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1. Introduction  
 

The piezoelectric materials are used in electro-

mechanical systems to convert deformations or stresses to 

electric potential and conversely convert electric potential 

to deformations or stresses  in sensor and actuator 

applications, respectively. Application of electro-

mechanical systems in small scales such as micro attracted 

researchers for further works based on non-classical 

theories such as nonlocal Eringen elasticity theory, modified 

couple stress theory and strain gradient theory. Although 

combination of mentioned non-classical theories to 

curvilinear coordinate system such as doubly curved and 

curved beam leads to important issue in size-dependent 

analysis of structures in curvilinear coordinate system, 

however one can conclude that this subject has not been 

carefully studied. The literature review is presented to show 

that the subject of this paper needs some more 

consideration.     

Petyt and Fleischer (1971) studied radial vibration 

analysis of a curved beam based on finite element method. 

The numerical results including six lowest natural 

frequencies of curved beam were calculated for various 

boundary conditions such as simply supported, hinged and 

clamped ends. Three dimensional analysis of a curved beam 

based on geometrically non‐linear formulation using the 

total Lagrangian approach was studied by Karan et al. 

(1989). The displacement field of element was included 

three translations at the element nodes and thee rotations 

about local axes. Ibrahimbegović (1995) studied three-

dimensional finite strain beam theory of Reissner based on 

finite element method. It was shown that an improved  
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representation of curved reference geometry significantly 

increases accuracy of the results. Raveendranath et al. 

(2000) expressed some performance of curved beam finite 

element with coupled polynomial distributions for normal 

and tangential displacements that makes it possible to 

express the strain field in terms of only six generalized 

degrees of freedom leading to a simple two-node element 

with three degrees of freedom per node. Poon et al. (2002) 

studied nonlinear buckling responses of clamped-clamped 

curved beam subjected to sinusoidal excitation. The 

governing equations of motion were solved using Runge-

Kutta numerical integration method. Kuang et al. (2007) 

investigated static responses of a circular curved beam 

bonded with piezoelectric actuators. The curved beam was 

actuated with piezoelectric layers. Bending analysis of a 

functionally graded piezoelectric curved beam subjected to 

external electric potential has been studied by Shi and 

Zhang (2008). Theory of piezo-elasticity has been 

employed for derivation of the governing equations of the 

model and the bending results have been derived using 

Taylor series expansion method. Piovan and Salazar (2015) 

studied dynamics of curved magneto-electro-elastic beams 

made from ceramic/metallic materials subjected to 

magneto-electric fields. They considered some advantages 

of this model as an element of electro-magnetic systems. 

The results of this problem was validated using comparison 

with existing references based on finite element method. 

Zhou et al. (2017) studied the transient analysis of a curved 

piezoelectric beam with variable curvature as piezoelectric 

vibration energy harvester. Two dimensional shear 

deformation theory was employed for electro-elastic 

analysis of a functionally graded piezoelectric cylindrical 

shell (2014). Tornabene and Ceruti (2013) investigated 

static and dynamic analysis of laminated doubly-curved 

shells and panels resting on Winkler-Pasternak elastic 

foundations using Generalized Differential Quadrature 
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method based on first-order shear deformation theory. The 

influence of the both shell curvatures was included from the 

beginning of the theory formulation in the kinematic model. 

Validation of numerical results was performed through 

comparison with results of commercial programs. They 

mentioned that the results are in good agreement with 

literature. Pouresmaeeli and Fazelzadeh (2016) studied the 

influence of carbon nanotube reinforcement on the vibration 

characteristics of the thick doubly curved functionally 

graded composite panels. Five different patterns of carbon 

nanotubes along the thickness direction were used for 

reinforcements. First order shear deformation theory was 

used to derive governing equations of motion based on 

Hamilton's principle. The influences of volume fraction of 

carbon nanotubes, thickness ratio, aspect ratio and curvature 

ratio was studied on the responses. Free vibration analysis 

of a size-dependent doubly curved shell in micro scale was 

studied by Veysi et al. (2017) based on a nonlinear analysis. 

To account size dependency and nonlinearity in the 

governing equations of motion, modified couple stress 

theory and nonlinear Von-Karman relations were used. 

Multiple scales method was used to obtain an approximate 

analytical solution for nonlinear frequency response. 

Modified couple stress formulation was used for free 

vibration analysis of functionally graded microbeam with 

crack and considering damping effect by Akbas (2018). The 

damping effect was accounted based on Kelvin-Voigt 

model. Ebrahimi and Barati (2018) studied stability analysis 

of functionally graded piezoelectric nanobeam. To account 

size-dependency, the nonlocal elasticity theory was used. 

The effect of different external electric voltage, power-law 

index, nonlocal parameter and slenderness ratio was studied 

on the buckling loads of the size-dependent FGP 

nanobeams. Rahmani et al. (2018) studied Size dependent 

bending analysis of micro/nano sandwich structures based 

on a nonlocal high order theory. Forced vibration analysis 

of metal foam nanoplate with various porosities was studied 

based on nonlocal strain gradient theory by Barati (2017). 

Ehyaei and Akbarizadeh (2017) studied free vibration 

analysis of composite laminated beam based on modified 

couple stress theory. Principle of minimum potential energy 

was employed for derivation of governing equations of 

motion. The numerical results were presented in terms of 

material length scale parameter, beam thickness and various 

distributions of layers. 

Tornabene et al. (2017) used refined shear deformation 

theory for free vibration analysis of laminated composite 

arches and beams with variable thickness. Some important 

works on the curved structure based on three dimensional 

analysis were performed by Viola et al. (2013) and 

Tornabene and Brischetto (2018). 

A new shear deformation theory named four-unknown 

refined theory as well as modified couple stress theory were 

developed by Amar et al. (2018) for size-dependent bending 

and free vibration analysis of functionally graded 

microplate. The numerical results were presented in terms 

of length scale parameter based on Navier’s technique. Vu-

Bac et al. (2016) provided a sensitivity analysis for 

quantifying the influence of uncertain input parameters on 

uncertain model outputs. The effectiveness of this study 

were highlighted using numerical studies based on 

analytical functions. Hamida et al. (2018) provided a 

sensitivity analysis for identification of key input 

parameters affecting energy conversion factor of 

flexoelectric materials. The numerical results indicated that 

the flexoelectric constants are the most dominant factors 

influencing the uncertainties in the energy conversion 

factor. Ghasemi et al. (2018) presented a computational 

methodology for topology optimization of multi-material-

based flexoelectric composites. They provided some 

numerical examples for two, three and four phase 

flexoelectric composites to demonstrate the flexibility of the 

model that can be obtained using multi-material topology 

optimization for flexoelectric composites. Some related 

works to optimization and computational methods of 

flexoelectric and piezoelectric structures were studied by 

various researchers (Ghasemi et al. 2017, Thai et al. 2017, 

Nanthakumar et al. 2016, Nguyen et al. 2018). 

