavey (1967) proposed a transfer matrix 

method for analyzing a continuous finite plate. Dickinson 

and Warburton (1967) utilized the edge-effect method to 

study single- and multi-plate systems. Elishakoff and 

Sternberg (1979) applied the modified Bolotin method to 

determine the eigenfrequencies of a continuous rectangular  
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isotropic plate on rigid supports. More recently, the 

receptance method developed by Bishop and Johnson was 

exploited by Azimit et al. (1984) to study the free vibration 

of continuous rectangular plates. Gorman and Garibaldi 

(2006) utilized the superposition method to obtain the 

frequencies and mode shapes of free vibration for three-

span thin plates. Zhou (1994), Zhu and Law (2002), and 

Marchesiello et al. (1999) employed the eigenfunctions of a 

continuous multi-span beam in one direction and those of a 

single-span beam in the other direction in the Rayleigh-Ritz 

method to determine the eigenfrequencies of a thin 

orthotropic rectangular plate with uniform thickness. Xiang 

et al. (2002) studied the vibration behaviour of a ring 

supported cylindrically, based on the state-space technique 

and domain decomposition approach. Civalek et al. (2006, 

2010) developed a discrete singular convolution algorithm 

to determine the frequencies for the free vibration of 

laminated conical shells and to study the buckling of 

rectangular Kirchhoff plates subjected to compressive loads 

on two-opposite edges. Lv et al. (2006) used the state-space 

approach in association with joint coupling matrices to 

analyze the free vibration of a rectangular Kirchhoff plate 

with two opposite simply-supported edges and internal line 

supports. Gürses (2009) used the discrete singular 

convolution method to investigate the free vibration of 

laminated skew plates. Rezaiguia and Laefer (2009) 

proposed a semi-analytical approach based on the modal 

method to determine the natural frequencies and mode 

shapes of a three-span continuous orthotropic rectangular 

plate with intermediate line rigid supports. Baltacıoglu et al. 

(2010) proposed a discrete singular convolution method to 

analyze the nonlinear static response of laminated 

composite plates. Talebitooti (2013) used the layerwise 

differential quadrature method to study the free vibration of 
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thick, rotating laminated composite conical shells with 

different boundary conditions. Guebailia et al. (2013) 

proposed a local estimation method to calculate the 

fundamental frequencies and mode shapes of a three-span 

plate. Satouri et al. (2015) used the two-dimensional 

differential quadrature method (2D-DQM) to analyze the 

natural frequency of two-dimensional functionally graded 

material (2D-FGM) sectorial plate with variable thickness 

resting on elastic foundation. 

This paper presents a new analytical approach to 

determine the natural frequencies and mode shapes of a 

multi-span continuous anisotropic plate with intermediate 

line rigid supports. The proposed approach is based on the 

combined modal and perturbation method, which considers 

the intermodal coupling effect. The implementation of this 

method is simple and gives accurate results in comparison 

with the published results. 

 

 

2. Theoretical analysis on the vibration of 
anisotropic rectangular plates 
 

2.1 Modeling assumptions 
 

The following assumptions constitute the basis for 

solving the vibration problem of an anisotropic rectangular 

plate mathematically (Guebailia et al. 2013, Marchesiello et 

al. 1999, Zhu and Law 2002): 

(1) Linear elastic behavior and negligible secondary 

effects (i.e., shearing and rotational inertia effects), 

(2) Rigid intermediate supports and orthogonal free 

edges, and 

(3) Thin plate. 

Based on the above assumptions, the governing 

differential equation for a multi-span continuous anisotropic 

plate (a simplified model for long-span floors) of length L, 

width b, and uniform thickness h (Fig. 1) can be expressed 

by (Aoki and Maysenholder 2017, Zhou et al. 2017) 

4 4 4 2

0

1 3 24 2 2 4 2
2 0

qW W W W W
D D D c

t gx x y y t

    
+ + + + =

    
 (1) 

where D1 and D2 are the plate stiffnesses in the x and y 

directions, respectively, D3 is the sum of rigidities, g is the 

gravity acceleration, q0 is the weight per unit area, c is the 

viscous damping coefficient, W(x, y, t) is the deflection 

function, and t is the time variable. 

