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1. Introduction  
 

The biocompatibility is one of the most important 

factors in the nano and bio sensors. The devices should be 

compatible with the living tissue. Recently, the researchers 

used the nanoresonators to predict the proteins (Fischer et 

al. 2008), the attachment of the virus (Ilic et al. 2004), DNA 

molecules (Ilic et al. 2005) and prostate-specific antigen 

(Hwang et al. 2004). Lipids are dominant components of 

membranes. Also, it hosts much of the machinery for 

cellular communication and transport across the cell 

membrane. Recently, the researchers fabricated a 

nanosensor with carbon nanotubes and lipid layer to detect 

the DNA-damage (Liu et al. 2013). The scientists presented 

a lipid nano transistor which has many potential 

applications to study the biological process in the cell 

membranes (Zhou et al. 2007). They reported a means of 

creating nanopores that comprise ultra-short single-walled 

carbon nanotubes (SWCNTs) inserted into a lipid bilayer. 

Recent findings show that a high affinity between the lipid 

tails and the graphene basal plane promoting a favorable 

hetero-structure for biosensing applications (Lima et al. 

2016). They reported that the lipids also offered graphene a 

more uniform and smoother support, reducing graphene 

hysteresis loop. In order to increase the strength of the 

structures and decrease the weight of the structures, the FG 

material can be used. In this class of the material, the 

properties of the material are different in any point of the  
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structure. Micro-/nano-scaled structures made from 

functionally graded materials (FGMs) have been proposed 

as building blocks of micro-/nano-electromechanical 

systems (MEMS/NEMS) (Fu et al. 2004, Witvrouw and 

Mehta 2005) as well as shape memory alloy and thin films 

(Bogdanski et al. 2002, Sioh 2010). The potential usage of 

functionally graded nanosensors and nanoactuators is also 

under investigation. In recent years, the researchers studied 

the mechanical behavior of the FG nanomaterials (Ebrahimi 

and Jafari 2018, Hadi et al. 2018, Hadi et al. 2018). The 

effect of thermal loading on the mechanical behavior of 

nanostructures have been investigated (Ebrahimi and Salari 

2015, Ebrahimi et al. 2015, Ebrahimi and Barati 2016, 

Ebrahimi and Hosseini 2016, Ebrahimi and Jafari 2016, 

Ebrahimi and Salari 2016, Ebrahimi and Barati 2017, She et 

al. 2017, She et al. 2017, Ebrahimi and Barati 2018). 

Among of these studies, some researchers utilized the 

higher order shear deformation theory to investigate the 

vibration behavior of nanobeam (Ebrahimi and Jafari 2016, 

Ebrahimi and Farazmandnia 2017). In the most works, the 

researchers assumed that the FG properties are varied in one 

direction. But the practical studies showed that the FG 

properties can be changed in two or three directions. There 

are a few works that the researchers investigated the 

mechanical behavior of this kind of FG material (She et al. 

2017, Zamani Nejad et al. 2017, Ashofteh et al. 2018, Hadi 

et al. 2018, Hadi et al. 2018, Hosseini et al. 2018). 

To analysis of the mechanical behavior of the 

nanostructure, the researchers used the size dependent 

continuum theories. The nonlocal continuum theory 

(Ebrahimi and Hosseini 2016, Ebrahimi and Barati 2017, 

Ebrahimi and Dabbagh 2017, She et al. 2017, Belmahi et al. 