Author has prepared a comprehensive literature review 

about the important works related to some significant topics 

such as electro-magneto-elastic problems, size dependent 

analyses in micro and nano scales and curved structures. 

One can conclude that although some works on the curved 

beam have been reported by various researchers, however it 

is investigated that there is no comprehensive work on the 

electro-elastic analysis of sandwich micro curved beam 

subjected to electro-magneto-mechanical loads based on 

first order shear deformation theory and modified couple 

stress theory. To account size-dependency, a micro length 

scale parameter based on modified couple stress theory is 

included in constitutive relations. The governing equations 

are derived based on principle of virtual work. The 

numerical outputs such as displacements, rotation 

component, maximum electric and magnetic potentials are 

presented in terms of important parameters such as micro 

length scale parameter, initial electric and magnetic 

potentials and opening angle. 

 

 

2. Size-dependency relations based on modified 
couple stress 
 

The schematic of curved beam is presented in Fig. 1. 

Modified couple stress formulation is used in this paper 

to derive size-dependent governing equations of a three-

layered curved microbearn subjected to transverse loads and 

applied electric and magnetic potentials. The modified 

couple stress formulation of a curved microbeam is 

expressed as follows 

𝑈𝑠 =
1

2
∫ (𝝈𝜺 − 𝑫𝑬 − 𝑩𝑯 + 𝒎𝝌)𝑑𝑉

𝑉

 (1) 

In which σ and ε are the stress and strain tensors, D and 

B are electric displacement and magnetic induction, E and 

H are electric and magnetic fields, m is the deviatoric part 

of the symmetric couple stress tensor and χ is the symmetric 

curvature tensor that are defined as follows 

𝑚 =
𝐸

1 + 𝜈
𝑙′2𝜒       𝜒 =

1

2
(∇𝜃⃗ + (∇𝜃⃗)

𝑇
) (2) 
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Fig. 1 The schematic figure of a three-layer curved 

nanobeam 
 

 

In which E is modulus of elasticity,  is Poisson ratio, 𝑙′ 
is the material length scale parameter.  In addition, θ is the 

rotation vector.  

The stress components, electric displacement and 

magnetic induction are defined for the piezomagnetic 

materials as (Arefi and Rahimi 2011b, 2012, 2014, 2015, 

2015, Arefi et al. 2011, 2012, Arefi and Allam 2015, Arefi 

and Zenkour 2017a, b, c, d) 

𝝈 = 𝐶𝜺 − 𝑒𝑬 − 𝑞𝑯
𝑫 = 𝑒𝜺 + 𝜖𝑬 + 𝑚𝑯
𝑩 = 𝑞𝜺 + 𝑚𝑬 + 𝜇𝑯

 (3) 

in which 𝝈, 𝜺 are stress and strain tensors, 𝑬, 𝑯 are electric 

and magnetic fields,  𝑫, 𝑩  are electric displacement and 

magnetic induction vectors. In addition, 𝐶, 𝑒, 𝜖, 𝑚, 𝑞, 𝜇 are 

elastic stiffness, piezoelectric, dielectric permittivity, 

magnetoelectric, piezomagnetic, and magnetic permittivity 

coefficients, respectively. In this stage and using the 

principle of virtual work −𝛿𝑈 + 𝛿𝑉 = 0, we can derive the 

governing equations. The variation of strain energy 𝛿𝑈 

and external works 𝛿𝑉 are defined as 

𝛿𝑈 = ∭ (𝝈𝛿𝜺 − 𝑫𝛿𝑬 − 𝑩𝛿𝑯 + 𝒎𝛿𝝌
𝑣

 )d𝑉 (4a) 

𝛿𝑉 = ∬ (−𝑞)𝛿𝑢𝑟d𝐴.
𝐴

 (4b) 

In which q is transverse load.  

Before presentation of governing equations, the electric 

and magnetic potentials should be defined. Electric and 

magnetic potentials for piezomagnetic layers are expressed 

as follows 

𝜓̆(𝑟, 𝜃) = −𝜓(𝜃)cos (
𝜋

ℎ𝑝

𝜌) +
2𝜓0

ℎ𝑝

𝜌

𝜙̆(𝑟, 𝜃) = −𝜙(𝜃)cos (
𝜋

ℎ𝑝

𝜌) +
2𝜙0

ℎ𝑝

𝜌

 (5) 

In which, 𝜓0, 𝜙0are applied electric and magnetic 

potentials and 𝜌 = 𝜁 ±
ℎ𝑒

2
±

ℎ𝑝

2
 are defined for top and 

bottom piezo-magnetic face-sheets. By definition of electric 

and magnetic potential components (𝑬, 𝑯)  using 

relation (𝑬, 𝑯) = −∇(𝜓̆, 𝜙̆), the constitutive relation can be 

completed.  

The governing equations can be obtained by substitution 

of constitutive equations (Eq. (3)) into Eqs. (4) as follows  

𝛿𝑢𝑟: −𝑁𝜃𝜃 +
𝑑𝑁𝑟𝜃

𝑑𝜃
+

1

4

𝑑𝑀𝑟𝑧
𝜒

𝑑𝜃
+

1

4

𝑑2𝑀𝜃𝑧
𝜒

𝑑𝜃2
+ 𝐾1𝑢𝑟

− 𝐾2

1

𝑟𝑖
2

𝑑2𝑢𝑟

𝑑𝜃2
− 𝑞 = 0 

𝛿𝑢𝜃:
𝑑𝑁𝜃𝜃

𝑑𝜃
+ 𝑁𝑟𝜃 +

1

4

𝑑𝑀𝜃𝑧
𝜒

𝑑𝜃
−

1

4
𝑀𝑟𝑧

𝜒 = 0 

𝛿𝜒:
𝑑𝑀𝜃𝜃

𝑑𝜃
− (𝑅𝑁𝑟𝜃 + 𝑀𝑟𝜃) + 𝑀𝑟𝜃 −

1

2
𝑁𝜃𝜃

𝜒 

+
1

4

𝑑𝑁𝑟𝜃
𝜒

𝑑𝜃
+

1

4
𝑀𝑟𝑧

𝜒𝑅 +
1

4

𝑑𝑁𝜃𝑧
𝜒

𝑑𝜃
+

1

4

𝑑𝑃𝜃𝑧
𝜒

𝑑𝜃
= 0   

𝛿𝜓: − 𝐷̅𝑟 −
𝑑𝐷̅𝜃

𝑑𝜃
= 0 

𝛿𝜙: −𝐵̅𝑟 −
𝑑𝐵̅𝜃

𝑑𝜃
= 0 

(6) 

