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1. Introduction  
 

In recent years, high-speed railway (HSR) networks are 

developing all over the world. These high speed lines 

contain a lot of multi-span elevated bridges. Since some of 

these bridges are located in seismic areas, the dynamic 

response of the train-bridge coupled system during 

earthquakes needs to be studied. 

Since 1980s, many researchers have investigated this 

problem. Yang and Wu (2002) studied the dynamic stability 

of trains moving over bridges shaken by earthquakes with 

four typical earthquake records as excitations and found that 

the vertical component of ground motions could 

significantly influence the stability of the train-bridge 

coupled system. Zhang et al. (2010a) computed the non-

stationary random responses of three-dimensional train- 
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bridge systems subjected to lateral horizontal earthquakes 

by combining the pseudo-excitation method and the precise 

integration method. Zeng and Dimitrakopoulos (2016) 

studied the seismic response of train vehicles crossing a 

horizontally curved railway bridge during frequent 

earthquakes and simulated the 3-D dynamics of a vehicle 

traveling on a curved path by using a moving trajectory 

system. In the aseismic design of long-span or long-

extended bridges, it is important to take into account the 

variability of ground motion, which is due to wave 

traveling, incoherence and local site effects (Kiureghian and 

Neuenhofer 1992). In this regard, Xia et al. (2006) proposed 

an analysis model for train-bridge system subjected to 

seismic ground motion including the wave traveling effect. 

Yau and Frýba (2007) investigated the vibration of a 

suspension bridge due to moving loads and shaken by 

vertical support motions, in which the influence of seismic 

wave propagation effect was analyzed. Zhu et al. (2014) 

analyzed the dynamic behavior of a cable-stayed bridge 

simultaneously subjected to a moving train and seismic 

action, considering the influence of seismic wave 

propagation velocity. Du et al. (2012) proposed a 

framework for dynamic analysis of train-bridge system 

under non-uniform seismic ground motion, and studied the 

effect of wave traveling and spatial coherence on the 

dynamic responses of the train and the bridge. Although the 

local topography has an important effect on the features of 

seismic ground motion, its influence on the seismic 

response of train-bridge system has rarely been studied up 

to date. 

In China, a lot of railway bridges are in operation or 
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Abstract.  The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates 

the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local 

absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into 

equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge 

system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic 

ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic 

response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic 

waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration 

may lead to unsafe analysis results. 
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under construction, and many of them are located in the 

southwestern region with mountainous site topographies 

and potential earthquakes. The most notorious one was the 

2008 Wenchuan Earthquake with a magnitude 8, which 

caused damage to a large number of railway bridges (Wang 

2008). Therefore, it is of great significance to study the 

seismic response of bridges located in these regions. In 

seismic analysis, it has long been recognized that the local 

topography has a non-negligible effect on the characteristics 

of seismic ground motion (Geli et al. 1988). Celebi (1987) 

found that in the Chile earthquake on 3 March 1985, 

structures located at ridges suffered more intensive damage 

than those at other places. Athanasopoulos et al. (1999) 

studied the non-uniform damage of the Greek town Egion 

during the 1995 Egion earthquake in terms of surface 

topography, and concluded that the surface topography 

influenced the intensity of base motion. Bi et al. (2010) 

studied the seismic response of a bridge frame located on a 

canyon site and found that local site conditions significantly 

affect spatial surface ground motions and hence the 

structural responses. Jia et al. (2015) investigated the 

characteristics and spatial distribution of structural damage 

based on the reconnaissance of buildings in Dujiangyan 

City during 2008 Wenchuan earthquake, and found that 

topography is one of the important factors leading to 

extraordinary spatial distribution of building damage. Since 

the local topography has a significant effect on the features 

of ground motion, seismic response of bridges located in 

such regions will be inevitably influenced. With regard to 

this aspect, there are also many studies (Rassem et al. 1996, 

Wang et al. 2008, Zhou et al. 2010, Jia et al. 2018). All 

these publications indicate the necessity of considering the 

topographic effect in seismic design, but few of them study 

this effect on the seismic response of train-bridge system. 

Since the characteristics of the train-bridge system differ 

from those of the empty bridge, findings from studies of 

bridges may not hold for the coupled system. This 

necessitates an extra study of the local topography on the 

seismic response of the train-bridge coupled system. 

This paper presents a method for dynamic analysis of a 

train-bridge system subjected to earthquake action 

considering the local topography. The train-bridge system 

consists of the bridge submodel and the train submodel, 

established by the modal decomposition method and the 

rigid-body dynamics method, respectively, and linear 

wheel-track interaction (Zhang et al. 2010b) is adopted to 

connect the two submodels. The Newmark-β method 

(Newmark 1959) is used to solve the motion equations. To 

take into account the topographic effect, a 3-D model is 

established for the local site represented by a viscous-spring 

artificial boundary and a finite element model. By 

transforming the seismic time histories into equivalent loads 

acting on the artificial boundary, the input at each support 

of the bridge considering topographic effect can be obtained 

after calculation. Then the dynamic analysis of a train-

bridge system subjected to multi-point seismic excitation 

can be done, in which the displacement time histories of the 

seismic ground motion obtained by the above method are 

applied to the bridge supports. A train passing over a 466 m 

bridge located in a valley is taken as a case study, and the  
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Fig. 1 Schematic view of the bridge (unit: m) 

 

 

seismic response of the train-bridge system is analyzed 

considering local topography. 