In this study, a multi-span continuous plate with simply-

supported condition on three edges (x = 0, x = L, y = 0, Fig. 

1) and clamped condition on the remaining edge (y = b, Fig. 

1) was considered. 

 

2.2 Natural frequencies 
 

Assuming the damping is negligible, the natural 

frequencies and mode shapes of the anisotropic rectangular 

plate can be determined by 

4 4 4 2
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1 3 24 2 2 4 2
2 0

qW W W W
D D D

gx x y y t

   
+ + + =

    
 (2) 

 

 

Fig. 1 Multi-span continuous anisotropic plate 

 

 

When the plate vibrates in a natural mode, the vertical 

displacement W(x, y, t) may be expressed as (Veletsos and 

Newmark 1956) 

1 1

( ,  ,  ) ( ,  ) mni t

mn mn

m n

W x y t u x y e


 
−

= =

=  (3) 

where ωmn is the circular frequency, ( ,  )mn x y  is the mode 

shape, umn is the modal amplitude, and i = 1− . 

Substituting Eq. (3) into Eq. (2) results in 

4 4 4

2 0

1 3 24 2 2 4
2 0mn mn mn

mn mn

q
D D D

gx x y y

  
 

  
+ + − =

   
 (4) 

The Rayleigh–Ritz method (Marchesiello et al. 1999, 

Jhung and Jeong 2015, Junior et al. 2017, Pradhan and 

Chakraverty 2015, Zhou 1994, Zhu and Law 2002) has 

been adopted by researchers to determine the natural 

frequencies and the mode shapes of an anisotropic 

rectangular plate, in which ( ,  )mn x y  is decomposed as the 

product of two functions Xm(x) and Yn(y) satisfying the 

boundary conditions in the x and y directions, respectively. 

The former is the eigenfunction of a multi-span continuous 

beam and the latter is the counterpart of a single-span beam. 

However, this decomposition neglects the intermodal 

coupling, thus resulting in slower convergence and higher 

computation cost (Guebailia et al. 2013, Rezaiguia and 

Laefer 2009). 

To account for the intermodal coupling, ( ,  )mn x y  can 

be treated as the product of the mode shape function for a 

multi-span continuous beam in x direction, Xm(x), and the 

mode shape function Ymn(y) satisfying the boundary 

conditions of a plate in y direction, Ymn(y). Namely, 

( ,  ) ( ) ( )mn m mnx y X x Y y =  (5) 

Xm(x) can be expressed by (See Appendix A for details) 
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(6) 

The differentials in Eq. (4) must be satisfied for all x and 

y values. However, the solution for each value of x and y is 

practically impossible to be obtained. For this reason, it is 

suggested to substitute Eq. (5) into Eq. (3), multiply by 

Xm(x), and then integrate the equation over the plate length 

along x direction. As such, one obtains 
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4 2 4 2
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where 

2

2

20 0
/
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m
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d X
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 =    (8) 

The boundary conditions in y direction are that the 

deflection and bending moment are zero, i.e., 

( ,  0) ( ,  ) 0W x W x b= =  (9) 

2 2

2 2 2

0

( ) 0,    0
y by

W W W
D

yy x


==

  
− + = =

 
 (10) 

Using Eqs. (3), (5), and (8), Eqs. (9) and (10) become 

(0) ( ) 0mn mnY Y b= =  (11) 
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The solution for Eq. (7) can be expressed by 

( ) sin cos

sinh cosh
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2
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D
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where Emn, Fmn, and Gmn are the constant coefficients 

determined by the boundary conditions (Eqs. (11) and (12), 

βmn and γmn are the eigenvalues for the nth mode shape in 

the y direction. 

Substituting Eq. (13) into the boundary conditions (Eqs. 