Substitution of resultant components in terms of basic 

relations into governing relations leads to 

𝛿𝑢𝑟: −
1

4
𝐴33

𝑑4𝑢𝑟

𝑑𝜃4
+ [

1

4
𝐴35 + 𝐴11]

𝑑2𝑢𝑟

𝑑𝜃2
− 𝐴4𝑢𝑟 

+
1

4
𝐴33

𝑑3𝑢𝜃

𝑑𝜃3
+ [

1

4
𝐴35 − 𝐴4 − 𝐴11]

𝑑𝑢𝜃

𝑑𝜃
 

+
1

4
[𝐴32 + 𝐴34]

𝑑3𝜗

𝑑𝜃3

+ [𝐴12 − 𝐴13 − 𝐴5 −
1

4
𝐴35𝑅]

𝑑𝜗

𝑑𝜃
 

−𝐴14

𝑑2𝜓

𝑑𝜃2
− 𝐴6𝜓 − 𝐴15

𝑑2𝜙

𝑑𝜃2
− 𝐴7𝜙 + 𝐾1𝑢𝑟

− 𝐾2

1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2
− 𝑞 = 0 

 

𝛿𝑢𝜃: −
1

4
𝐴33

𝑑3𝑢𝑟

𝑑𝜃3
+ [ 𝐴4 + 𝐴11 −

1

4
𝐴35]

𝑑𝑢𝑟

𝑑𝜃
 

+ [𝐴4 +
1

4
𝐴33]

𝑑2𝑢𝜃

𝑑𝜃2
− [𝐴11 +

1

4
𝐴35] 𝑢𝜃 

+ [𝐴5 +
1

4
𝐴32 +

1

4
𝐴34]

𝑑2𝜗

𝑑𝜃2

+ [𝐴12 − 𝐴13 +
1

4
𝐴35𝑅] 𝜗 

+[𝐴6 − 𝐴14]
𝑑𝜓

𝑑𝜃
+ [𝐴7 − 𝐴15]

𝑑𝜙

𝑑𝜃
= −

𝑑𝑁𝜓

𝑑𝜃
−

𝑑𝑁𝜙

𝑑𝜃
 

 

𝛿𝜗: −
1

4
[𝐴36 + 𝐴33]

𝑑3𝑢𝑟

𝑑𝜃3
+ [

1

4
𝑅𝐴35 + 𝐴5]

𝑑𝑢𝑟

𝑑𝜃
 

−𝑅𝐴11

𝑑𝑢𝑟

𝑑𝜃
+ [𝐴5 +

1

4
𝐴33 +

1

4
𝐴36]

𝑑2𝑢𝜃

𝑑𝜃2

+ [𝑅𝐴11 +
1

4
𝑅𝐴35] 𝑢𝜃  

+ [𝐴8 +
1

2
𝐴32 +

1

2
𝐴34 +

1

4
𝐴37]

𝑑2𝜗

𝑑𝜃2
 

+ [−𝑅𝐴12 + 𝑅𝐴13 − 𝐴32 −
1

4
𝑅2𝐴35] 𝜗 

+𝐴9

𝑑𝜓

𝑑𝜃
+ 𝑅𝐴14

𝑑𝜓

𝑑𝜃
+ 𝐴10

𝑑𝜙

𝑑𝜃
+ 𝑅𝐴15

𝑑𝜙

𝑑𝜃

= −
𝑑𝑀𝜓

𝑑𝜃
−

𝑑𝑀𝜙

𝑑𝜃
 

(7) 
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δψ: −A23

d2ur

dθ2
− A16ur + [A23 − A16]

duθ

dθ
 

+[A25 − A17 − A24]
dχ

dθ
− A29

d2ψ

dθ2
 

+A18ψ − A30

d2ϕ

dθ2
+ A19ϕ = −Dψ − Dϕ 

 

𝛿𝜙: −𝐴26

𝑑2𝑢𝑟

𝑑𝜃2
− 𝐴20𝑢𝑟 + [𝐴26 − 𝐴20]

𝑑𝑢𝜃

𝑑𝜃
+ [𝐴28

− 𝐴21 − 𝐴27]
𝑑𝜒

𝑑𝜃
− 𝐴30

𝑑2𝜓

𝑑𝜃2

+ 𝐴19𝜓 − 𝐴31

𝑑2𝜙

𝑑𝜃2
+ 𝐴22𝜙

= −𝐵𝜓 − 𝐵𝜙 

 

 

3. Solution procedure 
 

In this section, the solution procedure for electro-

magneto-mechanical bending analysis are developed. The 

proposed solutions for a simply-supported curved sandwich 

beam are expressed as 

{
(𝑢𝜃 . 𝜗)

(𝑢𝑟 . 𝜓. 𝜙)
} = ∑ {

(𝑈𝜃 . ϑ)cos (𝛼𝜃)
(𝑈𝑟 . Ψ. Φ)sin (𝛼𝜃)

}

𝑚=1.3.5

. (8) 

in which 𝛼 = 𝑚𝜋𝑅
𝐿⁄ . This solution indicates that two ends 

of curved beam are radially restricted while they can move 

freely along the circumferential direction. Substitution of 

proposed solution into governing equations leads to 

following well-known equation 

[𝐾]{𝑋} = {𝐹} (9) 