 

 

2. Description of the bridge 
 

The southwestern region in China is a seismic zone 

susceptible to earthquakes. A railway bridge located in a V-

shape valley in that region is considered, as shown in Fig. 1. 

The bridge with a total length of 466 m consists of a 

(88+168+88) m prestressed concrete (PC) continuous rigid 

frame system and a (33+56+33) m continuous PC box-

girder.  

The heights of the bridge piers from #1 to #5 are 

respectively 77 m, 103 m, 56 m, 46 m and 20 m, and the 

end abutments are marked as A and B, as shown in Fig. 1. 

The connections between the piers and the girder are sliding 

bearings except for the three marked in the figure.  

In the following, the effect of the local topography on 

dynamic response of the train-bridge system during an 

earthquake is studied. The analysis procedure can be 

summarized as follows: first, the seismic excitation at each 

support of the bridge considering the topographic effects is 

obtained; then the analysis model of the train-bridge system 

subjected to seismic load is established, using the seismic 

excitation obtained in the previous step. 

 

 

3. Ground motion considering local topography 
 

3.1 FE modelling of local site 
 

The finite element method has been used by many 

researchers to study seismic wave propagation and local site 

effects (Smith 1975, Assimaki and Gazetas 2004, Assimaki 

and Jeong 2013, Duzgun and Budak 2015, Zhao et al. 

2017). However, it is necessary to extract a finite domain 

from the unbounded soil medium. In order to accurately 

model the originally continuous medium after extraction, 

the propagation characteristics of the soil should be kept 

unchanged, which necessitates an artificial boundary 

capable of absorbing the energy of the scattering waves. 

Both the viscous boundary (Lysmer and Kuhlemeyer 1969) 

and the viscous-spring artificial boundary (Du et al. 2006, 

Liu et al. 2006) are considered herein. Du and Zhao (2010) 

did analysis on the two-dimensional plane-strain Lamb 

problem to compare the two artificial boundaries and the 

results show that the viscous-spring artificial boundary has 

an acceptable accuracy while the viscous boundary leads to 

rigid-body displacement due to no stiffness constraint 

provided. Therefore, the modified viscous-spring artificial  
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Fig. 2 Three-dimensional sketch of the adopted artificial 

boundary 

 

 

boundary proposed by Du et al. (2006) is adopted here to 

establish the local site model. A three-dimensional sketch of 

the artificial boundary is shown in Fig. 2. 

The parameters of the springs and dashpots constituting 

the artificial boundary can be obtained by the following 

equations (Du et al. 2006) 

N

1 2

1
K

r

 



+
= 

+
   N pC c=  (1) 

T

1

1
K

r




= 

+
   

T sC c=  (2) 

where the subscript N denotes the normal direction and T 

the tangential direction; λ and μ are the Lamé constants; ρ is 

the mass density; r is the distance between the point load 

and the boundary, which takes the approximate value of the 

perpendicular distance from the center of the structure to 

the nodes of the boundary (Zhang et al. 2010c); cp and cs 

are the velocity of P-wave and S-wave, respectively, which 

are related to μ, λ and ρ; α and β are tuning coefficients, 

which can be obtained by numerical experiments. The 

recommended empirical values are α=0.8 and β=1.1. 

The ANSYS software is used for establishing the model, 

in which the soil medium is modelled with Solid45 

elements, and the springs and dampers of the artificial 

boundary are simulated by Combin14 elements with one 

end fixed. 

 

3.2 Model of the incident seismic wave 
 

The source of the incident wave lies outside the soil 

domain considered and far from the artificial boundary. 

According to Zhang et al. (2010c), the input motion can be 

converted into equivalent loads acting on the artificial 

boundary, to simulate the seismic wave input. Since the 

viscous-spring artificial boundary is responsible for 

absorbing the energy of scattering wave, the equivalent 

loads for simulating the free field consist of two 

components: one for balancing the force from springs and 

dashpots on the boundary, and another one for the stress 

field induced by free field wave motion. The equivalent 

loads in the normal and tangential directions can be 

expressed as 

( ) ( ) ( )N N N N N 0, , , , , , , , ,F A C u x y z t K u x y z t x y z t=  + +    (3) 

( ) ( ) ( )T T T T T 0, , , , , , , , ,F A C u x y z t K u x y z t x y z t=  + +    (4) 

where uN(x, y, z, t) and uT(x, y, z, t) are the normal and 

tangential displacements of the incident wave, respectively; 

σ0(x, y, z, t) and τ0(x, y, z, t) are the normal and tangential 

stresses, respectively; x, y and z are the node coordinates of 

the artificial boundary; A is the representative area of the 

node on the artificial boundary; KN, KT, CN and CT are the 

spring coefficients and damping coefficients in the normal 

and tangential directions, respectively. In a three-

dimensional model, there are two tangential directions, 

which should be dealt with separately.  
 