2018, Ebrahimi and Barati 2018, Hosseini-Hashemi and 

Khaniki 2018, Nejad et al. 2018), the strain gradient  
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Fig. 1 Isometric and Front view of the composite nanoplate 

 

 

continuum theory (Ebrahimi et al. 2017) and the couple 

stress continuum theory (Nejad et al. 2017, Ajri and 

Fakhrabadi 2018, Hadi et al. 2018) are some of the size 

dependent continuum theories. Some of these continuum 

theories show softening or hardening behaviors (Ebrahimi 

and Barati 2016, Ebrahimi and Barati 2017, Ebrahimi and 

Barati 2018). Recently, it has been tried to cover both 

softening and stiffness-hardening behaviors of 

nanostructures by the means of employing nonlocal strain 

gradient theory (Ebrahimi and Barati 2016, Ebrahimi and 

Barati 2017, Ebrahimi et al. 2017, Ebrahimi and Dabbagh 

2017, Ebrahimi and Barati 2018). Among these theories, the 

nonlocal continuum theory has been used extensively. This 

is because the results of this theory are closely with the 

experimental and simulation results.  

In the recent years, the researchers studied the 

mechanical behavior of the FG nanostructures with porosity 

distribution types (Ebrahimi and Mokhtari 2015, Ebrahimi 

and Zia 2015, Ebrahimi et al. 2016, Ebrahimi and Jafari 

2016, Ebrahimi and Barati 2017). Some researchers 

presented valuable works to study the effect of the porosity 

on the mechanical behavior of the nanotubes (She et al. 

2018, She et al. 2018, She et al. 2018). In another 

interesting work, the Timoshenko theory is used to analyze 

the nonlinear vibration of the nanobeam (Ebrahimi and Zia 

2015). In that work, it was explicitly shown that the 

porosity effect plays important role in the vibration 

behavior of the nanobeam. The wave propagation analysis 

for the FG magneto-electro-elastic (MEE) plate was studied 

in the valuable work (Ebrahimi and Dabbagh 2017). In that 

work, the authors were used the nonlocal strain gradient 

theory to capture size effect on the vibration behavior of the 

nanoplate. Also, they assumed that the MEE properties are 

varied in the thickness of the nanoplate. The effect of the 

surface effect on the nonlinear vibration analysis of the 

nanoplate was investigated (Ebrahimi and Heidari 2017). In 

that work, the differential quadrature method (DQM) was 

used to solve the differential governing equation. The 

buckling behavior of the FG nanobeam was investigated by 

using the consist couple stress theory (Hadi et al. 2018).  

To the best author’s knowledge, the vibration analysis of 

three-directionally FG nanoplate has not been studied yet. 

Also, there is no work that the nonlinear vibration behavior 

of the composite nanoplate with lipid layers and FG core 

has been investigated. Besides, the influences of small 

scale, aspect ratio of the plate, Winkler and Pasternak 

effects and the viscoelastic coefficient are also discussed. 

The plots for the ratio of nonlinear to linear frequencies 

versus maximum transverse amplitude for viscoelastic 

composite nanoplate are presented. In addition, some new 

behaviors from the nonlinear vibration are reported in 

detail. Thus, the differential governing equations are 

derived in the second section of this paper and the solution 

method of the governing equations is presented in the third 

section. Finally, the results of the work are presented in the 

fourth section. 

 

 

2. Mathematical modeling 
 

Unlike the classical continuum theory, the advanced 

continuum theory can predict the size scale in the 

mechanical analysis of the nanostructures. The size scale in 

this class of the structures plays important role and the 

experimental investigations clearly showed this fact. As 

mentioned in the previous section, the Eringen’s continuum 

theory is used to model the size effect in this work. Among 

the size-dependent continuum theories, the Eringen’s 

continuum theory is selected because its results are in good 

achievement with the experimental and simulation results. A 

complicated form of this theory represents an integral 

constitutive equation. After some simplification, a 

differential form of this theory for the constitutive equation 

has been represented as (Eringen 1983) 

2

ij ij ijkl klc   −  =  (1) 

In the above equation, the parameters ij and kl are 

the stress and strain of the composite nanoplate, 

respectively. Also, the notation and
2 are defined the 

nonlocal parameter and the Laplacian operator, respectively. 

Fig. 1 shows the composite nanoplate with FG core and 

lipid face sheets. 