In which 𝑋={𝑈𝑟.𝑈𝜃.Χ.Ψ.Φ} is an unknown vector 

corresponding to five unknown functions and [𝐾]  is 

stiffness matrix. The elements of stiffness matrix are 

expressed as 

𝐾11 = −
1

4
𝐴33𝛼4 − [

1

4
𝐴35 + 𝐴11] 𝛼2 − 𝐴4, 

𝐾12 = +
1

4
𝐴33𝛼3 − [

1

4
𝐴35 − 𝐴4 − 𝐴11] 𝛼, 

𝐾13 = +
1

4
[𝐴32 + 𝐴34]𝛼3 

− [𝐴12 − 𝐴13 − 𝐴5 −
1

4
𝐴35𝑅] 𝛼, 

𝐾14 = +𝐴14𝛼2 − 𝐴6 , 
𝐾15 = +𝐴15𝛼2 − 𝐴7, 

𝐾21 =
1

4
𝐴33𝛼3 + [𝐴4 + 𝐴11 −

1

4
𝐴35] 𝛼, 

𝐾22 = − [𝐴4 +
1

4
𝐴33] 𝛼2 − [𝐴11 +

1

4
𝐴35], 

𝐾23 = − [𝐴5 +
1

4
𝐴32 +

1

4
𝐴34] 𝛼2

+ [𝐴12 − 𝐴13 +
1

4
𝐴35𝑅], 

𝐾24 = [𝐴6 − 𝐴14]𝛼  
𝐾25 = [𝐴7 − 𝐴15]𝛼, 

𝐾31 = −
1

4
[𝐴36 + 𝐴33]𝛼3

+ [𝐴5 − 𝑅𝐴11 +
1

4
𝑅𝐴35] 𝛼, 

(10) 

𝐾32 = − [𝐴5 +
1

4
𝐴33 +

1

4
𝐴36] 𝛼2

+ [𝑅𝐴11 +
1

4
𝑅𝐴35], 

𝐾33 = − [𝐴8 +
1

2
𝐴32 +

1

2
𝐴34 +

1

4
𝐴37] 𝛼2 

+ [−𝑅𝐴12 + 𝑅𝐴13 − 𝐴32 −
1

4
𝑅2𝐴35], 

𝐾34 = +[𝐴9 + 𝑅𝐴14]𝛼, 
𝐾35 = (𝐴10 + 𝑅𝐴15)𝛼, 
𝐾41 = +𝐴23𝛼2 − 𝐴16, 
𝐾42 = −[𝐴23 − 𝐴16]𝛼, 

𝐾43 = −[𝐴25 − 𝐴17 − 𝐴24]𝛼  
𝐾44 = +𝐴29𝛼2 + 𝐴18, 
𝐾45 = +𝐴30𝛼2 + 𝐴19, 

𝐾51 = +𝐴26𝛼2 − 𝐴20𝑢𝑟 , 
𝐾52 = −[𝐴26 − 𝐴20]𝛼, 

𝐾53 = −[𝐴28 − 𝐴21 − 𝐴27]𝛼  
𝐾54 = +𝐴30𝛼2 + 𝐴19, 
𝐾55 = +𝐴31𝛼2 + 𝐴22 

 

In addition, the elements of the force vector {𝐹} are 

expressed as 

𝐹1 = +𝑁𝜓 + 𝑁𝜙 + 𝑞  

𝐹2 = −
𝑑𝑁𝜓

𝑑𝜃
−

𝑑𝑁𝜙

𝑑𝜃
 

𝐹3 −
𝑑𝑀𝜓

𝑑𝜃
−

𝑑𝑀𝜙

𝑑𝜃
 

𝐹4 = −𝐷𝜓 − 𝐷𝜙   

𝐹5 = −𝐵𝜓 − 𝐵𝜙 . 

(11) 

 
 

4. Results and discussions 
 

In this section, the numerical results of the problem are 

presented. Before presentation of numerical results, the 

material properties of elastic core and piezomagnetic layers 

should be introduced for core and piezomagnetic layers as 

Core 

𝐸 = 1.18 𝑇𝑃𝑎  𝑣 = 0.25 (12) 

Piezomagnetic face-sheets   

𝐶𝜃𝜃𝜃𝜃
𝑝 = 286𝐺𝑃𝑎   𝐶𝑟𝜃𝑟𝜃

𝑝 = 45.3𝐺𝑃𝑎

𝑒𝜃𝜃𝑟
𝑝 = 𝑒𝑟𝜃𝜃

𝑝 = −4.4(C/m2) 

𝑒𝑟𝜃𝜃
𝑝 = 𝑒𝜃𝑟𝜃

𝑝 = 11.6(C/m2)

 

𝑞𝜃𝜃𝑟
𝑝 = 𝑞𝑟𝜃𝜃

𝑝 = 580.3(N/Am)  
𝑞𝑟𝜃𝜃

𝑝 = 𝑞𝜃𝑟𝜃
𝑝 = 550(N/Am) 

𝜖𝑟𝑟
𝑝 = 9.3 × 10−11(C/mV)   

𝜖𝜃𝜃
𝑝 = 8 × 10−11(C/mV)

𝑚𝑟𝑟
𝑝 = 3 × 10−12(Ns/CV)   

𝑚𝜃𝜃
𝑝 = 5 × 10−12(Ns/CV)

𝜇𝑟𝑟
𝑝 = 1.57 × 10−4(Ns2/C2)  

𝜇𝜃𝜃
𝑝 = −5.9 × 10−4(Ns2/C2)

 

(13) 

The electro-magneto-elastic bending results are 

presented in this section in terms of important parameters of 

the sandwich curved microbeam such as micro length scale 

parameter, applied electric and magnetic potentials, and  
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Fig. 2 Variation of radial displacement 𝑢𝑟  in terms of 

applied electric potential Ψ0 
 

 
Fig. 3 Variation of radial displacement 𝑢𝑟 in terms of angle 

of beam θ 
 

 

opening angle. To account micro length scale parameter, a 

dimensionless parameter l  is defined as:  l′ = l ×
17.65 𝜇m. 

 
4.1 Comparison and validation 
 
This section presents a comparison with previous works 

for validation. For this aim, reference (Shi and Zhong 2008) 

is used. Shown in Fig. 2 is influence of applied electric 

potential Ψ0  on the variation of radial displacement 𝑢𝑟 

based on present formulation and results of Shi and Zhong 

(2008).  

In addition, comparison between current and previous 

results (Shi and Zhong 2008) for radial displacement 𝑢𝑟 in 

terms of angle of curved beam θ  for Ψ0 = 100𝑉  is 

presented in Fig. 3. One can conclude that present 

numerical results in this paper are in good agreement with 

reference.  

Figs. 4 and 5 show variation of dimensionless radial and 

transverse displacements 𝑢𝑟/h , 𝑢𝑡/h of middle surface 

in terms of micro length scale parameter l and opening 

angle 𝜃 = L/R.  