3.3 Calculation of equivalent loads 
 

The propagating direction of incoming seismic waves 

can be described by the angle of incidence and the azimuth 

(which can be defined as the angle between the x axis and 

plane determined by incident wave and reflection wave) on 

the horizontal plane (Assimaki and Gazetas 2004). In 

existing studies, the angle of incidence has been studied 

more frequently because most of the local site models are 

two-dimensional (Wang et al. 2008, Zhou et al. 2010), in 

which the azimuth can only be zero. Assuming the P-wave 

propagates with incident angle θ1 and azimuth α, as shown 

in Fig. 3, the equivalent loads on the nodes of the artificial 

boundary can be obtained by Eqs. (3) and (4). The related 

items can be calculated by the following equations (Zhou 

2009). 

(1) Determination of the displacements 

Taking the travel times of the waves into account, the 

displacement time histories at the left artificial boundary 

can be expressed as 

2
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 (7) 

those at the bottom artificial boundary expressed as 

0 7 1( ) ( )sin cosBu t u t t  = −   (8) 

0 7 1( ) ( )cosBv t u t t = −   (9) 

0 7 1( ) ( )sin sinBw t u t t  = −   (10) 
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Fig. 3 Three-dimensional diagram of P-wave oblique 

incidence 

 

 

and those at the rear artificial boundary expressed as 
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where θ2 represents the reflection angle of S-wave; A2/A1 

and B2/A1 are the reflection coefficients of reflected P-wave 

and S-wave, respectively, expressed as  
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Δt1 to Δt3 are the time lags of incident P-wave, reflected 

P-wave and reflected S-wave at the left boundary, 

respectively, expressed as 
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Δt7 is the time lag of incident P-wave at the bottom 

boundary 

1 1
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p
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t

c
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 =  (19) 

and Δt10 to Δt12 are the time lags of incident P-wave, 

reflected P-wave and reflected S-wave at the rear boundary, 

respectively, expressed as 
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 (22) 

where x, y, z are the coordinates of the nodes on each 

boundary; H represents the distance between the lower 

boundary and the ground surface.  

When α=0, the displacement time histories at the front 

artificial boundary are the same as those at the rear 

boundary. 

(2) Determination of the stresses 

The stresses on the artificial boundaries are obtained 

from the governing elastodynamic equations (Timoshenko 

and Goodier 1970). For the left boundary, 
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for the bottom boundary, 

180



 

The effect of local topography on the seismic response of a coupled train-bridge system 

 

1

0 7

p

sin 2 cos
( )Bx

G
u t t

c

 
 = −   (26) 

2

p 1

0 7

(1 2 )cos
( )

1
By

c
u t t

   




 + − 
= − 

−
 (27) 

1

0 7

p

sin 2 sin
( )Bz

G
u t t

c

 
 = −   (28) 

and for the rear boundary, 
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 (31) 

where the subscripts x, y, z denote the directions of stresses; 

υ is the Poisson ratio of the soil; the meaning of other 

symbols is the same as previously mentioned. When α=0, 

the stresses on the front artificial boundary have the same 

values but of opposite sign compared to those on the rear 

boundary. 

By substituting Eqs. (5) to (31) into Eqs. (3) and (4), the 

equivalent loads acting on the artificial boundary can be 

obtained. Then the process of seismic wave propagating in 

the soil can be realized by applying these loads on the 

boundary.  
 

 

4. Verification of the input method 
 

By a self-developed MATLAB program, the 3-D input 

procedure of P wave is implemented into the commercial 

software ANSYS. In this section, two numerical examples 

are presented to verify the input method. 

 

4.1 Numerical example 1 
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Fig. 4 Displacement time history of the incident P wave 

 

 

Fig. 5 Displacement contours of semi-infinite space under 

incident P wave at t=0.78 s 

 

 

Propagation process of P waves in a semi-infinite 

ground is first simulated using a truncated cube domain. 

The overall size of the region is 2000 m×2000 m ×2000 m 

and the incident angle considered is 30°.  

It is assumed that the medium has a mass density of 

2630 kg/m3, an elastic modulus of 32.5 GPa and a Poisson’s 

ratio of 0.22. The element size is set as 50 m (Lysmer and 

Kuhlemeyer 1969). An impulse (as plotted in Fig. 4) is 

adopted as the incident plane P wave and the time history of 

the impulse is defined as 

0

1 1
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8 4
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3 1
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(32) 

3
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( )
t t

G t H
T T

   
=    
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 (33) 

where H(t) is the Heaviside function; the peak value of the 

impulse is 1 m; and the acting time of the impulse T0=0.5s. 

