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1. Introduction  
 

The rapid development of industry puts forward higher 

requirements for material performance so that various 

composites have been manufactured and developed in the 

past several decades, such as functionally graded materials 

(FGMs), fiber reinforced composites, carbon nanotubes 

reinforced composites (CNTRCs). Among these composite 

materials, functionally graded material (FGM) in which the 

effective material properties can be changed in a certain 

direction have captured extensive attention in a multitude of 

industries (Koizumi 1997, Hichem et al. 2017, Abdelaziz et 

al. 2017, Bellifa et al. 2016, Meziane et al. 2014, Ahouel et 

al. 2016). Mahi et al. (2015) used a new hyperbolic shear 

deformation theory which includes five degrees of freedom 

to study functionally graded sandwich as well as laminated 

composite pales. Yahia et al. (2015) developed various 

higher-order shear deformation plate theories for wave 

propagation, then used them to undertake wave dispersion 

of functionally graded materials. Besides, another 

developed shear deformation theory where the number of 

unknowns and governing equations are reduced, was 

utilized to study wave propagation of functionally graded 

plate in thermal environment (Boukhari et al. 2016). Based 

on a novel four variable refined plate theory, Merdaci  
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et al. (2016) proposed the analytical solutions of 

functionally graded plates under antisymmetric cross-ply 

and angle-ply in analysis of bending and buckling of FG 

plates. 

When analyzing problems of functionally graded 

materials, those classic theories, like Euler-Bernoulli beam 

model, Timoshenko beam model and Reddy beam model, 

ought to be modified, because constituents of FGMs vary 

continuously in the the certain direction whereas material is 

supposed to be homogeneous within the theoretical 

framework of classic theories (Bousahla et al. 2014, Zaoui 

et al. 2019, Hamidi et al. 2015, Bennoun et al. 2016, 

Bourada et al. 2015, Belabed et al. 2014, Younsi et al. 2018, 

Bouafia et al. 2017). Kaci et al. (2018) used a novel theory 

of higher order shear deformation to undertake the analysis 

of post-buckling of composite beams, which is better than 

the case of other classic beam model. Zidi et al. (2017) 

proposed a novel simple higher-order shear deformation 

theory without needing a shear correction factor for FG 

beams where the results of bending and vibration analysis 

were more accurate than Timoshenko beam model. 

Moreover, Mouffoki et al. (2017) put forward a new two-

unknown trigonometric shear deformation beam theory to 

study vibration of nonlocal advanced nanobeams in hygro-

thermal environment. Differing from the above theories, 

Houari et al. (2016) and Belabed et al. (2018) respectively 

developed a new simple three-unknown sinusoidal shear 

deformation theory and a new 3-unknown hyperbolic shear 

deformation theory for functionally graded plates, then the 

results obtained by both novel theories are not only simple 
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in analyzing the bending behaviors of FG plates, but also 

superior than the conventional higher-order shear 

deformation theories that includes more number of 

unknowns. 

Owing to functionally graded materials related to 

temperature variation, thermal effect on structural 

components made of functionally graded materials should 

be discussed in detail. Bouderba et al. (2016) and Bouderba 

et al. (2013) separately studied thermal buckling response 

of FG plates and thermal bending of FG plates using a 

simple first order shear deformation theory. El-Haina et al. 

(2017) attempted to present a simple analytical approach to 

analyze the thermal buckling behaviors of FG plates. 

Besides, for functionally graded plates subjected to 

uniform, linear and nonlinear thermal loads, Menasria et al. 

(2017) used a new displacement field that contains 

undetermined integral terms to study thermal buckling and 

Bousahla et al. (2016) used a four-variable refined plate 

theory to account for transverse shear strains. Meanwhile, a 

series of researches relevant to linear and nonlinear bending 

of functionally graded plates were carried out, including 

Hamidi et al. (2015), Tounsi et al. (2013), Zidi et al. (2014), 

Beldjelili et al. (2016), Attia et al. (2018). 

Such materials are fabricated into different structural 

components, e.g., plates, rods and tubes. Thereinto, tube is 

one of the most important and frequently used structural 

components in many industries. Fig. 1 shows some 

potential fields for functionally graded materials as well as 

tubes application (Dai et al. 2016, Jha et al. 2013, Dohmann 

and Hartl 1997, Dresselhaus et al. 2004, Ebrahimi and 

Javari 2016, Zouatnia et al. 2017, Gan 2016).  Up to now, 

a multitude of researchers have reported analyses on 

mechanical behaviors of tubes made of functionally graded 

materials in open literatures. Hu et al. (2017) put forward a 

complex structure preserving method to study axial 

dynamic buckling of carbon nano-tubes with a small angle 

in the direction of axle, which can give guidance for the 

experimental approach. A higher order shear deformation 

beam model for tubes was tailored by Zhang and Fu (2013), 

which can make the shear stress boundary conditions cancel 

out on the surface of tubes. Afterwards, Gui-Lin She and 

Wan-Shen Xiao undertook linear vibration of tubes (She et 

al. 2018) as well as thermal buckling of porous tubes (She 

et al. 2017) with the aid of a refined beam model from 

Zhang and Fu (2013). In these researches, obtaining 

analytical solutions from their mathematical models is a key 

step. 

Scholars have developed various methods to solve 

equations of linear and non-linear in order to obtain 

corresponding analytical solutions, such as high 

dimensional harmonic balance method (Hall et al. 2002, Liu 

et al. 2007), harmonic balance method (Liu and Dowell 

2004, Dai et al. 2014) and perturbation methods (Mook and 

ANayfeh 1979). Perturbation methods are frequently used. 

Nazemnezhad and Hosseini (2014) studied non-linear free 

vibration of FG beams under different boundary conditions 

with the aid of the multiple-scale perturbation method. 

Ghadiri et al. (2017) used Euler-Bernoulli beam model to 

analyze forced vibration of beams subjected to moving 

concentrated load, where to obtain analytical solution from  

 

Fig. 1 Potential fields for functionally graded material and 

tubes application 

 

 

non-linear differential equations, the perturbation technique 

was employed to achieve this. Shen and Wang (2014) used 

perturbation method, namely a two-steps perturbation 

technique, to investigate vibration of beams exposed to 

different types of thermal environment. Through comparing 

and studying results of various perturbation methods, we 

adopt a two-steps perturbation technique to undertake the 

analysis of nanotubes in this paper. 

In analysis of problems involving nano-structures, the 

effect of size-dependent becomes overwhelmingly 

important on the mechanical behaviors, which has been 

observed and corroborated by experimental findings. 