(11) and (12)) results in 
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(15) 

For a non-trivial solution of Eq. (15), the following 

equation must be satisfied 

cosh sin cos sinh 0mn mn mn mn mn mnb b b b     − =  (16) 

where the parameters βmn and γmn can be solved using the 

perturbation method (See Section 2.3) and the circular 

frequency ωmn can be obtained from the following 

expression 

4 2 2

1 2
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( )m mn mn
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q
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

+
=  (17) 

The expressions for the constant coefficients Emn, Fmn, 

and Gmn are 

0,    sin cschmn mn mn mn mnE G F b b = = = −  (18) 

Lastly, the mode shapes of the anisotropic rectangular 

thin plate are represented by 
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2.3 Perturbation solution for coefficients βmn and  mn 
 

To solve Eqs. (14) and (16), the perturbation method 

(Karahan and Pakdemirli 2017, Poloei et al. 2017) was 

adopted in this study along with the condition, D2 > D3. 

Letting ε = D3/D2, Eq. (14) becomes 

2 2 2mn mn m  − = −  (20) 

Since coefficient ε < 1 generally, it was chosen as the 

perturbation parameter. Thus, parameters βmn and γmn can be 

expanded with respect to ε as follows 
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First, substituting Eqs. (21) and (22) into Eqs. (16) and 

(20) and equating the terms of order 0  gives the 

following equations (See Appendix B for details) 
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which give the first approximate solution as 
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Next, equating the terms of order   yields the 
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which give the second approximations as 
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Table 1 The geometry of a multi-span 

N-span L1 (m) L2 (m) L3 (m) L4 (m) 

1 24 --- --- --- 

2 24 24 --- --- 

3 24 30 24 --- 

4 24 30 32 24 

(Note: Lj is the length of the jth span plate) 

 

 

Likewise, for the third approximation, equating the 

terms of order 2  yields the following equations 

3 3

2 2

(4 1)

3 2 3 22

4 4

2 2

[(4 1) 4](4 1) ( )

32(4 1) {32[(4 1) 4]

(4 1) ( )} 0

mn mn

n

m m

mn mn

n n

n b e n b

n



   

   

  

+

+ − + −

+ + + + −

− + − =

 (30) 

2 2 2 3

2 2

(4 1)

3 3 2 5 5 4 42
2 2 2 2

3 3 3 2 3 2 2 2

2 2 2

3

(4 1) [(4 1) 4] {2 [(4 1) 2] } 8 [32 16(4 1)

(4 1) ] [(4 1) ( 2 ) 2(4 1) (7 5 )

48(4 1) 256 320(4 1) 32(4 1) (

4

mn mn

n

m mn mn mn mn

mn m m mn mn

m

n n n b n

n e n n

n b n b n

b



     

       

       



+

+ + − − + − − − +

+ + + + + − + +

+ + + − + − + −

− 2 (4 1) 5 5 4 4

2 2 2 2

3 2 3 2 2 2 3 2 3 3

2 2

3(4 1)

3 2 4 4 32
2 2

2

)] [(4 1) (2 ) 2(4 1) (7 )

256 128(4 1) 128(4 1) 8(4 1) (2 2

3 )] {(4 1) {[(4 1) 2] 2 } 64 [(4 1)

4] } 0

n

mn mn mn mn

m m m mn mn

n

m mn mn

m

e n n

b n b n b n

b e n n b n





     

       

     



+

+

− + + − + −

+ − + + + + + −

− + + + − + − +

− =

 

(31) 

which give the following solutions 
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(33) 

The computation may be ended at this point depending 

on the required precision. 

 

 