Fig. 5 shows the contours of displacement at time t=0.78 

s during the propagation process of the adopted P wave. It 

can be seen that the input method adopted in the paper can 

effectively simulate the propagation of P waves.  

 

4.2 Numerical example 2 
 

In this section, a simple cuboid model with an overall  
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Table 1 Parameters of the soil 

Item Parameters 

Mass density 2610 kg/m3 

Poisson’s ratio 0.26 

Elasticity modulus 5 GPa 

Shear modulus 1.98 GPa 

Velocity of P wave 1530 m/s 

Velocity of S wave 871 m/s 
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Fig. 6 Characteristics of seismic ground motion 
 

 

size of 624 m×160 m×120 m is taken as the second 

numerical example. The soil medium is assumed to be 

homogenous and isotropic, the parameters of which are 

shown in Table 1. Based on this model, a series of 

numerical tests are done to verify the application and 

accuracy of the input method. 

First, a seismic wave, the characteristics of which are 

shown in Fig. 6, is assumed to be a plane P-wave traveling 

perpendicularly to the ground surface. It can be seen from 

Fig. 6(b) that the maximum frequency of the seismic wave 

is approximately 10 Hz, according to which the element 

size of the model is set as 4 m (Lysmer and Kuhlemeyer 

1969). The calculated motions of the ground surface are 

compared with those obtained by EDT (Schevenels et al. 

2009), a MATLAB toolbox for elastodynamic wave 

propagation in horizontally layered media based on the 

direct stiffness method and the thin layer method, as shown 

in Fig. 7. To reduce the calculation time, only part of the 

seismic wave is calculated.  

It can be seen from Fig. 7 that when the wave travels 

perpendicularly to the ground surface, the results obtained 

by the input method agree well with those obtained by EDT. 

Even though there is some error which occurs probably due  
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Fig. 7 Comparison between results obtained by ANSYS and 

EDT 

 

Table 2 Amplification factors obtained by the method 

adopted and EDT 

Incident angle 
AF by the input 

method 
AF by EDT Relative error 

0° 2.008 2 0.4% 

30° 1.702 1.697 0.3% 

45° 1.378 1.374 0.3% 

60° 1.019 1.017 0.2% 

 
V

earthquake input

train

bridge

 

Fig. 8 Train-bridge system subjected to earthquake action 

 

 

to the relatively large element size, considering the huge 

computation cost, the results are sufficiently accurate for 

seismic analysis of bridge structures.  

Then a sinusoidal wave with its frequency equal to 2 Hz 

is assumed to travel with different incident angles to the 

ground surface. Table 2 shows the amplification factors 

(AF) defined as the ratio of the vertical motion at the 

surface to the amplitude of the incident sinusoidal wave, 

which are obtained by the input method and EDT 

respectively.  

It can be seen that when different incident angles are 

considered, accurate results can still be obtained by the 

input method. 

Finally, through the above two numerical examples, the 

application and accuracy of the input method adopted in the 

paper have been verified. 
 

 

5. Analysis model of train-bridge system during 

earthquakes 
 

The train-bridge system subjected to earthquake 

excitation is shown in Fig. 8, which is composed of the train 

submodel, the bridge submodel, and the earthquake input.  

The seismic load only acts on the bridge submodel, 

whose influence on the train submodel is realized by the 

wheel-track interacting forces. In establishing the motion  
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Fig. 9 The vehicle element model 

 

 

Fig. 10 Finite element model of the bridge 

 

 

equations of these two submodels considering non-uniform 

seismic input, several assumptions are made: 

(1) The train submodel consists of several 

independent vehicles; 

(2) Each vehicle element consists of a car-body, two 

bogies and four wheel-sets, which are connected by spring-

and-dashpot suspension systems (Xia 2011), as shown in 

Fig. 9 A multiple-degree-of-freedom system is employed to 

represent each vehicle (Du et al. 2012); 

(3) The train passes through the bridge with a 

constant speed. 

In absolute coordinates, the dynamic motion equations 

of the train and bridge submodels can be expressed by Eqs. 

(34) and (35), respectively. 

V V V V V V V,B+ + =M u C u K u F  (34) 

ss sb s ss sb s

bs bb b bs bb b

       
+      

       

M M u C C u

M M u C C u
 

ss sb s B,V

bs bb b

     
+ =    

     0

K K u F

K K u
 

(35) 

where M, C, K are the mass, damping and stiffness 

matrices, respectively; the subscripts B and V denote the 

bridge submodel and the train submodel; u, u and ü 

represent the displacement, velocity and acceleration 

vectors, respectively; the displacement vector of the bridge 

uB is decomposed into us and ub, which denote the 

displacements of the superstructure and base of the bridge, 

respectively. FV,B and FB,V are the interaction forces 

between the bridge submodel and the train submodel, which 

are determined by the analysis model of wheel-rail contact 

relationship.  