However, those classical theories cannot capture the size 

effect at nanoscale for sake of other length-scale 

parameters. Later on, to resolve this difficulty, some 

researchers put forward various size-dependent continuum 

models to study the mechanical behaviors of nanostructures, 

including nonlocal elasticity theory, the strain gradient 

theory and nonlocal strain gradient theory. 

The nonlocal elasticity theory supposes that the stress at 

any point in a body varies along with not only the strain at 

that point but also those at all other points of the body. 

Since this theory being proposed by Eringen (1972), a 

multitude of researches have been performed in order to 

describe the size effect on nanostructurs and give its 

reasons. Rahmani and Pedram (2014) analyzed the size-

dependent effect on the vibration of FGM nano-beams by 

utilizing non-local elasticity theory and obtained a closed 

form solution. A nonlocal zeroth-order shear deformation 

theory was used to study free vibration of FG plates 

(Bounouara et al. 2016) and nonlinear post-buckling of 

beams (Bellifa et al. 2017). 

Salehipour et al. (2015) modified the non-local elasticity 

theory in analysis of FGM at nanoscale. The influence of 

non-local parameter was analyzed in detail based on an 

improved non-local elasticity theory. Ansari et al. (2015) 

dealt with nonlinear forced vibration of magneto-electro-

thermo-elastic beams based on a third-order deformable 

model and the nonlocal elasticity theory. With the 

development of the nonlocal elasticity theory, plenty of 

scholars proposed a variety of modified nonlocal elasticity 

theory, then used them to capture the size-dependent on the 

nanometer length (Yazid et al. (2018), Bouafia et al. 2017, 

Ahmed et al. 2018, Besseghier et al. 2017, Khetir et al. 
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2017, Belkorissat et al. 2015, Zemri et al. 2015). Besides, in 

terms of the Eringen’s theory, many studies have 

demonstrated that surface energy play an important effect 

on nanostructures, such as Youcef et al. (2018), 

Hamzacherif et al. (2018), Mouffoki et al. (2017), Chaht et 

al. (2015). Differing from above references adopted 

Eringen’s equivalent differential formulation, Tuna and 

Kirca (2016) analyzed buckling and vibration of beams by 

using the original integral constitutive equation. In order to 

obtain the exact solution of the original integral model, the 

Laplace transform method was adopted to solve several 

governing equations. Additionally, Faghidian (2018), 

Khodabakhshi and Reddy (2015) and Fernández-Sáez 

(2016) utilized the original integral model to analyze the 

size effect. 

Although the nonlocal elasticity theory has successfully 

described the size-dependent, it merely characterizes the 

effect of stiffness-softening. As for the effect of stiffness-

hardening on nanostructures reported by theoretical as well 

as experimental researches (Fleck and Hutchinson 2001, 

Yang et al. 2002), the nonlocal elasticity theory doesn’t 

hold up. To resolve this problem, the strain gradient theory 

(Mindlin 1964, Mindlin 1965) proposed by Mindin is 

another microsructure dependent continuum theory, which 

can take the stiffness enhancement into account. The theory 

assumes that additional strain gradient terms ought to be 

incorporated in the total stress field when analyzing 

mechanism of nano-sturctural deformation. Based on 

Mindin’s theory, Lam et al. (2003) proposed a modified 

strain gradient theory in which double classical material 

length-scale parameters and three non-classical ones are 

taken into consideration. It should be mentioned out that 

determining non-classical parameters is a difficult work in 

the above-mentioned theories. Consequently, additional 

modified couple stress theory was tailored by Yang et al. 

(2009) in which the number of non-classical material length 

scale parameter is reduced to one. As a matter of fact, this 

modified couple stress theory is a special case of the 

modified strain gradient theory from the perspective of 

strain energy density. Later on, on the basis of these 

modified theories, a lot of studies have been carried out. 

Thereinto, the effect of stiffness-hardening can be observed 

in the vibration of plates (Tsiatas 2009, Reddy et al. 2015, 

Şimşek et al. 2015, Li and Pan 2015), beams with cross 

section (Bekir and Ömer 2011, Ma et al. 2008, Al-Basyouni 

et al. 2015) as well as circular cylindrical beams (Bekir et 

al. 2013, Bekir and Ömer 2014, Rahaeifard 2015). 

From what has been surveyed above, we can know that 

the strain gradient theory aligned with the nonlocal 

elasticity theory are two different non-classical theories to 

describe the effect of size-dependent on nanostructures, 

then give its reasons. In order to simultaneously evaluate 

the two size-dependent effect on small scaled structures, 

Lim et al. (2015) put forward nonlocal strain gradient 

model which combines the strain gradient theory and the 

nonlocal elasticity theory, together. So far, some studies 

with respect to the mechanical behaviors of nano-structures 

have been performed based on the nonlocal strain gradient 

theory. Lu et al. (2017) developed a size-dependent 

sinusoidal shear deformation model to study free vibration 

of beams with the aid of the theory. Li et al. (2016) used it 

to undertake the analysis of longitudinal vibration of 

nanorods. Karami et al. (2018a) and Karami et al. (2018b) 

in analysis of the wave dispersion in anisotropic doubly-

curved nanoshells presented the influence of strain gradient 

stress field and nonlocal elastic stress field.  Ebrahimi and 

Barati (2017) and Li et al. (2017) studied vibration of 

axially graded beams in the framework of nonlocal strain 

gradient elasticity theory. Karami et al. (2017) for the first 

time combined nonlocal strain gradient theory with three 

dimensional elasticity theory together to investigate the 

wave propagation behaviors of plates. Then, She et al. 

(2018) investigated wave propagation in porous nanotubes 

with the guidance of the theory. Sahmani et al. (2018) 

employed this theory to explore the size-dependent in large 

amplitude of functionally graded porous plates. However, 

there are only few studies relevant to nonlinear 

nanostructures, especially nonlinear nanotubes. 

Consequently, this paper analyzes nonlinear free 

vibration of the circular nano-tubes made of functionally 

graded materials in the framework of nonlocal strain 

gradient theory in conjunction with a refined beam model 

proposed by Zhang and Fu (2013). Firstly, a higher-order 

shear deformation theory which can degenerate into the 

Euler beam model, the Timoshenko beam model and the 

Reddy beam model is used to formulate the mechanical 

model, and the nonlinear strain-displacement relationships 

is also considered. Secondly, via using a two-steps 

perturbation method, the analytical solution is obtained 

from nonlinear governing equations. Thirdly, the effects of 

various physical parameters on nonlinear and linear natural 

frequencies of FGM nanotubes are analyzed, the findings of 

which are different from previous results. 