 
Fig. 4 Variation of dimensionless radial displacement 𝑢𝑟/h 

in terms of micro length scale parameter 𝑙  and opening 

angle 𝜃 = L/R 
 

 
Fig. 5 Variation of dimensionless transverse displacement 

𝑢𝑡/h  in terms of micro length scale parameter 𝑙  and 

opening angle 𝜃 = L/R 
 

 
Fig. 6 Variation of rotation component 𝜗 in terms of micro 

length scale parameter 𝑙 and opening angle 𝜃 = L/R 
 

 

One can observe that with increase of micro length scale 

parameter l and decrease of opening angle 𝜃, both radial 

and transverse displacements are decreased significantly. It  
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Fig. 7 Variation of maximum electric potential 𝛹 in terms 

of micro length scale parameter 𝑙 and opening angle 𝜃 =
L/R 

 

 
Fig. 8 Variation of maximum magnetic potential 106Φ in 

terms of micro length scale parameter and opening angle 

𝜃 = L/R 
 

 
Fig. 9 Variation of dimensionless radial displacement 𝑢𝑟/h 

in terms of initial electric and magnetic potentials 
 

 

can be concluded that with increase of micro length scale 

parameter, the stiffness of curved beam is increased and  

 
Fig. 10 Variation of dimensionless transverse displacement 

𝑢𝑡/h in terms of initial electric and magnetic potentials 
 

 
Fig. 11 Variation of rotation components ϑ  in terms of 

initial electric and magnetic potentials 
 

 
Fig. 12 Variation of maximum electric potential 𝛹 in terms 

of initial electric and magnetic potentials 
 
 

consequently both displacements are decreased 

significantly. In addition, it is concluded that with increase 

of opening angle of curved beam, the stiffness is decreased 

and then the displacements are increased. 

Shown in Fig. 6 is variation of rotation components 𝜗 

in terms of micro length scale parameter 𝑙 and opening 

angle 𝜃 = L/R. the same behavior concluded for Figs. 4,5 

can be observed for Fig. 6. 

Distribution of maximum electric and magnetic 

potentials through thickness direction are presented in Figs. 

7, 8 in terms of micro length scale parameter 𝑙 and  
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Fig. 13 Variation of maximum magnetic potential 106Φ in 

terms of initial electric and magnetic potentials 
 

 

opening angle 𝜃 = L/R, respectively. The numerical results 

indicate that the maximum electric and magnetic potentials 

through thickness direction are decreased with increase of 

micro length scale parameter 𝑙 and decrease of opening 

angle 𝜃. One can conclude that with increase of micro 

length scale parameter 𝑙 , the stiffness of micro curved 

beam is increased that leads to decrease of maximum 

electric and magnetic potentials.  

The influence of initial electric and magnetic potentials 

is studied on the magneto-electro-elastic results of sandwich 

curved microbeam. Shown in Figs. 9 and 10 are variation of 

dimensionless radial and transverse displacements 𝑢𝑟/h , 

𝑢𝑡/h in terms of initial electric and magnetic potentials 

Ψ0. Φ0 . One can conclude that both displacement 

components are increased with increase of initial electric 

Ψ0 potential and decrease of initial magnetic potential Φ0. 

These conclusions are in accordance with results of 

previous works (Arefi and Zenkour 2017c, Arefi et al. 

2017a, b). 

Variation of rotation component, maximum electric and 

magnetic potentials through thickness direction is presented 

in Figs. 11, 12 and 13 in terms of initial electric and 

magnetic potentials Ψ0. Φ0 . The numerical results show 

that the rotation component, maximum electric and 

magnetic potentials are increased with increase of initial 

magnetic potential Φ0 and decrease of electric potential 

Ψ0. 

 

 
5. Conclusions 
 

Magneto-electro-elastic bending analysis of a three-

layered curved nanobeam was studied in this paper based 

on modified couple stress formulation and first-order shear 

deformation theory. 

Principle of virtual work was used to derive governing 

equations in terms of displacement field and magnetic and 

electric potentials. The numerical results were presented in 

terms of micro length scale parameter, opening angle, initial 

electric and magnetic potentials. Some significant outputs 

of this analysis are expressed as follows: 

To account size dependency in analysis of curved 

microbeam, modified couple stress formulation was 

employed. The numerical results show that with increase of 

micro length scale parameter associated with this theory, the 

stiffness of curved microbeam is increased and 

consequently the displacements, rotation component, 

maximum electric and magnetic potentials are decreased 

significantly. 

The opening angle as a geometric parameter has 

significant influence on the bending results of curved 

microbeam. it is concluded that with increase of opening 

angle of curved microbeam, the stiffness is decreased and 

then the displacements, rotation, maximum electric and 

magnetic potentials along the thickness direction are 

increased.  

Initial electric and magnetic potentials lead to significant 

change of bending results. It is observed that with increase 

of initial electric potential and decrease of initial magnetic 

potential, the radial and transverse displacements are 

increased. In addition, it is observed that the rotation 

component, maximum electric and magnetic potentials are 

increased with increase of initial magnetic potential Φ0 

and decrease of electric potential Ψ0. 

 

 

References 
 
Akbas, S.D. (2018), “Forced vibration analysis of cracked 

functionally graded microbeams”, Adv. Nano Res., 6(1), 39-55. 

Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), “A 

new four-unknown refined theory based on modified couple 

stress theory for size-dependent bending and vibration analysis 

of functionally graded micro-plate”, Steel Compos. Struct., 

26(1), 89-102. 

Arefi, M., Kiani, M. and Zenkour, A.M. (2017b), “Size-dependent 

free vibration analysis of a three-layered exponentially graded 

nano-/micro-plate with piezomagnetic face sheets resting on 

Pasternak’s foundation”, J. Sandw. Struct. Mater., 29(5), 774-

786. 

Arefi, M., Zamani, M.H. and Kiani, M. (2017a), “Size-dependent 

free vibration analysis of three-layered exponentially graded 

nanoplate with piezomagnetic face-sheets resting on Pasternak’s 

foundation”, J. Intel. Mater. Syst. Struct., 29(5), 774-786.  

Arefi, M. (2016), “Analysis of wave in a functionally graded 

magneto-electro-elastic nano-rod using nonlocal elasticity 

model subjected to electric and magnetic potentials”, Acta 

Mech., 227(9), 2529-2542. 

Arefi, M. and Rahimi, G.H. (2011a), “Thermo elastic analysis of a 

functionally graded cylinder under internal pressure using first 

order shear deformation theory”, Sci. Res. Essays., 5(12), 1442-

1454. 