When combining the train submodel and the bridge 

submodel based on certain wheel-rail contact relationship, 

the rail irregularity is an important factor. It reflects the 

relative displacement between the wheel and rail and can 

cause additional velocity and acceleration, which can be 

expressed in a differential form (Zhang et al. 2010b) 

0 0 0
= lim lim lim

/t t t

E E E E
E V V

t X V X X →  →  →

   
= =  = 

   
 (36) 

2
2

20 0 0
lim lim lim

/t t t

E E E E
E V V

t X V X X →  →  →

   
= = =  = 

   
 (37) 

where E is the relative displacement between the wheel and 

rail and V is the train speed. 

In this paper, to determine FV,B and FB,V, the wheel-rail 

“corresponding assumption” and the simplified Kalker 

creep theory (Zhang et al. 2010b) are chosen to define the 

vertical and lateral interactions respectively, which mean: 

(1) For the vertical interaction between the wheel and 

rail, the wheel-set motion is the sum of the bridge deck 

motion and additional motion caused by irregularity; 

(2) In the lateral direction, the wheel-rail interacted 

forces are defined by the Kalker creep theory, but to 

maintain the linear relationship between the relative motion 

and interacting force, the following assumptions are 

adopted: 

(a) The wheel is a cone surface at the contact point. 

(b) The rail is a cylindrical surface with 300 mm radius. 

(c) The wheel-rail normal interacting force is regarded 

as the static wheel weight. 

(d) The coupling of Y and RZ motion of the wheel-set is 

neglected, as shown in Fig. 9.  

Comprehensive derivation procedure and specific 

expressions of FV,B and FB,V can be found in Zhang et al. 

(2010b), which are not given here for lack of space. 

On the other hand, the first equation in Eq. (35) is for 

the bridge superstructure, which can be written with respect 

to the absolute displacement at the base as 

ss s ss s ss s sb b sb b sb b B,V+ + = − − − +M u C u K u K u C u M u F  (38) 

The third item on the right side of Eq. (38) becomes 

zero if a lumped mass matrix is used for the bridge, so Eq. 

(38) can be rewritten as 

ss s ss s ss s sb b sb b B,V+ + = − − +M u C u K u K u C u F  (39) 

The second item on the right side of the equation stands 

for the damping loading due to ground motion, which can 

be neglected (Wilson 2002). Then by applying the modal 

decomposition method, Eq. (39) is converted in a set of 

independent modal equations (Tsai 1998), namely, 

2 2

ss b B,V2 ( )T T

i i i i i i i i iq q q   + + = +M R u F   

( 1,2,... )i n=  
(40) 

where φi and qi are the ith normalized mode shape and 

generalized coordinate, ωi is the ith circular frequency; n is 

the number of the modes concerned; R is the so-called 

displacement influence matrix, expressed as 
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1st lateral bending mode 

f=0.98 Hz 

 
1st vertical bending mode 

f=1.51 Hz 

 
2nd lateral bending mode 

f=1.46 Hz 

 
2nd vertical bending mode 

f=2.86 Hz 

Fig. 11 Natural frequencies and mode shapes of the bridge 

 

 

-1

ss sb= −R K K  (41) 

Eqs. (34) and (40) are the basic motion equations for the 

train-bridge system subjected to seismic ground motion, 

which are connected by a wheel-track interaction 

relationship. The motion equations are solved by the time 

integration method. 

 

 

6. Case study 
 

6.1 Bridge and train 
 

The railway bridge mentioned in Section 2 is taken as 

the case study. A 3-D FE model of the bridge is established, 

using beam elements to model the frame, the girder and the 

piers, as shown in Fig. 10. Four dominant natural 

frequencies and the corresponding mode shapes are shown 

in Fig. 11. The concrete parameters of the beam are as 

follows: the elastic modulus is 36 GPa and the density is 

2650 kg/m3.  

The first 80 modes covering the frequency interval 0.8 Hz 

to 23 Hz are used for analysis of the bridge, and the adopted 

damping ratio is 0.025 according to previous measurement  
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Fig. 12 The vertical irregularity curve 

 

 

Fig. 13 Finite element model of the local topography 

 

 

results (Xia et al. 2005).  

A high-speed train with 8 cars (the fourth and the eighth are 

trailers and the others are motors) is taken as the train model 

and its major parameters are shown in Table 3. The motion 

equation of the train model is assembled according to Xia et al. 

(2011).   

The track irregularities are taken into account by using 

measured data, of which the vertical component is shown in 

Fig. 12.  

 

6.2 The local topography and seismic input 
 

The bridge is located in a V-shaped valley, which finite 

element model is established in ANSYS, as shown in Fig. 13. 

The soil medium is assumed to be homogenous and 

isotropic, the parameters of which are shown in Table 1. The 

overall size of the model is 624 m×160 m×120 m and the 

element size is 4 m, as illustrated in the numerical example 2 in 

Section 4. The Solid 45 element (a 3-D structural solid element 

with 8 nodes) is used to model the soil medium, and the 

Combin 14 element (a spring-damper element) for the viscous-

spring artificial boundary.  