By considering Eq. (1), the constitutive relations of 

composite nanoplate are developed as (Farajpour et al. 

2016) 
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In the above equations, the parameters Qij(i,j=1,2,6) and 

α are defined as 

11 11 11 12 12 12 22 22 22,  ,  ,c l c l c lQ Q Q Q Q Q Q Q Q= + = + = +  

66 66 66 11 11 11  , c l l c lQ Q Q Q Q Q= + = +  
(3) 

The elastic constants with superscripts c and l are related 

to the elastic constants of FG core and lipid layers, 

respectively. The stiffness of the FG core of the composite 

nanoplate are demonstrated by the parameters 
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The parameters E(z) and   are used to define the 

Young’s modulus and the poison ratio of the FG core, 

respectively. In this work, it is assumed that the density and 

the Young’s modulus of the FG core vary through three 

direction of the core. To this end, the material variation can 

be expressed as  
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 (5) 

The notations la and lb are defined the length and the 

width the FG core, respectively. The z0 is the distance 

between the neutral axis and the centroid axis of the 

composite nanoplate. The power index of material, the 

material properties of the top and bottom surface composite 

nanoplate FG core are symbolized by the parameters k, Ptop 

and Pbottom, respectively. The type I and II are called O and 

X distribution, respectively. The change of the Young's 

modulus in the x-y plane is shown in Fig. 2. The parameter 
 is stated the volume fraction porosity. The strain 

components are presented in the terms of the displacement 

components.  
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According to the von Kármán’s assumptions and by 

utilizing the Kirchhoff plate theory, the parameters 
0
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(7) 

The governing differential equations in terms of the 

stress resultants can be obtained by the Hamilton’s 

principle. One can obtain the following differential 

equations as 
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(11) 

The in-plane stress and bending momentum (Nij and Mij) 

are defined as 
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(12) 

As Eq. (2) is substituted into Eq. (12), the stress 

resultants are obtained as 
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The new constants in the above equations are defined as 
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In the above constants, the parameters Aij(i,j=1,2), 

Bij(i,j=1,2) and Dij(i,j=1,2) are related to whole of the 

composite nanoplate. Applying Eq. (13), one can obtain the 

mid-plane strains from Eq. (2), as follows 
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The operator 2( ) ( ) ( )nlL  =  −   is the nonlocal operator. 

Further, the components
1[ ]ijA−

represent the inverse of 

stretching stiffness matrix [Aij]. As Eq. (16) is substituted 

into Eq. (8), we have 
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In this work, the nonlocal compatibility equation of the 

nano composite nanoplate is presented in Eq. (17). The 

nonlocal stress resultants, which are used in the above 

equation, are defined by the Airy’s function as 
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By considering this point, the in-plane inertias in Eq. (9) 

and Eq. (10) are set to zero and these two equations will be 
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Fig. 1 The Young modulus distribution FG material 

composite nanoplate (a) O distribution type (b) X 

distribution type 

 

 

exactly satisfied. The external transverse is related to the 

elastic medium (qe) and the harmonic external load (qh). 

These forces can be expressed as 
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To obtain the nonlinear differential governing equation, 

some non-dimensional parameters are introduced as  
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The nonlocal governing differential equations of the 

composite nanoplate are obtained by inserting Eqs. (13), 

(14) and (18) in Eqs. (9)-(11) and Eq. (17). By using the 

non-dimensional parameters which are defined in Eq. (20), 

the nonlocal nonlinear differential governing equations in 

the non-dimensional form can be obtained as 
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In a similar way, the boundary conditions for the simply 

supported case can be expressed as 
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(23) 

By considering the simply support boundary conditions, 

which are presented in Eq. (23), the transverse deflection 

can be assumed as 

( ) ( )( , , ) ( )sin sin ,W q     =  (24) 

Also, by inserting Eq. (24) into Eq. (22), the Airy’s 

function can be obtained as 
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2 2