Arefi, M. and Zenkour, A.M. (2017a), “Employing the coupled 

stress components and surface elasticity for nonlocal solution of 

wave propagation of a functionally graded piezoelectric Love 

nanorod model”, J. Intel. Mater. Syst. Struct., 28(17), 2403-

2413. 

Arefi, M. and Zenkour, A.M. (2017b), “Transient sinusoidal shear 

deformation formulation of a size-dependent three-layer piezo-

magnetic curved nanobeam”, Acta Mech., 228(10), 3657-3674.  

Arefi, M. and Zenkour, A.M. (2017c), “Effect of thermo-magneto-

electro-mechanical fields on the bending behaviors of a three-

layered nanoplate based on sinusoidal shear-deformation plate 

theory”, J. Sandw. Struct. Mater., 1099636217697497. 

Arefi, M. and Zenkour, A.M. (2017d), “Size-dependent free 

vibration and dynamic analyses of piezo-electro-magnetic 

sandwich nanoplates resting on viscoelastic foundation”, Phys. 

151

http://www.techno-press.org/?page=search2#1
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


 

M. Arefi 

 

B: Cond. Matt., 521, 188-197. 

Arefi, M. (2015), “Nonlinear electromechanical analysis of a 

functionally graded square plate integrated with smart layers 

resting on Winkler-Pasternak foundation”, Smart Struct. Syst., 

16(1), 195-211. 

Arefi, M. and Allam, M.N.M. (2015), “Nonlinear responses of an 

arbitrary FGP circular plate resting on foundation”, Smart 

Struct. Syst., 16(1), 81-100. 

Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), 

“Optimized design of a cylinder under mechanical, magnetic 

and thermal loads as a sensor or actuator using a functionally 

graded piezomagnetic material”, Int. J. Phys. Sci., 6(27), 6315-

6322. 

Arefi, M. and Rahimi, G.H. (2011b), “Nonlinear analysis of a 

functionally graded square plate with two smart layers as sensor 

and actuator under normal pressure”, Smart Struct. Syst., 8(5), 

433-447. 

Arefi, M. and Rahimi, G.H. (2012), “Studying the nonlinear 

behavior of the functionally graded annular plates with 

piezoelectric layers as a sensor and actuator under normal 

pressure”, Smart Struct. Syst., 9(2), 127-143. 

Arefi, M. and Rahimi, G.H. (2014), “Comprehensive piezo-

thermo-elastic analysis of a thick hollow spherical shell”, Smart 

Struct. Syst., 14(2), 225-246. 

Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), “Exact 

solution of a thick walled functionally graded piezoelectric 

cylinder under mechanical, thermal and electrical loads in the 

magnetic field”, Smart Struct. Syst., 9(5), 427-439. 

Barati, M.R. (2017), “Nonlocal-strain gradient forced vibration 

analysis of metal foam nanoplates with uniform and graded 

porosities”, Adv. Nano. Res., 5(4), 393-414. 

Ebrahimi, F. and Barati, M.R. (2018), “Stability analysis of 

functionally graded heterogeneous piezoelectric nanobeams 

based on nonlocal elasticity theory”, Adv. Nano. Res., 6(1), 93-

112. 

Ehyaei, J. and Akbarizadeh, M.R. (2017), “Vibration-analysis of 

micro composite thin beam based on modified couple stress”, 

Struct. Eng. Mech., 64(4), 793-802. 

Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), “A level-set 

based IGA formulation for topology optimization of 

flexoelectric materials”, Comput. Meth. Appl. Mech. Eng., 313, 

239-258. 

Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), “A multi-material 

level set-based topology optimization of flexoelectric 

composites”, Comput. Meth. Appl. Mech. Eng., 332, 47-62. 

Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and 

Rabczuk, T. (2018), “Sensitivity and uncertainty analysis for 

flexoelectric nanostructures”, Comput. Meth. Appl. Mech. Eng., 

337, 95-109.  

Ibrahimbegović, A. (1995), “On finite element implementation of 

geometrically nonlinear Reissner’s beam theory three-

dimensional curved beam elements”, Comput. Meth. Appl. 

Mech. Eng., 122(1-2), 11-26. 

Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), “The static 

responses and displacement control of circular curved beams 

with piezoelectric actuators”, Smart Mater. Struct., 16(4), 1016-

1024.  

Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, 

T. (2016), “Detection of material interfaces using a regularized 

level set method in piezoelectric structures”, Inv. Prob. Sci. 

Eng., 24(1), 153-176. 

Nguyen, B.H., Nanthakumar, S.S., Zhuang, X., Wriggers, P. and 

Rabczuk, T. (2018), “Dynamic flexoelectric effect on 

piezoelectric nanostructures”, Eur. J. Mech. A. Sol., 81, 40. 

Petyt, M. and Fleischer, C.C. (1971), “Free vibration of a curved 

beam”, J. Sound Vibr., 18(1), 17-30. 

Piovan, M.T. and Olmedo Salazar, J.F. (2015), “A 1D model for 

the dynamic analysis of magneto-electro-elastic beams with 

curved configuration”, Mech. Res. Com., 67, 34-38. 

Poon, W.Y., Ng, C.F. and Lee, Y.Y. (2002), “Dynamic stability of a 

curved beam under sinusoidal loading”, Proc. Inst. Mech. Eng. 

Part G: J. Aer. Eng., 216(4), 209-217. 

Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), “Frequency 

analysis of doubly curved functionally graded carbon nanotube-

reinforced composite panels”, Acta. Mech., 227(10), 2765-2794.  

Rahmani, O., Deyhim, S. and Hosseini, S.A.H. (2018), “Size 

dependent bending analysis of micro/nano sandwich structures 

based on a nonlocal high order theory”, Steel Compos. Struct., 

27(3), 371-388. 

Raveendranath, P., Singh, G. and Pradhan, B. (2000), “Free 

vibration of arches using a curved beam element based on a 

coupled polynomial displacement field”, Comput. Struct., 78(4), 

583-590. 

Shi, Z.F. and Zhang, T. (2008), “Bending analysis of a 

piezoelectric curved actuator with a generally graded property 

for the piezoelectric parameter”, Smart Mater. Struct., 17(4), 

045018. 

Surana, K.S. and Sorem, R.M. (1989), “Geometrically non‐linear 

formulation for three dimensional curved beam elements with 

large rotations”, Int. J. Numer. Meth. Eng., 28(1), 43-73. 

Thai, T.Q., Rabczuk, T. and Zhuang, X. (2017), “A large 

deformation isogeometric approach for flexoelectricity and soft 

materials”, Comput. Meth. Appl. Mech. Eng., 341, 718-739.  