In the analysis, the seismic ground motion record shown in 

Fig. 6 is used as the seismic excitation. With the assumption 

that the incident seismic wave is a plane P-wave, the 

corresponding equivalent loads acting on the artificial 

boundary can be obtained by Eqs. (3) to (31). By applying the 

equivalent loads on the artificial boundary, the propagating 

seismic waves are simulated, resulting in the non-uniform 

seismic excitations at all supports for the seismic analysis of 

the train-bridge system. 
 

6.3 Simulation results 
 

The dynamic response of the train-bridge system is 

studied for different cases, without/with seismic excitation 

and considering/neglecting the topographic effects,  
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respectively, to analyze the influence of the local 

topography on the seismic response of train-bridge system. 

In the case where the local topography is not considered, 

the free horizontal surface is taken as the upper surface of 

the model (Wang 2008).  

The influence of the incident angle and the azimuth on 

the dynamic response of the bridge and the running safety 

of the train is studied, considering values of 0°, 30°, 45°, 

60° and 0°, 30°, 45°, 90° for the incident angle and the 

azimuth, respectively. 

Since only an incident P-wave is considered in the 

following, the vertical response components will generally 

be larger than the horizontal ones. 
 

6.3.1 Comparison between considering and 
neglecting topographic effects 

Firstly, a finite element model of the local topography 

without the bridge has been established and the incident P 

wave is assumed to travel perpendicularly to the ground 

surface. Table 4 shows the peak values of vertical ground 

motion where the bridge supports are located. 

Corresponding peak values without the local topography 

being considered are also given for comparison. It can be 

seen that the amplitudes increase up to 22% when the local 

topography is taken into account. 

With the assumption that the earthquake occurs when 

the train enters the bridge, displayed in Fig. 14 are the 

displacement time histories at the mid of the second span 

(the longest span) of the bridge with and without earthquake  

 

Table 4 Peak values of vertical ground motion where the 

bridge supports are located (Unit: m) 

 
Topography 

considered 

Topography 

neglected 
Increment 

A 0.040 0.036 +11% 

#1 0.034 0.036 -6% 

#2 0.044 0.036 +22% 

#3 0.039 0.036 +8% 

#4 0.038 0.036 +6% 

#5 0.040 0.036 +11% 

B 0.041 0.036 +14% 

 

 

action, and with and without consideration of the local 

topography. The incident seismic wave is assumed to be the 

plane P-wave travelling perpendicularly to the ground 

surface, and the train speed is 250 km/h. 

It can be seen from the figure that under the earthquake 

excitation the dynamic response of the bridge highly 

increases. In addition, it is observed that the topography has 

an important effect on the seismic response of the train-

bridge system. Accounting for the topographic effects leads 

to a larger vertical displacement of the bridge which is 3.16 

times larger than in case these effects are disregarded. The 

topography also affects the time at which the peak value of 

the displacement is obtained, as the local topography 

changes the arrival time of the seismic wave to the ground 

surface. The topography has an even more pronounced  

Table 3 Main parameters of the train submodel 

Item Unit Motor car Trailer car 

Mass of car-body kg 4.8×104 4.4×104 

Mass of bogie kg 3.2×103 2.4×103 

Mass of wheel set kg 2.4×103 2.4×103 

Rolling inertia moment of car-body kg·m2 1.15×105 1.0×105 

Pitching inertia moment of car-body kg·m2 2.7×106 2.7×106 

Yawing inertia moment of car-body kg·m2 2.7×106 2.7×106 

Rolling inertia moment of bogie kg·m2 3.2×103 1.8×103 

Pitching inertia moment of bogie kg·m2 7.2×103 2.2×103 

Yawing inertia moment of bogie kg·m2 6.8×103 2.2×103 

Rolling inertia moment of wheel-set kg·m2 1.2×103 1.1×103 

Yawing inertia moment of wheel-set kg·m2 1.2×103 1.1×103 

Vertical stiffness of primary suspension N/m 1.04×106 0.7×106 

Vertical damping of primary suspension N·s/m 4×104 4×104 

Lateral stiffness of primary suspension N/m 3×106 5×106 

Lateral damping of primary suspension N·s/m 0 0 

Vertical stiffness of secondary suspension N/m 4×105 3×105 

Vertical damping of secondary suspension N·s/m 5×104 5×104 

Lateral stiffness of secondary suspension N/m 2.4×105 2.8×105 

Lateral damping of secondary suspension N·s/m 3×104 2.5×104 

Full length of vehicle m 24.775 24.775 

Distance between two bogies in a vehicle m 17.375 17.375 

Distance between axles on a bogie m 2.5 2.5 
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Fig. 14 Displacement time histories of the bridge under  

various conditions 
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Fig. 15 Acceleration time histories of 1st car-body under 

various conditions 

 

 

effect on the lateral displacement which is considerably  
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Fig. 16 Comparison of maximum bridge displacements  

with/without considering topography 
 

 

larger than in the case where it is not considered. 