 

 

2. Basic theoretical formulation 
 

2.1 Functionally graded tubes 
 

Note that a functionally graded tube with outer radius 

R0, inner radius Ri, as well as length L shown in Fig. 2 is 

subjected to a uniform pressure and exposed to thermal 

environment. Consider that its middle-axis coincides with 

the Ox-axis of a Cartesian coordinate system O-xyz and the 

positive Z-axis is perpendicular to the X-axis and directed 

upwards. The origin of a Cartesian coordinate system O-xyz 

is set at the middle surface of the tube. It can be seen that
2 2 2cos( ), sin( ) as well as y r z r r y z = = = + . Thus, the 

effective material properties Pf of the FGM tube, stating 

Young’s modulus, thermal expansion, Poisson’s ratio, as 

well as mass density, on the basis of the power-law, can be 

expressed as (Zhong et al. 2016) 

( )1 2 1

0

N

i

f

i

r R
P p p p

R R

 −
= + −  

− 
 (1) 

where p1, p2 
stand for respective material constituents of 

SUS304 and Si3N4. The symbol of N represents the volume 

fraction index. The temperature factor is assumed to be a 

nonlinear function of temperature, which can be described  
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Fig. 2 Geometry and coordinate of functionally graded 

tubes 

 

 

as (Ghiasian et al. 2014) 

( ) ( )1 2 3

0 1 1 2 31P T P P T PT PT PT−

−= + + + +  (2) 

in which P0, P-1, P1, P2, and P3 denote the coefficients of 

Kelvin’s temperature-dependence which are tabulated in 

Table 1. Notice from the effective material properties Pf 

that inner surface (r=Ri) of FGM tube is made of SUS304, 

whereas outer surface (r=R0) of FGM tube is made of Si3N4. 

 

2.2 Nonlocal strain gradient theory 
 

When dealing with nano-structures, the effect of size-

dependent can’t be ignored in the process of analysis. Lim 

et al. (2015) put forward the nonlocal strain gradient theory 

involving the nonlocal elastic theory aligned with the strain 

gradient theory. According to this theory, the total stress 

tensor can be defined as  

(1)d

d

xx

xx xxt
x


= −  (3) 

in which the classical stress σxx and the higher order stress 

tensor σ(1) associated with strain εxx and strain gradient εxx,x 

can be given by 

( ) ( )0 0
0

( ) , , d
L

xx xxE x x x e a x x     =   (4) 

( ) ( )(1) 2

1 1
0

( ) , , d
L

xx xxl E x x x e a x x     =   (5) 

where ( ) ( )0 0 1 1, ,  and , ,x x e a x x e a   are the two non-local 

kernel functions that satisfy certain conditions of Eringen 

(1983). Thereinto, both nonlocal parameters e0a and e1a are 

used to take into account the importance of nonlocal elastic 

stress field. Owing to attenuation functions for classical 

stresses aligned with higher order stresses being the same, 

we suppose e0a=e1a=ea in this paper. Moreover, E(x) and L 

denote Yong’s modulus and the length of tube, respectively. 

However, it is difficult to obtain analytical results by 

applying the above expressions. Therefore, Lim et al. 

(2015) suggested a simplification, turning the integral 

constitutive relations to an equivalent differential form as 

( )2 21 ( ) ( )xx xxea E x −  =  (6) 

( )2 2 (1) 2

,1 ( ) ( )xx xx xea l E x −  =  (7) 

in which / x =   .  

Submitting Eq. (6) into Eq. (7), we could obtain the 

general nonlocal strain gradient constitutive equation. 

( )2 2 21 ( ) ( ) ( )xx xx xxea t E x l E x  −  = −     (8) 

It should be mentioned out that the Eq. (8) can 

degenerate the following two models. 

The Eringen’s nonlocal elasticity theory: By setting l=0, 

the Eq. (8) can naturally degenerate the nonlocal elasticity 

constitutive equation (Eringen 1983, Eringen 1972). 

2 21 ( ) ( )xx xxea t E x  −  =   (9) 

The strain gradient theory: By setting ea=0, the Eq. (8) 

can naturally degenerate the pure strain gradient 

constitutive equation (Aifantis 1992). 

( )2( ) ( )xx xx xxt E x l E x = −    (10) 

It can be seen that the Eq. (8) can explain the effect of 

size-dependent, reasonably. 

 

 

3. Mathematical model 
 

Considering the circular tube, three displacement 

functions (u1, u2, u3) can be listed as follows (Zhang and Fu 

2013) 

( )1

2

3

( , )
( , ) , ( , ) ( , )

0

( , )

w x t
u u x t f y z g y z x t

x

u

u w x t




= + +


=

=

 (11) 

in which 

( )

( )

2 2 2

0

2 2 2

0

,
3

,

i

i

R Rz r
f y z

R R r

g y z f z

 
= − 

+  

= +

 

where u(x,t) and w(x,t) respectively stand for double 

displacement components of any point in the axial (X) and 

lateral (Z) and θ(x,t) states the rotation of the normal 

relative to the Y axis.                                                                                                    

Next, the nonlinear strain-displacement expressions in 

line with the von karman non-linearity theory can be 

induced as 

( ) ( )

2 2

2

1
;

2

sin cos

x

xy

xz

xr xz xy

u w w
f g

x x xx

f w g

y x y

f w g w g w

z x z x z x




 

  

    

    
= + + + 
   

  
= +
  

      
= + + = + 
      

= +

 (12) 

where εxx, γxy, γxz, and γxr are normal strain, respective 

engineering shear strain in the direction of axis(Y) and 

axis(Z) as well as radial strain. According to the Hooke’s 

law, the stresses associated with strain components from Eq. 
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(12) can be determined as Eq. (13) in a uniform thermal 

environment. 

( ) ( ), , , , , ,x xy xz xr f x f x f xy f xz f xrE E T G G G        = −   (13) 

in which 

( )2 1

f

f

f

E
G

v
=

+

 

The necessary boundary conditions for the stress of the 

tube at the (r=R0, Ri) must satisfy Eq. (14). 

0,| 0
ixr r R R = =  (14) 

The variation of virtual strain energy of the tube is 

assumed to be 

( )ds x x xz xz xy xy      


 = + +   (15) 

in which Ω stands for the volume of the tube. By submitting 

Eq. (12) into Eq. (15), the variation of the virtual strain 

energy is reappraised as 

2 2

2
d

1

2
S x xz xy

u w w g w f w g
f g

x x x z x y x yx


        


 = 

                 
+ + + + + +       

                 

+  (16) 

Besides, the variation of the virtual work performed by 

the external force is illustrated as 

0
+ d

L

W T

w w
q w N x

x x
  

    
 = −   

   
  (17) 

The variation of kinetic energy of the tube is written as 

22

311 1
d

2 2
T f

uu

t t
  



    
 = +     

      
  (18) 

So, Eq. (18) can be deduced as 

2 2 22 2
2 21

2 d
2

T f

w w w
f g fg

x t t x t t t

 
     



               
  = + + +         

                   
  (19) 

In terms of the Hamilton principle, the corresponding 

governing equations can be induced as 

( ) 0s w T  =  + − =  (20) 

When to take Eq. (16), Eq. (17) and Eq. (19) into Eq. 