Tornabene, F. and Brischetto, S. (2018), “3D capability of refined 

GDQ models for the bending analysis of composite and 

sandwich plates, spherical and doubly-curved shells”, Thin. 

Wall. Struct., 129, 94-124. 

Tornabene, F. and Ceruti, A. (2013), “Free-form laminated doubly-

curved shells and panels of revolution resting on Winkler-

Pasternak elastic foundations: A 2-D GDQ solution for static 

and free vibration analysis”, World J. Mech., 3(1), 1-25. 

Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), “Refined 

shear deformation theories for laminated composite arches and 

beams with variable thickness: Natural frequency analysis”, 

Eng. Anal. Bound. Elem.  

Veysi, A., Shabani, R. and Rezazadeh, G. (2017), “Nonlinear 

vibrations of micro-doubly curved shallow shells based on the 

modified couple stress theory”, Nonlin. Dyn., 87(3), 2051-2065.  

Viola, E., Tornabene, F. and Fantuzzi, N. (2013), “Static analysis 

of completely doubly-curved laminated shells and panels using 

general higher-order shear deformation theories”, Compos. 

Struct., 101, 59-93. 

Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and 

Rabczuk, T. (2016), “A software framework for probabilistic 

sensitivity analysis for computationally expensive models”, 

Adv. Eng. Softw., 100, 19-31.  

Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2017), 

“Precise deflection analysis of laminated piezoelectric curved 

beam”, J. Intel. Mater. Syst. Struct., 27(16), 2179-2198. 

 

 
CC 

 

 

 

 

 

 

 

 

 

 

 

 

152

http://www.techno-press.org/?page=search2#1
http://www.techno-press.org/?page=search2#1
http://www.techno-press.org/?page=search2#1
https://www.sciencedirect.com/science/article/pii/S0045782516303115
https://www.sciencedirect.com/science/article/pii/S0045782516303115
https://www.sciencedirect.com/science/article/pii/S0045782516303115
https://www.sciencedirect.com/science/journal/00457825
https://www.sciencedirect.com/science/article/pii/S0045782517307569
https://www.sciencedirect.com/science/article/pii/S0045782517307569
https://www.sciencedirect.com/science/article/pii/S0045782517307569
https://www.sciencedirect.com/science/journal/00457825
https://www.sciencedirect.com/science/article/pii/S0045782518301415
https://www.sciencedirect.com/science/article/pii/S0045782518301415
https://www.sciencedirect.com/science/journal/00457825
https://www.sciencedirect.com/science/journal/00457825
https://www.tandfonline.com/author/Nanthakumar%2C+SS
https://www.tandfonline.com/author/Lahmer%2C+T
https://www.tandfonline.com/author/Zhuang%2C+X
https://www.tandfonline.com/author/Zi%2C+G
https://www.tandfonline.com/author/Rabczuk%2C+T
https://www.tandfonline.com/doi/full/10.1080/17415977.2015.1017485
https://www.tandfonline.com/doi/full/10.1080/17415977.2015.1017485
https://www.sciencedirect.com/science/article/pii/S0997753818300238
https://www.sciencedirect.com/science/article/pii/S0997753818300238
https://www.sciencedirect.com/science/journal/00936413/67/supp/C
http://www.techno-press.org/?page=search2#1
http://www.techno-press.org/?page=search2#1
https://onlinelibrary.wiley.com/toc/10970207/28/1
https://www.sciencedirect.com/science/article/pii/S0045782518302640
https://www.sciencedirect.com/science/article/pii/S0045782518302640
https://www.sciencedirect.com/science/article/pii/S0045782518302640
https://www.sciencedirect.com/science/journal/00457825
https://www.sciencedirect.com/science/article/pii/S0263823117314143#!
https://www.sciencedirect.com/science/article/pii/S0263823117314143#!
https://www.sciencedirect.com/science/journal/02638231
https://www.sciencedirect.com/science/journal/02638231
https://www.sciencedirect.com/science/journal/02638231/129/supp/C
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.sciencedirect.com/science/article/pii/S0263822313000354#!
https://www.sciencedirect.com/science/article/pii/S0263822313000354#!
https://www.sciencedirect.com/science/article/pii/S0263822313000354#!
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223/101/supp/C
https://www.sciencedirect.com/science/article/pii/S0965997816301284
https://www.sciencedirect.com/science/article/pii/S0965997816301284
https://www.sciencedirect.com/journal/advances-in-engineering-software


 

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory  

 

Appendix 

{𝐴4, 𝐴5, 𝐴8} = ∫
𝐶𝜃𝜃𝜃𝜃

(𝑅 + 𝜁)
{1, 𝑧, 𝑧2}d𝑧

+
ℎe
2

−
ℎe
2

 

+ ∫
𝐶𝜃𝜃𝜃𝜃

𝑝

(𝑅 + 𝑧)
{1, 𝑧, 𝑧2}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫
𝐶𝜃𝜃𝜃𝜃

𝑝

(𝑅 + 𝑧)
{1, 𝑧, 𝑧2}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴6, 𝐴7, 𝐴9, 𝐴10}

= ∫

𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌) {𝑒𝜃𝜃𝑟
𝑝, 𝑞𝜃𝜃𝑟

𝑝, 𝑧𝑒𝜃𝜃𝑟
𝑝

, 𝑧𝑞𝜃𝜃𝑟
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫

𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌) {𝑒𝜃𝜃𝑟
𝑝, 𝑞𝜃𝜃𝑟

𝑝, 𝑧𝑒𝜃𝜃𝑟
𝑝

, 𝑧𝑞𝜃𝜃𝑟
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴11, 𝐴12, 𝐴13} = ∫
𝐶𝑟𝜃𝑟𝜃

(𝑅 + 𝑧)
{1, (𝑅 + 𝑧), 𝑧}d𝑧

+
ℎe
2

−
ℎe
2

 

+ ∫
𝐶𝑟𝜃𝑟𝜃

𝑝

(𝑅 + 𝑧)
{1, (𝑅 + 𝑧), 𝑧}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫
𝐶𝑟𝜃𝑟𝜃

𝑝

(𝑅 + 𝑧)
{1, (𝑅 + 𝑧), 𝑧}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴14, 𝐴15} = ∫

cos (
𝜋
ℎ𝑝

𝜌)

(𝑅 + 𝑧)
{𝑒𝑟𝜃𝜃

𝑝, 𝑞𝑟𝜃𝜃
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫

cos (
𝜋
ℎ𝑝

𝜌)