3. Modal Parameters analysis 
 

3.1 Validation of coefficients βmn and mn 
 

In order to verify the perturbation solution of 

coefficients βmn and γmn, an example analysis is presented 

here. The geometry of a multi-span continuities anisotropic 

rectangular prestressed concrete plate (Cao et al. 2018) is 

indicated in Table 1, where the coefficients E (Young’s 

modulus), D1, D2, D3, q0, b, and μp (Poisson’s ratio) are 

respectively 3.25×1010 Pa, 4.08×108 N·m, 4.44×108 N·m, 

4.88×106 N∙m, 7165.13 N/m2, 24 m, and 0.2. The βmn and 

γmn coefficients calculated by the perturbation and 

numerical methods are listed in Tables 2 and 3,  

Table 2 Computed βmn coefficients 

N-span   

m 

1 2 3 4 5 

1 

βm1 

Perturbation 

method 
0.163479 0.163052 0.162370 0.161479 0.160442 

Numerical 

method 
0.163463 0.163037 0.162355 0.161454 0.160383 

Error (×10-2%) 0.98 0.92 0.92 1.55 3.68 

βm2 

Perturbation 

method 
0.294479 0.294345 0.294124 0.293822 0.293446 

Numerical 

method 
0.294479 0.294345 0.294124 0.293822 0.293444 

Error (×10-2%) 0.00 0.00 0.00 0.00 0.07 

βm3 

Perturbation 

method 
0.425402 0.425338 0.425231 0.425082 0.424895 

Numerical 

method 
0.425402 0.425338 0.425231 0.425082 0.424894 

Error (×10-2%) 0.00 0.00 0.00 0.00 0.02 

2 

βm1 

Perturbation 

method 
0.163479 0.163455 0.163052 0.163003 0.162370 

Numerical 

method 
0.163463 0.163439 0.163037 0.162989 0.162355 

Error (×10-2%) 0.98 0.98 0.92 0.86 0.92 

βm2 

Perturbation 

method 
0.294479 0.294472 0.294345 0.294329 0.294124 

Numerical 

method 
0.294479 0.294472 0.294345 0.294329 0.294124 

Error (%) 0.00 0.00 0.00 0.00 0.00 

βm3 

Perturbation 

method 
0.425402 0.425399 0.425338 0.425330 0.425231 

Numerical 

method 
0.425402 0.425399 0.425338 0.425330 0.425231 

Error (%) 0.00 0.00 0.00 0.00 0.00 

3 

βm1 

Perturbation 

method 
0.163513 0.163466 0.163473 0.163215 0.163026 

Numerical 

method 
0.163497 0.163450 0.163458 0.16320 0.163011 

Error (×10-2%) 0.98 0.98 0.92 0.92 0.92 

βm2 

Perturbation 

method 
0.294490 0.294475 0.294477 0.294396 0.294336 

Numerical 

method 
0.294490 0.294475 0.294477 0.294396 0.294336 

Error (%) 0.00 0.00 0.00 0.00 0.00 

βm3 

Perturbation 

method 
0.425407 0.425400 0.425401 0.425363 0.425334 

Numerical 

method 
0.425407 0.425400 0.425401 0.425363 0.425334 

Error (%) 0.00 0.00 0.00 0.00 0.00 

4 

βm1 

Perturbation 

method 
0.163530 0.163505 0.163467 0.163480 0.163273 

Numerical 

method 
0.163514 0.163489 0.163451 0.163464 0.163257 

Error (×10-2%) 0.98 0.98 0.98 0.98 0.98 

βm2 

Perturbation 

method 
0.294495 0.294487 0.294475 0.294479 0.294415 

Numerical 

method 
0.294495 0.294487 0.294475 0.294479 0.294414 

Error (×10-2%) 0.00 0.00 0.00 0.00 0.03 

βm3 

Perturbation 

method 
0.425410 0.425406 0.425401 0.425402 0.425371 

Numerical 

method 
0.425410 0.425406 0.425401 0.425402 0.425371 

Error (%) 0.00 0.00 0.00 0.00 0.00 

 

 

respectively. As seen from the tables, the maximum 

difference between the two methods is merely 3.68×10-2% 

for coefficient βmn and 6.67×10-2% for coefficient γmn, thus 

validating the perturbation method. 
 

3.2 Comparison of natural frequencies 
 

The calculated natural frequencies for the N-span 

continuous plate (N = 1, 2, 3, 4) with and without  
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Table 3 Computed γmn coefficients 