(20) and set these coefficients of δu, δθ, δw into zero, the 

nonlinear equilibrium equations can be expressed as 

3 2

2 32 2

2 2 4 3 2 2

0 1 22 2 2 2 2 2 2

d
0

d

0

0T

N

x

M w
Q I I

x x t t

P Q w w w w
q I I I N N

xx t x t x t x x





=

  
− − − =

   

      
− − + − − − + =
       

 (21) 

where N in Eq. (21) is a constant. Moreover, certain general 

forces and moments of inertia involved with Eq. (21) are 

presented as  

( ) ( ) ( )2 2

0 1 2 3, , , , , , d ; , , , 1, , , dx x x xy xz f
A A

f g
N P M Q f g A I I I I f fg g A

y z
     
  

= + = 
  

 

 

Combined with the nonlocal strain gradient constitutive 

relations, general forces of the tube are defined as 

( ) ( )

( ) ( )

( ) ( )

( )

22
2 2 2 2 2

12

2 2
2 2 2 2 2

3 42 2

2 2
2 2 2 2 2

4 52 2

2
2 2 2

72

1
1 1

2

1 1

1 1

1

T

N w
N A l l N

xx

P w
P A l A l

xx x

M w
M A l A l

xx x

Q w
Q A l

xx









 

  
− = −  − −  

  

  
− = −  + − 

 

  
− = −  + − 

 

  
− = −  + 

  

 (22) 

Other coefficients from Eq. (22) are given by 

( ) ( )
2 2

2 2

1 3 4 5 7, , , 1, , , d ; df f
A A

f g
A A A A E f fg g A A G A

y z

    
= = +    

     
   

For simply supported ends (S-S), necessary boundary 

conditions of the tube yield 

0, ; 0, 0, 0, 0X L u w M P= = = = =  (23) 

The governing equations of the tube proposed in Eq. 

(21) can be reformulated as 

3 2 5 4 3 2 3 2
2

4 5 7 4 5 7 2 33 2 5 4 3 2 2 2

5 4
2

2 33 2 2 2
0

w w w w w
A A A l A A A I I

xx x x x x x x t t

w
I I

x t x t

   





           
+ − + − + − + − −   

            

  
+ + = 

    

 (24) 

4 3 2 6 5 4 3 2 4
2 2

3 4 7 3 4 74 3 2 6 5 4 3 2 4

2 4 2 4 4 6
2 2

0 1 2 0 1 22 4 2 2 2 2 2 2 4 2

3 5

T

w w w w w w
A A A l A A A q N

xx x x x x x x x x

w w w w w w
N I I I I I I

x x t x t x t t x x t x

   


 
 

               
+ − + − + − + − − −      

              

        
+ − + − − − − − 

            
3 2

0
t

 
=   

 (25) 

in which the expression of N can be determined as 

( )
2

2 21

0

1
1 d

2

L

T

A w
N l x N

L x

  
= −  −  

   
  

For the calculation convenience, introduce the following 

non-dimensional parameters. 

( ) ( )

( )

2 23

0 0 0

0 1 2 3 1 2 32 4 2

00

22

0 3 5 71 4

11 33 44 55 77 2 2

0

; ; ; ; , , , , ; ; ; ;

; ; ; , , , , , , , , ;

T

q n

T

I L E E Lw x qL
w S S S S I I I S

L L S LS S S

E A A A LA L Al t
l T S S S S S

L L S S SS S

 
    

    

 
 

  

= = = = = = = =

 
= =  = =  

 

 

where 

2

d ; dT f f
A A

S Ez A E A = =   

General governing equations described in Eqs. (24), (25) 

can be rewritten as 

3 2 5 4 3 2 3

44 55 77 44 55 77 23 2 5 4 3 2 2

2 5 4
2

3 2 32 3 2 2 2

2

0

w w w w w
S S S S S S S

w
S S S

l
  


       

 


    

          
+ − + + − + −   

           

   
− + + = 

     

−

 (26) 

4 3 2 6 5 4 3
2

33 44 77 33 44 774 3 2 6 5 4 3

2 3 2 2 2 4
2 211

11 3 2 2 2 40
d 2

2

q

n T

w w w w
S S S l S S S

S w w w w w w w
S Sl



   


      


   

      

           
+ − + − + − + −    

          

              
−  +  − +      

               

−
2 4

2

2 4

2 4 4 6
2

0 1 2 0 1 22 2 2 2 2 2 4 2 3 2

3 5

0

w w

w w w w
S S S S S S


 

 


          

 
− 

  

      
+ − − − − − =             

 (27) 
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Meanwhile, the dimensionless boundary conditions can 

be described as 

0, 0, 0, 0;   0,u w M P at  = = = = =  (28) 

 

 

4. Solution of the model 
 

In this chapter, we obtain corresponding analytical 

solutions of Eqs. (26), (27) by using a two-steps 

perturbation procedure. To begin with, to get a set of 

vibration equations, we suppose that the expanded form of 

dimensionless displacement, dimensionless rotation angle 

and dimensionless transverse load can be expressed as 

1

1

1

( , , ) ( , );

( , , ) ( , );

( , , ) ( , );

n

n

n

n

n

n

n

q n

n

w w     

       

       

=

=

=

=

=

=







 

where a small perturbation parameter(ε) has no physical 

meaning, which is introduced into Eqs. (26) and (27). Then, 

we collect terms of the same order(ε) to arrive at  

( )1

5 4 3 2

1 1 1 1 1 1
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 (32) 

To solve respective differential perturbation equations, 

asymptotic solutions of dimensionless displacement as well 

as dimensionless rotation angle, satisfying simply supported 

ends, are given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 4

10

1 3 3 4

10 10

, sin ;

, cos cos ;

w A m O

B m B m O

    

       

= +

= + +
 (33) 

Submitting Eq. (33) into Eq. (29), we could have 

3

1 144 77

10 102

55 77

S m S m
B A

S m S

+
= −

+
 (34) 

By submitting Eqs. (33) and (34) into Eq. (30), 
1

q  is 

determined in the following form.   