(𝑅 + 𝑧)
{𝑒𝑟𝜃𝜃

𝑝, 𝑞𝑟𝜃𝜃
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝑁𝜓, 𝑁𝜙, 𝑀𝜓, 𝑀𝜙}

= ∫

{
2𝜓0

ℎ𝑝

𝑒𝜃𝜃𝜃
𝑝,

2𝜙0

ℎ𝑝

𝑞𝜃𝜃𝜃
𝑝,

2𝜓0

ℎ𝑝

𝑧𝑒𝜃𝜃𝜃
𝑝

,
2𝜙0

ℎ𝑝

𝑧𝑞𝜃𝜃𝜃
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫

{
2𝜓0

ℎ𝑝

𝑒𝜃𝜃𝜃
𝑝,

2𝜙0

ℎ𝑝

𝑞𝜃𝜃𝜃
𝑝,

2𝜓0

ℎ𝑝

𝑧𝑒𝜃𝜃𝜃
𝑝

,
2𝜙0

ℎ𝑝

𝑧𝑞𝜃𝜃𝜃
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴16, 𝐴17, 𝐴20, 𝐴21}

= ∫

𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌) {𝑒𝑟𝜃𝜃
𝑝, 𝑧𝑒𝑟𝜃𝜃

𝑝, 𝑞𝑟𝜃𝜃
𝑝

, 𝑧𝑞𝑟𝜃𝜃
𝑝}d𝜁

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫

𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌) {𝑒𝑟𝜃𝜃
𝑝, 𝑧𝑒𝑟𝜃𝜃

𝑝, 𝑞𝑟𝜃𝜃
𝑝

, 𝑧𝑞𝑟𝜃𝜃
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴18, 𝐴19, 𝐴22} = 

∫ (𝑅 + 𝑧) [
𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌)]

2

{𝜖𝑟𝑟
𝑝, 𝑚𝑟𝑟

𝑝, 𝜇𝑟𝑟
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

 

+ ∫ (𝑅 + 𝑧)[
𝜋

ℎ𝑝

sin (
𝜋

ℎ𝑝

𝜌)]2{𝜖𝑟𝑟
𝑝, 𝑚𝑟𝑟

𝑝, 𝜇𝑟𝑟
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐷𝜓, 𝐷𝜙 , 𝐵𝜓 , 𝐵𝜙}

= ∫

(𝑅 + 𝑧){
2𝜓0

ℎ𝑝

𝜖𝑟𝑟
𝑝,

2𝜙0

ℎ𝑝

𝑚𝑟𝑟
𝑝,

2𝜓0

ℎ𝑝

𝑚𝑟𝑟
𝑝

,
2𝜙0

ℎ𝑝

𝜇𝑟𝑟
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫

(𝑅 + 𝑧){
2𝜓0

ℎ𝑝

𝜖𝑟𝑟
𝑝,

2𝜙0

ℎ𝑝

𝑚𝑟𝑟
𝑝,

2𝜓0

ℎ𝑝

𝑚𝑟𝑟
𝑝

,
2𝜙0

ℎ𝑝

𝜇𝑟𝑟
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴23, 𝐴24, 𝐴25, 𝐴26, 𝐴27, 𝐴28} 

= ∫

cos (
𝜋
ℎ𝑝

𝜌)

(𝑅 + 𝑧)
{

𝑒𝜃𝑟𝜃
𝑝, (𝑅 + 𝑧)𝑒𝜃𝑟𝜃

𝑝, 𝑧𝑒𝜃𝑟𝜃
𝑝

, 𝑞𝜃𝑟𝜃
𝑝, (𝑅 + 𝑧)𝑞𝜃𝑟𝜃

𝑝, 𝑧𝑞𝜃𝑟𝜃
𝑝} d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

 

+ ∫

cos (
𝜋
ℎ𝑝

𝜌)

(𝑅 + 𝑧)
{
𝑒𝜃𝑟𝜃

𝑝, (
𝑅

+𝑧
) 𝑒𝜃𝑟𝜃

𝑝, 𝑧𝑒𝜃𝑟𝜃
𝑝, 𝑞𝜃𝑟𝜃

𝑝,

(𝑅 + 𝑧)𝑞𝜃𝑟𝜃
𝑝, 𝑧𝑞𝜃𝑟𝜃

𝑝
}

ℎe
2

+ℎp

ℎe
2

 

{𝐴29, 𝐴30, 𝐴31}

= ∫

[cos (
𝜋
ℎ𝑝

𝜌)]
2

(𝑅 + 𝑧)
{𝜖𝜃𝜃

𝑝, 𝑚𝜃𝜃
𝑝, 𝜇𝜃𝜃

𝑝}d𝑧
−

ℎe
2

−
ℎe
2

−ℎp

+ ∫

[cos (
𝜋
ℎ𝑝

𝜌)]
2

(𝑅 + 𝑧)
{𝜖𝜃𝜃

𝑝, 𝑚𝜃𝜃
𝑝, 𝜇𝜃𝜃

𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

 

{𝐴32, 𝐴33, 𝐴34, 𝐴35, 𝐴36, 𝐴37} = 

∫

𝐸

2(1+𝜐)
𝑙′2 1

2(𝑅+𝑧)
{1,

1

𝑅+𝑧
,

𝑧

𝑅+𝑧
,

1

(𝑅+𝑧)2 ,
𝑧

(𝑅+𝑧)2

,
𝑧2

(𝑅+𝑧)2}𝑑𝑧

+
ℎ𝑒
2

−
ℎ𝑒
2

+

∫

𝐸

2(1+𝜐)
𝑙′2 1

2(𝑅+𝑧)
{1,

1

𝑅+𝑧
,

𝑧

𝑅+𝑧
,

1

(𝑅+𝑧)2 ,
𝑧

(𝑅+𝑧)2

,
𝑧2

(𝑅+𝑧)2}𝑑𝑧

−
ℎ𝑒
2

−
ℎ𝑒
2

−ℎ𝑝
+

∫

𝐸

2(1+𝜐)
𝑙′2 1

2(𝑅+𝑧)
{1,

1

𝑅+𝑧
,

𝑧

𝑅+𝑧
,

1

(𝑅+𝑧)2 ,
𝑧

(𝑅+𝑧)2

,
𝑧2

(𝑅+𝑧)2}𝑑𝑧

ℎ𝑒
2

+ℎ𝑝

ℎ𝑒
2

. 
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