1 2 3 4( )cos( 2 ) ( )cos( 2 ) ( ) ( )
2 2

x y
c c c c      = + + +  (25) 

The unknown coefficients in the above equations are 

described as  
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 (26) 

Also, by using the boundary conditions, which are 

described in Eq. (23), one can easily obtain 

3 4( ) 0, ( ) 0c c = =  (27) 

The coefficients of the Airy’s function, which are 

presented in Eq. (26) and Eq. (27), are shown that the small 

scale parameters appear them. Here, Eq. (24) and Eq. (25) 

insert in Eq. (21) and the Bubonov-Galerkin method is used 

to discrete the nonlinear partial differential equation to a 

nonlinear ordinary differential equation. To this end, one 

can easily obtain 

 
1 1

0 0

( , ) ( , ) 0d d        =   (28) 

In the Bubonov-Galerkin method, which is described in 

the previous equation, the notation ( , )   is presented 

the base function. By considering simply supported 

boundary conditions, the base function for can show as 

( ) ( ) ( ), sin sin    =  (29) 

Further, the operator   can be obtained as Eq. (22). 

By using some mathematical simplifications, Eq. (28) can 

be rewritten as 
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The coefficients ( )1,...,6i i =  in the above equation 

are obtained from Eq. (28). Based on the physical neutral 

surface concept, the physical neutral surface of FGM beam 

is given as (Ebrahimi and Salari 2015) 
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(31) 

It can be seen that the physical neutral surface and the 

geometric middle surface are the same in a homogeneous 

isotropic nanoplate. The coefficients α2 and α4 will be zero 

as the new reference surface position is utilized. 

By this definition, the coefficients ( ), 0,1,2i ia b i =  in 

Eq. (17), Eqs. (23)-(25) and Eqs. (28)-(29) are described as 
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(32) 

By applying the new reference surface in the calculation 

of the constants, Eq. (30) is changed as 
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(33) 

In the previous equation, in order to simplify, the 

constants α1, α3, α5 and α6 in Eq. (30) are replaced by 
2

n , 

αa, αb and αc respectively. 

 

 

3. Solution method 
 

In this section, the solution method of the nonlinear 

ordinary differential equation, which is represented in Eq. 

(33), is explained. To solve the nonlinear ordinary 

differential equation, the multiple scales method is applied.  

According to the multiple scales method, the solution of Eq. 

(33) is assumed to be as 

0 0 1 1 0 1( , ) ( , ) ( , )q q T T q T T  = +  (34) 

In this equation, the letters τ and ετ are determined by T0 

and T1. Moreover, the first and second order derivatives are 

defined as 
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The symbol Dn is defined the
nd d . By inserting Eq. 

(34) and Eq. (35) into Eq. (33), gives 
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(36) 

By separating the like power of small dimensionless 
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parameters, Eq. (36) can be separated as 
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(37) 

In the previous equation, the phrase CC refers to the 

conjugate terms. The non-resonance, primary and secondary 

resonance cases are studied in the next section.  

 
3.1 The non-resonance case 

 
In this section, it is assumed that the excitation 

frequency is far from the linear natural frequency. 

According to this assumption, the secular terms of Eq. (37) 

should be eliminated as 

0 0 0 02 2
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In the previous equation, the parameters A is considered 

as a complex number as the following form 
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1
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
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As Eq. (39) is inserted in Eq. (38) and the real and 

imaginary part of Eq. (38) are separated as 
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To solve Eq. (40) and Eq. (41), the ordinary differential 

equation techniques are utilized. Thus, the solutions of Eq. 