( )
( ) ( )

( ) ( )
2
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 (35) 

Later on, the substitution of Eq. (33) and Eq. (34) into 

Eq. (31), one has 

( )
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 (36) 

3

q is determined by submitting Eq. (33), (34) and (36) 

into Eq. (32) 
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Eventually, the analytical solution of non-dimension 

transverse load can be expressed as  

( )1 3 4

q q q O   = + +  (38) 

Because the value of λq is equivalent to zero when 

solving free vibration problems, we apply the method of 

Galerkin to Eq. (38), obtaining the Duffing equation. 

( )
( ) ( )

2 1
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So, the analytical solution of Eq. (39) can be written as  

( )
2

133 31

10

3031

;
3

1 ;
4

NL L L

J
A

J

J

J
  = + =  

where the symbol of
1

10
A (

1

10
/

m
A W L= ) is dimensionless 

amplitude of the tube. ωL and ωNL stand for dimensionless 

linear frequency and dimensionless nonlinear frequency, 

respectively. 
So far, the majority of theoretical models have been 

established based on three classical theories. They are Euler 

beam model, Timoshenko beam model as well as Reddy 

beam model. In the following part, three classical beam 

models are derived from the present model. 

When f=-z, the displacement function Eq. (11) can be 

converted to Euler-Bernoulli model. Corresponding 

coefficients are  
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Table 1 Temperature-dependent coefficients of material 

properties (Reddy and Chin 1998) 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 E(Pa) 348.43×10+9 0.0 -3.070×10-4 2.160×10-7 -8.964×10-11 

 α(1/k) 5.8723×10-6 0.0 9.095×10-4 0.0 0.0 

 p(Kg/m3) 2370 0.0 0.0 0.0 0.0 

 v 0.24 0.0 0.0 0.0 0.0 

SUS304 E(Pa) 201.04×10+9 0.0 3.079×10-4 -6.543×10-7 0.0 

 α(1/k) 12.33×10-6 0.0 8.096×10-4 0.0 0.0 

 p(Kg/m3) 8166 0.0 0.0 0.0 0.0 

 v 0.3262 0.0 0.0 0.0 0.0 
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When f=0, the displacement function Eq. (11) can be 

converted to Timoshenko model. Corresponding 

coefficients are  
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where the shear factor ks of Eq. (41) is from Zhang and Fu 

(2013). 
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in which
0

/
i i

R R R= and the Poisson’s ratio v is considered to 

be the average value of two materials. 

When ( )3 2
4 / 3f z h= − , the displacement function Eq. 

(11) can be converted to Reddy model. Corresponding 

coefficients are the same with ones of the present model. 

More detailed information can be found from Eq. (39). 

 

 

5. Results and discussions 
 

In this part, we fully utilize above analytical solutions to 

investigate functionally graded nano-tubes. Based on results 

obtained, some new findings are revealed, which are 

different from what are predicted from the conventional 

theories and models. 

 

5.1 Validation research 
 

Before discussions of respective physical parameters, 

both dimensionless free vibration frequencies of 

functionally graded rod and non-dimension frequencies of 

isotropic tube are calculated by present mathematical 

model, which can verify the present deduced results 

directly. In Table 2, the dimensionless frequency of a 

functionally graded rod with (Ri=0, L=10R0, T=300K,) is 

used to verify the current solution. When Ri=0, the present  

Table 2 Comparisons of non-dimension natural frequencies 

( /
c c

R G =  ) of FGM circular cylindrical beams  

N Source ω
1
 ω

2
 ω

3
 ω

4
 ω

5
 ω

6
 

1 Present 0.0901817 0.317009 0.613347 0.940205 1.27975 1.62443 

 

Shen and 

Wang 

(2014) 

0.09 0.3175 0.6159 0.9462 1.29 1.6394 

 difference 0.2019% 0.1546% 0.4145% 0.6336% 0.7946% 0.9131% 

 
Huang et al. 

(2010) 
0.0902 0.3193 0.617 0.9459 1.2867 1.6311 

 difference 0.0203% 0.7175% 0.5921% 0.6021% 0.5401% 0.4089% 

5 Present 0.0882979 0.308939 0.595295 0.909696 1.23538 1.56546 

 

Shen and 

Wang 

(2014) 

0.0883 0.3089 0.5953 0.9097 1.2353 1.5654 

 difference 0.0024% 0.0126% 0.0008% 0.0004% 0.0065% 0.0038% 

 
Huang et al. 

(2010) 
0.0885 0.3095 0.5954 0.9075 1.2291 1.5531 

 difference 0.2284% 0.1813% 0.0176% 0.2420% 0.5109% 0.7958% 

 

Table 3 Comparisons of non-dimension natural frequencies 

( 2

0
(1 ) /R v E =  − ) of an isotropic cylindrical shell 

Source ω
1
 ω

2
 ω

3
 ω

4
 ω

5
 ω

6
 

Present 0.016032 0.0584366 0.116619 0.182637 0.252086 0.322774 

Huang et al. (2010) 0.016 0.0583 0.1166 0.1827 — — 

difference 0.2000% 0.2343% 0.0163% 0.0345% — — 

Zhang et al. (2001) 0.0161065 — — — — — 

difference 0.4625% — — — — — 

 

 

shear deformation beam model can still satisfy necessary 

stress boundary conditions on the surface of circular 

cylindrical rods. This table to demonstrate a small 

difference between those results reported by Shen and Wang 

(2014) and Huang et al. (2010) and ones in this study 

clearly indicates that present solution is reliable and 

reasonable. To further validate the present analysis, the 

dimensionless natural frequency for an isotropic cylindrical 

shell with (Ri=0.998R0, L=20R0, v=0.3, T=300K) under 

simply supported ends are tabulated in Table 3. As we all 

see from Table 3, present results produced by the model 

show a good agreement with published ones. Therefore, the 

two examples amply demonstrate the validation of the 

present analysis and solution for nonlinear vibration 

problem. 

 

5.2 Discussions of physical parameters 
 

Before starting the discussions of respective physical 

parameters, something important must be presented. The 

formulation of the non-dimension frequency is

( )2

0 0 0
/ /L R E =  where ( )

0 0
/ /

L
L E   = .The 

values of ρ0 and E0 are equivalent to 8166 kg/m3 and 201.04 

GPa, respectively. The effective properties of two types of 

material (SUS304, Si3N4) are tabulated in Table 1.   