N-span   

m 

1 2 3 4 5 

1 

γm1 

Perturbation 

method 
0.164627 0.167607 0.172484 0.179121 0.187329 

Numerical 

method 
0.164611 0.167594 0.172479 0.179148 0.187454 

Error (×10-2%) 0.97 0.78 0.29 1.50 6.67 

γm2 

Perturbation 

method 
0.295118 0.296893 0.299831 0.303901 0.309060 

Numerical 

method 
0.295118 0.296863 0.299831 0.303904 0.309072 

Error (×10-2%) 0.00 1.01 0.00 0.10 0.39 

γm3 

Perturbation 

method 
0.425845 0.427105 0.429198 0.432112 0.435832 

Numerical 

method 
0.425845 0.427105 0.429198 0.432113 0.435834 

Error (×10-2%) 0.00 0.00 0.00 0.02 0.05 

2 

γm1 

Perturbation 

method 
0.164627 0.164794 0.167607 0.167949 0.172484 

Numerical 

method 
0.164611 0.164778 0.167594 0.167936 0.172479 

Error (×10-2%) 0.97 0.97 0.78 0.77 0.29 

γm2 

Perturbation 

method 
0.295118 0.295217 0.296893 0.297097 0.299831 

Numerical 

method 
0.295118 0.295217 0.296893 0.297097 0.299831 

Error (%) 0.00 0.00 0.00 0.00 0.00 

γm3 

Perturbation 

method 
0.425845 0.425915 0.427105 0.427250 0.429198 

Numerical 

method 
0.425845 0.425915 0.427105 0.427250 0.429198 

Error (%) 0.00 0.00 0.00 0.00 0.00 

3 

γm1 

Perturbation 

method 
0.164392 0.164719 0.164668 0.166461 0.167793 

Numerical 

method 
0.164376 0.164704 0.164652 0.166447 0.167779 

Error (×10-2%) 0.97 0.91 0.97 0.84 0.83 

γm2 

Perturbation 

method 
0.294479 0.295173 0.295142 0.296209 0.297004 

Numerical 

method 
0.294479 0.295173 0.295142 0.296209 0.297004 

Error (%) 0.00 0.00 0.00 0.00 0.00 

γm3 

Perturbation 

method 
0.425746 0.425884 0.425862 0.426619 0.427184 

Numerical 

method 
0.425746 0.425884 0.425862 0.426619 0.427184 

Error (%) 0.00 0.00 0.00 0.00 0.00 

4 

γm1 

Perturbation 

method 
0.164277 0.164451 0.164711 0.164620 0.166061 

Numerical 

method 
0.164261 0.164435 0.164695 0.164605 0.166047 

Error (×10-2%) 0.97 0.97 0.97 0.91 0.84 

γm2 

Perturbation 

method 
0.294911 0.295013 0.295168 0.295114 0.295970 

Numerical 

method 
0.294911 0.295013 0.295167 0.295114 0.295970 

Error (×10-2%) 0.00 0.00 0.03 0.00 0.00 

γm3 

Perturbation 

method 
0.425698 0.425771 0.425880 0.425842 0.426450 

Numerical 

method 
0.425698 0.425771 0.425880 0.425842 0.426450 

Error (%) 0.00 0.00 0.00 0.00 0.00 

 

 

considering the intermodal coupling are listed in Table 4. 

The first four mode shapes of the 3-span continuous 

anisotropic rectangular plate are shown in Fig. 2. As 

indicated in Table 4, the maximum difference for the natural 

frequencies is 5.12% between the case considering the 

intermodal coupling and that without considering it. 

To compare the high frequencies of multi-span plates, 

Table 5 lists the first six frequencies of a three-span 

continues anisotropic rectangular plate with the span  

Table 4 Comparison of the natural frequencies of the 

anisotropic plate obtained by different methods 

N-span 
Intermodal 

coupling 

The kth natural frequency 

1 2 3 4 5 6 

1 

Included (Hz) 3.91 8.83 10.97 13.56 18.66 21.35 

Excluded (Hz) 4.11 8.80 11.09 13.50 18.77 21.47 

Error (%) 5.12 0.34 1.09 0.44 0.59 0.56 

2 

Included (Hz) 3.91 4.61 8.82 10.86 10.97 11.24 

Excluded (Hz) 3.89 4.72 8.8 10.5 10.92 11.31 

Error (%) 0.51 2.39 0.23 3.31 0.46 0.62 

3 

Included (Hz) 3.71 4.18 4.55 7.16 9.52 10.90 

Excluded (Hz) 3.74 4.17 4.62 7.13 9.58 10.50 

Error (%) 0.81 0.24 1.54 0.42 0.63 3.67 

4 

Included (Hz) 3.62 3.87 4.29 4.48 6.39 7.55 

Excluded (Hz) 3.61 3.91 4.26 4.54 6.36 7.55 

Error (%) 0.28 1.03 0.70 1.34 0.47 0.00 

 