(40) and Eq. (41) can calculate as  
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In the previous relations, the parameters A0 and β0 

explain the initial amplitude and initial phase angle, 

respectively. One can obtain the solution of Eq. (37), as the 

secular terms are eliminated. To this end, the time functions 

( )0 0 1,q T T  and ( )1 0 1,q T T  are obtained. It is important to 

note that the parameters T0 and T1 in the previous section 

should be replaced by τ and ετ, respectively. Thus, the time 

function q(τ) can be obtained as 
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(44) 

 
3.2 The primary resonance case 
 

As the excitation frequency is near to the linear natural 

frequency, the primary resonance will happen. In this 

section, the frequency analysis of the sandwich nanoplate is 

studied in the primary resonance case. To this end, it is 

assumed that the excitation frequency is very near to the 

linear natural frequency of the sandwich nanoplate 

(Ω=ωn+εσ). The symbols σ and ε are the detuning and the 

small dimensionless parameters. To achieve the primary 

resonance case, the Eq. (33) is rewritten as 

 

(45) 

In the similar way, the real and imaginary parts of the 

secular terms in the primary resonance case are obtained as 
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It is assumed that the steady state is stablished

0a  = = . After some triangular simplification, Eq. (46) 

and Eq. (47) are changed as 
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 (48) 

The detuning-amplitude relation in the steady state can 

be obtained from Eq. (48) as 
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3.3 The secondary resonance case 
 

In this section, the secondary resonance case is studied. 

The super harmonic and subharmonic resonance are 

subsection of the secondary resonance case. To investigate 

the secondary resonance case, Eq. (33) is rewritten as 

 

(50) 

Here, the cosine term is rewritten as the exponential 

term. Eq. (34) and the Eq. (35) are inserted in the Eq. (50) 

and the terms with same power small dimensionless 

parameter are collected together as 
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The standard solution of the ordinary differential 

equation is as 
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Eq. (52) is inserted into Eq. (51b) as  
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The expressions exponents must be calculated and then 

some mathematical simplifications should be done in Eq. 

(53). Two different resonance cases are detected in Eq. (53) 

that each of them is investigated separately. 
 

3.3.1 The super harmonic resonance case 
The super harmonic resonance cases of the Eq. (53) are 

studied in this section. The super harmonic resonance 

happens when the non-dimensional excitation frequency is 

near close to the one third of the natural frequency 

(3Ω=ωn+εσ). The secular terms in the real and imaginary 

parts are obtained as 
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(54) 

The symbol γ is defined γ=σT1−β(T1). By considering 

the steady state condition and some simplification roles, the 

detuning-amplitude relation for this case is obtained as 
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 (55) 

 

3.3.2 The sub harmonic resonance case 
The sub harmonic resonance case happens when the 

non-dimensional excitation frequency is near to triple of the 

natural frequency (Ω=3ωn+εσ). Similar to the previous 

section, the secular terms are divided to the real and the 

imaginary parts. After some mathematical simplification the 

frequency-amplitude relation for this case is obtained as 
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4. Results and discussion 
 

In this section, the numerical results of the vibration 

analysis of the composite nanoplate are presented. The first, 

the validation is presented between the numerical results 

and the reported results in the literature. Also, the presented 

results are compared with the Runge-Kutta results. Finally, 

the force vibration of the composite nanoplate is studied 

and the numerical results of the primary and secondary 

resonance cases are presented. The material properties of 

the FG core are taken from Refs (Ebrahimi and Jafari 

2018). The physical properties of the system are assumed as 

the stated in this section, unlike there is another thing stated. 

The length of the composite nanoplate and the aspect ratio 

(the ratio of the length to width) are considered 50 nm and 

1, respectively. The Winkler elastic, the shear elastic and the 

nonlinear elastic constants are assumed 100, 5 and 10, 

respectively.  

 

4.1 Validation 
 

To ensure about the numerical results, the present results 

are compared with the reported results in the literature 

(Ebrahimi and Hosseini 2016). To done this validate, it is 

assumed that the effect of the FG core is neglected. Fig. 3 

shows the comparison between the numerical results and 

the reported results (Ebrahimi and Hosseini 2016). These 

results are presented for two different aspect ratios. It is 

completely obvious that the presented results are in good 

agreement with the reported results in the literature 

(Ebrahimi and Hosseini 2016). 
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In order to more validate, the numerical results are 

compared with the results which are obtained by the Runge-

Kutta method. Fig. 4 illustrates the time history for the 

composite nanoplate versus the non-dimensional time. To 

plot this figure, it is assumed that the composite nanoplate 

is fabricated by the FG core and lipid layers. One can easily 

see that the results of the multiple scale method are matched 

with the Runge-Kutta results.  