Within the results of Table 4, the effect of slenderness 

ratio, scale parameter ratio and respective beam models on  
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Table 4 Comparisons of different beam models and scale 

parameter ratio on non-dimension natural frequency for the 

tube. (N=1, T=300K, μ=1nm, Ri=0.8R0, R0=1 nm) 

Ratio Type L=10R0 L=20R0 L=30R0 L=40R0 L=50R0 L=60R0 L=70R0 L=80R0 

l=0.5μ Present 8.01729 8.88595 9.07554 9.14449 9.17689 9.19461 9.20535 9.21233 

 Reddy 8.498 9.03555 9.14509 9.18425 9.20253 9.21249 9.21852 9.22243 

 Timoshenkeo 8.08813 8.90948 9.08664 9.15087 9.18101 9.19749 9.20747 9.21396 

 Euler 8.75055 9.1074 9.17784 9.20284 9.21447 9.22081 9.22463 9.22712 

l=μ Present 8.30182 8.96729 9.11268 9.16559 9.19045 9.20405 9.21229 9.21766 

 Reddy 8.7996 9.11826 9.18252 9.20544 9.21613 9.22195 9.22547 9.22776 

 Timoshenkeo 8.37518 8.99104 9.12382 9.17198 9.19458 9.20694 9.21442 9.21928 

 Euler 9.06111 9.19077 9.2154 9.22407 9.22809 9.23027 9.23159 9.23245 

l=1.5μ Present 8.75552 9.10125 9.17425 9.20064 9.21301 9.21977 9.22386 9.22652 

 Reddy 9.2805 9.25447 9.24456 9.24065 9.23875 9.2377 9.23706 9.23664 

 Timoshenkeo 8.83288 9.12535 9.18547 9.20706 9.21715 9.22266 9.22599 9.22815 

 Euler 9.5563 9.32807 9.27767 9.25935 9.25074 9.24603 9.24318 9.24133 

 

Table 5 Effect of nonlocal parameter μ on non-dimension 

natural frequency for the tube. (Ri=0.8R0, R0=1 nm, 

T=300K, L=20R0, N=1, l=0) 

ω μ=0 μ=1nm μ=2nm μ=4nm μ=6nm μ=8nm μ=10nm 

ω1 8.96729 8.85867 8.55505 7.5929 6.52574 5.58373 4.8157 

ω2 33.2073 31.6807 28.1177 20.6774 15.5626 12.2767 10.0723 

ω3 67.4045 60.9735 49.0521 31.5891 22.4752 17.2819 13.9921 

ω4 107.132 90.7119 66.7084 39.6063 27.4676 20.9035 16.8386 

 

Table 6 Effect of strain gradient parameter l on non-

dimension natural frequency for the tube. (Ri=0.8R0, R0=1 

nm, T=300K, L=20R0, N=1, μ=0) 

ω l=0 l=1nm l=2nm l=4nm l=6nm l=8nm l=10nm 

ω1 8.96729 9.07725 9.3994 10.5905 12.3223 14.4012 16.698 

ω2 33.2073 34.8074 39.2181 53.3299 70.8574 89.8228 109.481 

ω3 67.4045 74.5137 92.6233 143.827 202.15 262.897 324.709 

ω4 107.132 126.523 172.05 289.781 417.844 549.055 681.6 

 

 

non-dimension natural frequency for the tube can be 

illustrated as follows: 

(i) The present model on non-dimension natural 

frequencies for the tube is similar to the model of 

Timoshenko, but smaller than Reddy model and Euler 

model. Besides, these results explicitly indicate that 

transverse shear deformation plays an important role in 

short FGM tubes, thus the frequencies obtained by the Euler 

beam model are higher than those obtained by others. 

(ii) When scale parameter ratio (l/μ) continues to rise, 

the dimensionless frequency of the tube has an increasing 

trend, remarkably. So, scale parameter ratio cannot be 

ignored in analysis of nano-structure. 

(iii) A higher slenderness ratio tends to weaken the 

stiffness of the tube. That is to say: with the slenderness 

ratio becoming large, the frequency continues to ascend, 

regardless of which model is adopted. When L=60R0, the 

results obtained by four types of beam model are almost the  

Table 7 Effect of dimensionless temperature λT on non-

dimension natural frequency for the tube. (Ri=0.8R0, R0=1 

nm, L=20R0, N=1, μ=1 nm) 

Ratio ω λT=0 λT=50 λT=100 λT=150 λT=200 λT=250 

l=0.5μ ω
1
 8.88595 8.30679 7.65315 6.90711 6.03859 4.98946 

 ω
2
 32.0692 31.3511 30.5774 29.7459 28.8546 27.9009 

 ω
3
 62.6432 61.7119 60.7121 59.6424 58.5013 57.2875 

 ω
4
 95.083 93.8989 92.6266 91.2642 89.8099 88.2622 

l=μ ω
1
 8.96729 8.39298 7.74572 7.00848 6.15298 5.12564 

 ω
2
 33.2073 32.5042 31.7473 30.9349 30.0651 29.1359 

 ω
3
 67.4045 66.4984 65.526 64.486 63.3771 62.1981 

 ω
4
 107.132 105.979 104.741 103.414 101.997 100.488 

l=1.5μ ω
1
 9.10125 8.53469 7.8976 7.17425 6.33905 5.3449 

 ω
2
 35.0221 34.3401 33.6069 32.8211 31.981 31.0852 

 ω
3
 74.6683 73.789 72.8456 71.8366 70.7607 69.6168 

 ω
4
 124.651 123.515 122.293 120.982 119.58 118.084 

 

 

same. 

Table 5 shows the effect of nonlocal parameter μ on 

non-dimension natural frequency for the tube. It can be 

observed from this table that the frequency is getting 

smaller when the value of parameter μ becomes larger and 

other size parameters remain unchanged. Hence, we have 

demonstrated the non-local parameter μ has a tendency to 

reduce the non-dimension natural frequencies of the tube. 

Table 6 shows the effect of strain gradient parameter l on 

non-dimension natural frequency for the tube. As can be 

seen from the table, the frequency is getting bigger when 

the value of strain gradient parameter l becomes larger and 

other size parameters remain unchanged. Thus, in contrast 

to the effect of nonlocal parameter μ, strain gradient 

parameter l increases the non-dimension natural frequency 

for the tube. From what has been analyzed above, nonlocal 

parameter μ and strain gradient parameter l have the 

opposite effect on the natural frequency of nano-tubes. 

Fig. 3 presents variation of the natural frequency 

relevant to the scale parameter ratio(l/μ) for functionally 

graded nanotubes. It can be seen from this figure that the 

results from nonlocal strain gradient theory are equivalent 

to those from classical elasticity theory when l=μ. This 

equivalence relation can be predicted from Eq. (35), Eq. 

(36) and Eq. (39). The reason is that the scale parameter 

ratio (l/μ=1) can result in the Eq. (35) and Eq. (36) 

degenerating the equations of classical model, then nonlocal 

parameter μ and strain gradient parameter l can’t be 

contained in the Duffing equation, namely Eq. (39). 