Fig. 15 shows the vertical and lateral acceleration time 

histories of the 1st car-body under the same conditions. It 

can be seen from the figure that when the topographic effect 

is considered, the maximum vertical and lateral car-body 

accelerations are 1.38 m/s2 and 0.14 m/s2. So, they 

respectively increased by 3.77 and 1.54 times.  

Figs. 16 and 17 show how the maximum value of the 

displacement of the second mid-span and the acceleration of 

the 1st car-body, respectively, change with the train speed. 

It can be seen from these figures that when the local 

topography is considered, the maximum responses of all the 

items increased. 
 

6.3.2 Influence of time of occurrence of earthquake 
An earthquake may happen at any time when a train 

crosses a long-span bridge, and the time of occurrence may 

significantly affect the seismic response of train-bridge 

system. In order to study this influence, four typical cases 

are selected for comparison, as illustrated in Fig. 18. 

In Case 1, the earthquake occurs when the train enters 

onto the bridge. In Case 2, the earthquake occurs when the 

train arrives at the mid-span of the first span of the bridge. 

In Case 3, the earthquake occurs when the first vehicle 

enters the longest span. In Case 4, the earthquake occurs 

when the whole train is just on the bridge. 

With the assumption that the train speed is 250 km/h, 

the results for all the above four cases are shown in Table 5. 

The running safety is determined by the offload factor and 

the derailment factor. The offload factor foff and the 

derailment factor fder are defined following Xia et al. (2011) 

as 
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Fig. 17 Comparison of maximum car-body accelerations 

with/without considering topography 

 

 

Case 1: Earthquake occurs when the train enters the bridge 

 

Case 2: Earthquake occurs when the train arrives at the mid-

span of the first span of the bridge 

 

Case 3: Earthquake occurs when the first vehicle enters the 

longest span 

 

Case 4: Earthquake occurs when the whole train arrives on 

the bridge 

Fig. 18 Cases of different occurrence time of earthquake 
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Fig. 19 Vertical displacement time histories of the bridge 

under different incident angles 

 

0 2 4 6 8 10

-150

-100

-50

0

50

100

150

 
1
 = 0°

 
1
 = 30°

 
1
 = 45°

 
1
 = 60°

V
er

ti
ca

l 
ac

ce
le

ra
ti

o
n
 o

f 
1
st

 c
ar

-b
o
d
y
 (

cm
/s

2
)

Time (s)
 

Fig. 20 Vertical acceleration time histories of 1st car-body 

under different incident angles 

 

 

foff =△P/Pstatic (42) 

fder =Q/P (43) 

where Pstatic is the average static wheel load; P is the 

dynamic wheel load; △P is the offloaded wheel load, which 

can be defined as the difference between Pstatic and P; Q is 

the lateral force acting on the wheel. 

It can be seen that for the four cases, the dynamic 

response of the train-bridge system during earthquakes is 

different, which demonstrates that the occurrence time of 

earthquake has an influence on the seismic response of 

train-bridge system. However, the results in Table 5 also 

indicate that there are no obvious patterns among these 

responses. Since the running safety is the most significant 

concern in train-bridge dynamic analysis, the situation in 

Case 1 with the largest offload and derailment factor among 

the four cases, is adopted for the following analysis.  

 

6.3.3 Influence of incident angle and azimuth 
(1) Influence of incident angle 

Shown in Figs. 19 and 20 are the vertical displacement 

time histories of the second span of the bridge and the 

vertical acceleration time histories of the 1st car-body, which 

are calculated at the train speed of 250 km/h, under the 

conditions of zero azimuth but different incident angles for 

the earthquake excitation. It can be seen that with the 

increase of incident angle, both the bridge displacement and 

the car-body acceleration are decreasing. This is because at  
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Fig. 21 Maximum vertical bridge displacement as a 

function of the train speed for different incident angles 
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Fig. 22 Maximum vertical car-body acceleration as a 

function of the train speed for different incident angles 

 

 

a given azimuth, the vertical component of ground motion 

becomes smaller for the larger incident angle. It can also be 

found from the figures that the variation of incident angle 

also leads to the time delay of the dynamic responses, due 

to the change of arrival time of seismic wave at the ground 

surface. 

Shown in Figs. 21 and 22 are the distributions of 

maximum vertical displacements of the second mid-span of 

the bridge and the vertical accelerations of the 1st car-body 

under several incident angles, as a function of train speed, 

and in Figs. 23 and 24 are the distributions of maximum 

offload factors and derailment factors taken from all the 

wheel/rail forces of the train vehicles, all under zero 

azimuth condition. 

It can be seen that the four quantities show a different 

dependence on the train speed and generally decrease with 

an increasing angle of incidence. 