Table 5 Natural frequencies for the high frequencies of a 

three-span continues plate 

Intermodal 

coupling 

The kth natural frequency 

1 2 3 4 5 6 

Included (Hz) 10.54 14.74 15.01 18.22 18.70 21.36 

Excluded (Hz) 10.60 14.78 14.96 18.14 18.78 21.46 

Error (%) 0.57 0.27 0.33 0.44 0.43 0.47 

 

 

lengths of 10 m, 12 m, and 10 m. Table 5 demonstrates that 

the relative errors between the case with the intermodal 

coupling and that without it are negligible and hence the 

intermodal coupling effect may be ignored. 

 

 

4. Conclusions 
 

In this paper, the function defining the mode shapes of a 

multi-span continuous anisotropic plate is treated as the 

product of two admissible functions. One defines the 

longitudinal mode shapes of the plate as those 

corresponding to a multi-span continuous beam with 

simply-supported edges. The other defines the transverse 

mode shapes of a single-span beam with the intermodal 

coupling effect which has been often omitted to avoid the 

complicated calculation. This decomposition converts the 

boundary conditions into a differential equation that 

requires a complex solution process. To ease the solving 

process, the perturbation method was developed to calculate 

the natural frequencies of the multi-span continuous 

anisotropic plate. Compared to the more accurate numerical 

results, the maximum relative error resulting from the 

perturbation method is merely 3.68×10-2% for coefficient 

βmn (Eq. (21)) and 6.67×10-2% for coefficient γmn (Eq. (22)), 

thus validating the perturbation method. The maximum 

difference of the natural frequencies for the N-span 

continuous plate (N = 1, 2, 3, 4) is noticeable at 5.12% 

between the case with the intermodal coupling and that  
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(a) First mode shape 

 
(b) Second mode shape 

 
(c) Third mode shape 

 
(d) Fourth mode shape 

Fig. 2 The first four mode shapes of the 3-span continuous 

plate (intermodal coupling included) 

 

 

without it. For the high frequencies of multi-span plates, the 

difference between these two cases is small, however, 

therefore the intermodal coupling effect may be ignored. 

 

 

Acknowledgments 
 

The authors are grateful for the financial support 

provided by the National Natural Science Foundation of 

China (Grant No. 51622802, 51438001) and Chongqing 

Basic and Frontier Research Project (Grant No. 

cstc2014jcyjys30001). 

 

 

References 
 
Aoki, Y. and Maysenholder, W. (2017), “Experimental and 

numerical assessment of the equivalent-orthotropic-thin-plate 

model for bending of corrugated panels”, Int. J. Solids Struct., 

108, 11-23. 

Azimi, S., Hamilton, J.F. and Soedel, W. (1984), “The receptance 

method applied to the free vibration of continuous rectangular 

plates”, J. Sound Vib., 93(l), 9-29. 

Baltacıoglu, A.K., Akgoz, B. and Civalek, O. (2010), “Nonlinear 

static response of laminated composite plates by discrete 

singular convolution method”, Compos. Struct., 93(1), 153-161. 

Cao, L., Liu, J.P., Li, J. and Zhang, R.Z. (2018), “Experimental 

and analytical studies on the vibration serviceability of long-

span prestressed concrete floor”, Earthq. Eng. Eng. Vibr., 17(2), 

417-428. 

Chen, J., Peng, Y. and Ye, T. (2013), “On methods for extending a 

single footfall trace into a continuous force curve for floor 

vibration serviceability analysis”, Struct. Eng. Mech., 46(2), 

179-196. 

Civalek, O. (2006), “The determination of frequencies of 

laminated conical shells via the discrete singular convolution 

method”, J. Mech. Mater. Struct., 1(1), 163-182. 

Civalek, O., Korkmaz, A. and Demir, C. (2010), “Discrete singular 

convolution approach for buckling analysis of rectangular 

Kirchhoff plates subjected to compressive loads on two-

opposite edges”, Adv. Eng. Softw., 41(4), 557-560. 