Consequently, the present model established by nonlocal 

strain gradient theory is identical with the model obtained 

by classical elasticity theory. As described in this figure, 

when l/μ<1, the frequencies obtained by nonlocal strain 

gradient theory are all smaller than those obtained by 

classical elasticity theory. Also, the frequencies can be 

obviously reduced with the rise of nonlocal parameter μ. 

Nevertheless, when l/μ>1, the frequencies obtained by 

nonlocal strain gradient theory are all bigger than those 

obtained by classical elasticity theory. Additionally, the  
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Table 8 Effect of inner radius Ri to outer radius R0 ratio on 

non-dimension natural frequency for the tube. (T=300k, 

R0=1 nm, μ=1 nm, L=20R0, N=1) 

Ratio ω Ri=0 Ri=0.2R0 Ri=0.4R0 Ri=0.6R0 Ri=0.8R0 Ri=0.99R0 

l=0.5μ ω1 8.12123 7.90076 8.01052 8.36055 8.88595 9.50184 

 ω2 30.5843 29.6267 29.7335 30.6183 32.0692 33.815 

 ω3 62.9111 60.6014 60.0422 60.8269 62.6432 65.068 

 ω4 100.391 96.1521 94.0532 93.7851 95.083 97.4799 

l=μ ω1 8.19557 7.97309 8.08385 8.43709 8.96729 9.58882 

 ω2 31.6697 30.6782 30.7888 31.705 33.2073 35.0151 

 ω3 67.6927 65.2075 64.6058 65.4501 67.4045 70.0136 

 ω4 113.113 108.336 105.971 105.669 107.132 109.832 

l=1.5μ ω1 8.318 8.09219 8.20461 8.56312 9.10125 9.73206 

 ω2 33.4005 32.3547 32.4714 33.4377 35.0221 36.9287 

 ω3 74.9876 72.2346 71.568 72.5033 74.6683 77.5586 

 ω4 131.61 126.052 123.301 122.949 124.651 127.793 

 

 

frequencies can be increased with the value of nonlocal 

parameter μ becoming big. From what has been discussed 

above, the natural frequency predicted by nonlocal strain 

gradient theory is determined by nonlocal parameter, strain 

gradient parameter and the strain gradient parameter to 

nonlocal parameter ratio, together. In addition, It can be 

found from this figure that the size effect is more notable 

for higher-order frequencies. 

It can be calculated from Eq. (35) and Eq. (39) that 

when the value of dimensionless temperature λT becomes 

large, the result of ωL will descend. As we predict, the 

results of Table 7 indicate that with the non-dimension 

temperature elevating, the dimensionless frequencies of the  

 

Table 9 Effect of volume indexes N on non-dimension 

natural frequency for the tube. (Ri=0.8R0, R0=1 nm, L=20R0, 

T=300K, μ=1 nm) 

Ratio ω N=0 N=1 N=2 N=3 N=4 N=5 

l=0.5μ ω
1
 14.303 8.88595 7.86259 7.40958 7.15111 6.98327 

 ω
2
 51.7238 32.0692 28.3567 26.7154 25.7798 25.1726 

 ω
3
 101.264 62.6432 55.3496 52.1289 50.295 49.1058 

 ω
4
 154.018 95.083 83.9552 79.0471 76.2546 74.4448 

l=μ ω
1
 14.4339 8.96729 7.9345 7.4774 7.21658 7.0472 

 ω
2
 53.5595 33.2073 29.3631 27.6635 26.6947 26.066 

 ω
3
 108.961 67.4045 59.5565 56.091 54.1177 52.8381 

 ω
4
 173.534 107.132 94.5937 89.0637 85.9173 83.8782 

l=1.5μ ω
1
 14.6495 9.10125 8.05309 7.5891 7.32438 7.15247 

 ω
2
 56.4865 35.0221 30.9678 29.1753 28.1536 27.4905 

 ω
3
 120.703 74.6683 65.9745 62.1357 59.9497 58.5322 

 ω
4
 201.912 124.651 110.063 103.628 99.9674 97.5949 

 

 

tube subjected to uniform thermal environment diminish, 

continuously. Besides, as the scale parameter ratio (l/μ) 

continues to increase, the dimensionless frequency is 

getting bigger and bigger. 

Due to demands of tubes with different radius in 

engineering, the effect of inner radius Ri to outer radius R0 

ratio on non-dimension natural frequencies of the tube has 

been investigated in Table 8. It can be revealed from the 

above that as the thickness of the tube continues to reduce, 

the dimensionless natural frequencies of the tube decrease 

at first, then remarkably increase. In terms of this trait, the 

thickness of the tube should be taken into account in design 

of tubes. 

  

  

Fig. 3 Variation of the natural frequency relevant to l/μ for the nanotube (Ri=0.8R0, R0=1nm, T=300K, L=20R0, N=1) 

213



 

Yang Gao, Wan-Shen Xiao and Haiping Zhu 

 

 

Fig. 4 Comparisons of different beam models on the 

amplitude-frequency of the tube. (Ri=0.8R0, R0=1 nm, 

T=300K, μ=1 nm, N=1, l=0.5μ) 

 

 

Fig. 5 The effect of non-local parameter μ relevant to the 

amplitude-frequency of the tube. (R0=1 nm, T=300K, 

Ri=0.8R0, L=20R0, N=1, l=0) 

 

 

Results from Table 9 distinctly reflects the influence of 

material volume indexes N on non-dimension natural 

frequency for the tube. That is, when increasing the content 

of SUS304, dimensionless natural frequency of the tube is 

going to decline, continuously. 

Fig. 4 presents comparisons of different beam models on 

the amplitude-frequency of the tube. In this figure, Wm/R0 

symbolizes the non-dimension amplitude of nonlinear 

vibration; And, ωNL/ωL represents frequency ratio which is 

equal to the value of the nonlinear frequency divided by 

corresponding linear frequency. It can be seen from this 

figure that the results of present model is higher than other 

beam model and the results of Euler beam model is the 

lowest when L=10R0. However, with the increment of 

slenderness ratio, respective results begin to be nearly the 

same. So, we can know that transverse shear plays a crucial 

role in short tubes, whereas it can be neglected for long 

enough tubes. 

Fig. 5 depicts the effect of non-local parameter μ with 

respective to the amplitude-frequency of the tube. These 

curves from the figure reveal that the nonlinear frequency to 

linear frequency ratio of the FGM tube can be remarkably 

improved by increasing the value of nonlocal parameter μ. 

So, the small scale parameter μ has an indispensable role in  

 

Fig. 6 The effect of strain gradient parameter l relevant to 

the amplitude-frequency of the tube.                  

(R0=1 nm, T=300K, Ri=0.8R0, L=20R0, N=1, μ=0) 

 

 

the nonlinear vibration problem.  