(2) Influence of azimuth 
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Fig. 23 Maximum offload factors of train as a function of 

the train speed for different incident angles 

 

200 250 300 350
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 

1
 = 0°

 
1
 = 30°

 
1
 = 45°

 
1
 = 60°

D
er

ai
lm

en
t 

fa
ct

o
r

Train speed (km/h)
 

Fig. 24 Maximum derailment factors of train as a function 

of the train speed for different incident angles 
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Fig. 25 Maximum vertical bridge displacement as a 

function of the train speed for different azimuths 

 

 

The influence of the azimuth is studied, considering 

values of 0°, 30°, 45° and 90° while keeping the angle of  

Table 5 Maximum dynamic response of train-bridge system for the 4 cases with different time of occurrence of 

earthquake 

Occurrence time 

Displacement of the second 

mid-span of the bridge (mm) 
Acceleration of the 1st car-body (cm/s2) Offload factors of 

all vehicles 

Derailment 

factors of all 

vehicles Vertical Lateral Vertical Lateral 

Case 1 103.25 2.37 138.03 13.54 0.78 0.60 

Case 2 109.78 2.36 123.98 12.85 0.65 0.36 

Case 3 114.18 2.35 124.17 13.44 0.65 0.38 

Case 4 99.70 2.36 144.20 12.07 0.68 0.50 

188



 

The effect of local topography on the seismic response of a coupled train-bridge system 

 

200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

  = 0
o

  = 30
o

  = 60
o

  = 90
o

M
ax

im
u

m
 v

er
ti

ca
l 

ac
ce

le
ra

ti
o

n
 (

cm
/s

2
)

Train speed (km/h)
 

Fig. 26 Maximum vertical car-body acceleration as a 

function of the train speed for different azimuths 
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Fig. 27 Maximum offload factors of train as a function of 

the train speed for different azimuths 
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Fig. 28 Maximum derailment factors of train as a function 

of the train speed for different azimuths 

 

 

incidence equal to 30°. Shown in Figs. 25 and 26 are the 

maximum vertical bridge displacement and the vertical car-

body acceleration, as a function of train speed, and in Figs. 

27 and 28 are the maximum offload factors and the 

derailment factors of the train under different train speeds. 

It can be seen that compared to the incident angle, the 

influence of the azimuth is more complex. In general, for an 

incident angle=30°, the azimuths equal to 0 and 90° lead to 

larger seismic responses of the train-bridge system. Since a 

2D model, often considered in practice, is only able to 

consider the condition with zero azimuth, such a model may 

yield unsafe results. 

(3) Combined influence of incident angle and azimuth 

Shown in Table 6 are the maximum dynamic responses 

of train-bridge system with respect to different incident 

angles and azimuths, when the train speed is 200 km/h, 250 

km/h, 300 km/h, respectively. 

From Table 6(a), it can be seen that, for all azimuth 

angles, the maximum vertical bridge displacement and 1st 

car body acceleration decreases with an increasing incident 

angle, and so do most of the maximum offload factors in 

Table 6(b). This is because the vertical component of 

ground motion becomes smaller for larger incident angles 

and the offload factor is mainly determined by the vertical 

wheel-rail force according to Eq. (42). 

By contrast, however, there is no clear trend showing 

how the dynamic responses of a train-bridge system change 

with the azimuth for a given incident angle. The values in 

bold are the maxima under certain incident angle and train 

speed. It can be seen that dynamic responses of the train-

bridge system obtained under other azimuths can be larger 

than those with zero azimuth in most cases, thus a 3-D 

model is required to analyze the effects of local topography 

on the seismic response of train-bridge system. 

 

 

7. Conclusions 
 

In this paper, the influence of local topography is 

studied for the response of a train-bridge system subjected 

to an incident P-wave. The results of a case study 

considering different values of the incident angles and 

azimuths of seismic P-waves allow drawing the following 

conclusions:  

• Seismic excitation can considerably increase the 

dynamic response of train-bridge system, thus it is 

important to study its dynamic behavior during earthquakes. 

• Local topography has a non-negligible effect on the 

seismic response of train-bridge system, and when 

disregarded, this may lead to underestimation of the 

dynamic response of the system during earthquakes. 

• Both the incident angle and the azimuth affect the 

seismic response of the train-bridge system and for this 

reason, the case study demonstrates that a 3-D model is 

required to analyze the effects of local topography on the 

seismic response of the coupled system. 

It should be pointed that in this analysis, for lack of 

space, only the influence of the incident P wave is analyzed, 

while the input method used in the paper is also suitable for 

the S wave, and related studies will be given in the future. 

Moreover, the soil in the case study is assumed to be 

homogenous and isotropic. It is hoped that in the future 

further research on heterogeneous soil can be performed.  

In the next stage of study, the authors will also try to 

find a more representative rule to determine the critical 

incident angle and azimuth, which is important for 

considering the influence of local topography on the seismic 

response of the train-bridge system. 
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