De Matos Junior, O.D., Donadon, M.V. and Castro, S.G.P. (2017), 

“Aeroelastic behavior of stiffened composite laminated panel 

with embedded SMA wire using the hierarchical Rayleigh-Ritz 

method”, Compos. Struct., 181, 26-45. 

Dickinson, S.M. and Warburton, G.B. (1967), “Natural frequencies 

of plate systems using the edge-effect method”, J. Mech. Eng. 

Sci., 9(4), 318-324. 

Elishakoff, I. and Sternberg, A. (1979), “Eigenfrequencies of 

continuous plates with arbitrary number of equal spans”, J. 

Appl. Mech., 46(3), 656-662. 

Gorman, D.J. and Garibaldi, L. (2006), “Accurate analytical type 

solutions for free vibration frequencies and mode shapes of 

multi-span bridge decks: the span-by-span approach”, J. Sound 

Vib., 290(1), 321-336. 

Guebailia, M., Ouelaa, N. and Guyader, J.L. (2013), “Solution of 

the free vibration equation of a multi span bridge deck by local 

estimation method”, Eng. Struct., 48, 695-703. 

Gürses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009), “Free 

vibration analysis of symmetric laminated skew plates by 

discrete singular convolution technique based on first‐order 

shear deformation theory”, Int. J. Numer. Meth. Eng., 79(3), 

290-313. 

Jhung, M.J. and Jeong, K.H. (2015), “Modal characteristics of 

partially perforated rectangular plate with triangular penetration 

pattern”, Struct. Eng. Mech., 55(3), 583-603. 

Karahan, M.M.F. and Pakdemirli, M. (2017). “Vibration analysis 

of a beam on a nonlinear elastic foundation”, Struct. Eng. 

Mech., 62(2), 171-178. 

Lin, Y.K., Brown, I.D. and Deutschle, P.C. (1964), “Free 

vibrations of a finite row of continuous skin-stringer panels”, J. 

Sound Vib., 1(1), 14-27. 

Lü, C.F., Lee, Y.Y., Lim, C.W. and Chen, W.Q. (2006), “Free 

vibration of long-span continuous rectangular Kirchhoff plates 

with internal rigid line supports”, J. Sound Vibr., 297(1-2), 351-

288

http://xueshu.baidu.com/s?wd=author%3A%28Yohko%20Aoki%29%20Department%20of%20Acoustics%2C%20Fraunhofer%20Institute%20for%20Building%20Physics%2C%20Nobelstra%C3%9Fe%2012%2C%2070569%20Stuttgart%2C%20Germany&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Waldemar%20Maysenh%C3%B6lder%29%20Department%20of%20Acoustics%2C%20Fraunhofer%20Institute%20for%20Building%20Physics%2C%20Nobelstra%C3%9Fe%2012%2C%2070569%20Stuttgart%2C%20Germany&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


 

Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method 

 

364. 

Marchesiello, S., Fasana, A., Garibaldi, L. and Piombo, B.A.D. 

(1999), “Dynamics of multi-span continuous straight bridges 

subject to multi-degrees of freedom moving vehicle excitation”, 

J. Sound Vibr., 224(3), 541-61. 

Mercer, C.A. and Seavey, M.C. (1967), “Prediction of natural 

frequencies and normal modes of skin-stringer panel rows”, J. 

Sound Vibr., 6(1), 149-162. 

Poloei, E., Zamanian, M. and Hosseini, S.A.A. (2017), “Nonlinear 

vibration analysis of an electrostatically excited micro 

cantilever beam coated by viscoelastic layer with the aim of 

finding the modified configuration”, Struct. Eng. Mech., 61(2), 

193-207. 

Pradhan, K.K. and Chakraverty, S. (2015), “Free vibration of 

functionally graded thin elliptic plates with various edge 

supports”, Struct. Eng. Mech., 53(2), 337-354. 

Rezaiguia, A. and Laefer, D.F. (2009), “Semi-analytical 

determination of natural frequencies and mode shapes of multi-

span bridge decks”, J. Sound Vibr., 328(13), 291-300. 