Fig. 6 shows the effect of strain gradient parameter l 

relevant to the amplitude-frequency of the tube. Comparing 

with the effect of non-local parameter μ, a gradual 

increasing material length scale parameter l can reduce the 

nonlinear frequency to linear frequency ratio of the FGM 

tubes, remarkably. Thus, we could know that   nonlocal 

parameter μ and strain gradient parameter l have the 

opposite effect on the nonlinear vibration problem. 

Fig. 7 exhibits the variation of nonlinear to linear 

frequency of the tube relevant to relevant to l/μ for 

functionally graded nanotubes. Obviously, when l=μ, the 

frequency ratio obtained by nonlocal strain gradient theory 

is identical with the classical frequency ratio. When l/μ<1, 

the frequency ratio obtained by the present model is higher 

than that of classical continuum model; and the nonlinear 

frequency is remarkably increased with the rise of nonlocal 

parameter μ. But, when l/μ>1, the frequency ratio obtained 

by the present model is smaller than that of classical 

continuum model; and the nonlinear frequency is 

remarkably decreased with the rise of nonlocal parameter μ. 

So, the variation trend of the nonlinear frequency is 

different from that of linear frequency when the scale 

parameter ratio l/μ is changed and other parameters remain 

unchanged. The reason can be found from its analytical 

solution. Throughout analyzing the expression of ωNL, we 

could have a good knowledge that the effect of stiffness-

hardening, namely the strain gradient theory, on the 

nonlinear vibration frequency is bigger than the effect of 

stiffness-softening, namely the nonlocal elasticity theory, on 

the nonlinear vibration frequency at a comparatively 

smaller value of the parameter l, whereas, is smaller than 

the effect of stiffness-softening on the nonlinear vibration 

frequency at a comparatively larger value of the parameter 

l. The effects of stiffness-softening and stiffness-hardening 

cancel each other out when both values of l and μ are equal, 

which is similar to classical continuum model. Besides, it 

can be seen that the nonlinear frequencies with Wm/R0=3 is 

greater than ones with Wm/R0=1. That is the nonlinear 

vibration frequency varies along dimensionless vibration 

amplitude, different from the linear frequency. The attribute 

of nonlinear vibration is just like hardening spring 

behaviors. 
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Fig. 7 Comparison of nonlinear to linear frequency of the 

tube relevant to relevant to l/μ for different nonlocal 

parameters. (R0=1 nm, T=300K, Ri=0.8R0, L=20R0, N=1) 
 

 

Fig. 8 The influence of l/μ relevant to the amplitude-

frequency of the tube. (R0=1 nm, Ri=0.8R0, L=20R0, N=1, 

μ=1 nm, T=300K) 
 

 

Fig. 9 The influence of dimensionless temperature λT 

relevant to the amplitude-frequency of the tube. (R0=1 nm, 

Ri=0.8R0, L=20R0, N=1, μ=1 nm, l=0.5μ) 
 

 

Fig. 10 The influence of inner radius Ri above the amplitude 

frequency of the tube. (R0=1 nm, T=300K, L=20R0, N=1, 

μ=1 nm, l=0.5μ) 

 

 

Fig. 11 The influence of material index N relevant to the    

frequency of the tube. (R0=1 nm, T=300K, L=20R0, 

Ri=0.8R0, μ=1 nm, l=0.5μ) 
 

 

Fig. 8 describes the influence of l/μ relevant to the 

amplitude-frequency of the tube. From this figure, the 

phenomenon can be observed that the nonlinear frequency 

to linear frequency ratio can be reduced with the rise of the 

value of the scale parameter ratio (l/μ). Combined with the 

results of Tables 7-9, a conclusion can be drawn that as the 

scale parameter ratio (l/μ) continues to increase, the 

dimensionless linear frequency is getting bigger and bigger 

while the dimensionless nonlinear frequency is becoming 

smaller and smaller. 

Fig. 9 presents the effect of non-dimension temperature 

relevant to the amplitude-frequency of the tube. It can be 

found from this figure that the nonlinear frequency to linear 

frequency ratio will be definitely increased when the tube is 

exposed to a rising thermal environment. The results of Fig. 

10 can be predicted from Eqs. (35) and (39). The reason is 

that a higher dimensionless temperature λT can lead to the 

denominator of the expression of ωNL/ωL becoming smaller. 

Fig. 10 describes the influence of inner radius Ri above 

the amplitude frequency of the tube. It can be seen that 

when taking larger inner radius under the same outer radius, 

the nonlinear to linear frequencies ratio goes down. 

Fig. 11 shows the influence of material index N with 

respective to the amplitude-frequency of the tube. From this 

figure, a conclusion can be drawn that with material indexes 

N increasing, corresponding amplitude frequency curves 

become lower. In other words, as the content of SUS304 
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continues to ascend, the nonlinear vibration frequencies are 

going to reduce, gradually. 
 

 

6. Conclusions 
 

This paper analyzes free vibration of functionally graded 

nano-tubes by using nonlocal strain gradient theory and a 

refined beam model. The refined beam model can satisfy 

the shear stress boundary conditions, which can degenerate 

the Euler beam model, the Timoshenko beam model and the 

Reddy beam model. Then, the nonlinear vibration model is 

established with the aid of Hamilton’s principle. By using a 

two-steps perturbation method, the analytical solution is 

obtained to carry out a vibration analysis in detail. Finally, 

some important conclusions are outlined. 

(1) Shown by comparison among different beam 

models, the transverse shear deformation will play a crucial 

role on nonlinear and linear frequencies if nanotubes are 

relatively short, but it can be neglected if nanotubes are 

relatively long. 

(2) The rise of nonlocal parameter μ and the descend of 

strain gradient parameter l can reduce the linear vibration 

frequency but increase the nonlinear vibration frequency. 

(3) Compared with classical frequencies, the linear and 

nonlinear frequencies from the nonlocal strain gradient 

theory may be smaller, the same or bigger, which is 

determined by strain gradient parameter, nonlocal parameter 

and the strain gradient parameter to nonlocal parameter 

ratio, together. 

(4) The decrease of the thickness of tubes make the 

linear frequencies small, firstly, then grow, but make the 

nonlinear to linear frequency ratio small all the while. 

(5) The increase of dimensionless temperature can 

reduce the linear frequency, however, improve the nonlinear 

to linear frequency ratio. 

(6) The linear and nonlinear frequencies can be 

decreased with the increment of volume index(N). 

The above-obtained conclusions can provide theoretical 

references for optimization designs of structures made of 

FGMs under thermal environments. Moreover, they are also 

immensely useful for others undertaking the analysis of 

nano-materials. 
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