Satouri, S., Asanjarani, A. and Satouri, A. (2015), “Natural 

frequency analysis of 2D-FGM sectorial plate with variable 

thickness resting on elastic foundation using 2D-DQM”, Int. J. 

Appl. Mech., 7(2), 1550030. 

Talebitooti, M. (2013), “Three-dimensional free vibration analysis 

of rotating laminated conical shells: layerwise differential 

quadrature (LW-DQ) method”, Arch. Appl. Mech., 83(5), 765-

781. 

Ungar. E.E. (1960), “Free oscillations of edge-connected simply 

supported plate systems”, J. Eng. Ind., 83(4), 434-439. 

Veletsos, A.S. and Newmark, N.M. (1956), “Determination of 

natural frequencies of continuous plates hinged along two 

edges”, J. Appl. Mech., 23(1), 97-102. 

Wang, J.P. and Chen, J. (2017), “A comparative study on different 

walking load models”, Struct. Eng. Mech., 63(6), 847-856. 

Xiang, Y., Ma, Y.F., Kitiornchai, S., Lim, C.W. and Lau, C.W.H. 

(2002), “Exact solutions for vibration of cylindrical shells with 

intermediate ring supports”, Int. J. Mech. Sci., 44, 1907-24. 

Zhou, D. (1994), “Eigenfrequencies of line supported rectangular 

plates”, Int. J. Solids Struct., 31(3), 347-358. 

Zhou, X.H., Liu, J.P., Cao, L. and Li, J. (2017), “Vibration 

serviceability of pre-stressed concrete floor system under 

human activity”, Struct. Infrastruct. E., 13(8), 967-977. 

Zhu, X.Q. and Law, S.S. (2002), “Dynamic load on continuous 

multi-lane bridge deck from moving vehicles”, J. Sound Vibr., 

251(4), 697-716. 

 
 
PL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A: Mode shapes of a multi-span 
continuous beam with simply supported edges 
 

To identify the natural mode shapes of a multi-span 

continuous beam with simply-supported edges (Fig. A.1), it 

is necessary to know the natural mode shapes in each span 

considering the boundary and continuity conditions. 

Assuming same bending stiffness for each span, the 

formulation of mth mode shape for the jth span is 

( ) sin cos

sinh cosh

jm j jm m j jm m j

jm m j jm m j

X x A x B x

C x D x

 

 

= +

+ +
 (A.1) 

where Ajm, Bjm, Cjm, and Djm are the coefficients 

determined by the boundary and continuity conditions and 

αm is the eigenvalue for the mth mode shape of the multi-

span beam. 

The boundary conditions are described as follows 

0
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The continuity conditions for the intermediate supports 

are as such 
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Substituting Eq. (A.1) into the boundary conditions 

(Eqs. (A.2) and (A.3)) and continuity conditions (Eq. (A.4)) 

results in 
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Fig. A.1 Multi-span continuous beam with simply-

supported edges 
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(a) N = 1 (L1 = 24 m) 

0 12 24 36 48
-1.10

-0.55

0.00

0.55

1.10

M
ag

n
it

u
d
e

Length of beam (m)

 1st MS

 2nd MS

 3rd MS

 4th MS

 
(b) N = 2 (L1 = L2 = 24 m) 
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(c) N = 3 (L1= L3 = 24 m, L2 = 30 m) 
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(d) N = 4 (L1= L4 = 24 m, L2 = 30 m, L3 = 32 m) 

Fig. A.2 The first four mode shapes of a N-span beam (N = 

1, 2, 3, 4) 

where j = 1, 2, 3, …, N-1. 

The eigenvalue αm for the mth mode shape of the multi-

span beam is determined by 
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Then, the expression for the mth mode shape of the 

multi-span beam can be written as 
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(A.11) 

According to Eq. (A.11) , the first four mode shapes of a 

N-span beam (N = 1, 2, 3, 4) with different spans are shown 

in Fig. A.2.  

(Note: MS = mode shape) 
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Appendix B: Asymptotic function of elementary 
function 
 

For the trigonometric and exponential functions, the 

asymptotic functions are expressed by 
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Hence, the asymptotic functions for the hyperbolic sine 

and cosine functions are 
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