 

4.2 Free vibration results 
 

The time history of the composite nanoplate is shown in 

Fig. 5(a)-(d). The effects of the porosity distribution type 

and the aspect ratio (the ratio of the length to width of the 

composite nanoplate) on the time history of the composite 

nanoplate are studied. In Figs. 5(a)-(d), the effect of the 

lipid layer is considered and it is seen that the time history 

is damped over time. In Fig. 5(b) and Fig. 5(d), the aspect 

ratio is considered β=4 and in other figures this parameter is 

taken β=2.  Fig. 5(c) and Fig. 5(d) are plotted by 

considering the X distribution type and the O distribution 

type is considered for other figures. These figures reveal 

this fact that the porosity distribution type and the aspect 

ratio have dramatic effect on the time history of the 

composite nanoplate. The time history is damped faster as 

the aspect ratio increases. Further, the time history is 

damped faster as the porosity distribution is X type. This is 

because that the porosity of the FG core in type X is more 

than type O. It is caused by that the stiffness of the system 

decreases and the vibration amplitude is damped faster. This 

means that the porosity distribution type has an important 

effect on the dynamical response of the composite 

nanoplate. 

The phase diagram for the X and O porosity distribution 

type is shown in Fig. 6. Other parameters for two type 

distributions are same. It is shown that the equilibrium point 

is spiral sink at (0, 0) and the phase diagram is spiral in two 

types. This figure shows that the phase diagram in X 

distribution type is damped faster than that in the O 

distribution type. This phenomenon reveals this fact that the 

distribution type changes the damping of the system. Thus, 

the system with X distribution type has higher value of 

damping than the system with O distribution type. 

The frequency ratio versus the amplitude of the 

nanoplate is shown in Fig. 7. This figure reveals that the 

difference between the numerical results in the X 

distribution type and the O distribution type increases as the 

amplitude of the nanoplate increases. The frequency ratio of 

the X distribution type is always more than that the O 

distribution type. Moreover, the frequency ratio decreases 

as the structural damping increases. The gap between the 

curves by different structural damping and same 

distribution type increases as the amplitude increases. 

The nonlinear vibration frequency versus time is 

illustrated in Fig. 8. This figure is plotted for different 

elastic medium type. This figure displays that the nonlinear 

vibration frequency is decreased by passing the time. 

Moreover, the nonlinear vibration frequency in the 

nonlinear type of the elastic medium is more than that the 

linear elastic medium type. The nonlinear elastic type has 

 

Fig. 3 Comparison between the present results and the 

reported results (Ebrahimi and Hosseini 2016) 

 

 

Fig. 4 Comparison between the results of the Multiple Scale 

Method (MSM) and the Runge-Kutta results 

 

 

Fig. 5 Change of the time history for different aspect ratios 

and porosity distribution types. (a) O distribution type and 

β=2. (c) X distribution type and β=2. (d) X distribution type 

and β=4 

 

 

Fig. 6 Phase diagram for two different porosity distribution 

types 
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Fig. 7 Change of the frequency ratio respect amplitude for 

different porosity types and structural damping 

 

 

Fig. 8 Change of the nonlinear frequency versus time for 

different elastic foundation types 

 

 

Fig. 9 Change of the frequency ratio versus aspect ratio for 

different porosity distribution types 

 

 

significant effect in lower amount of time. By passing a 

time, the effect of the nonlinear elastic medium is vanished. 

This is because that the nonlinear part of the frequency 

decreases as exponential form and the nonlinear frequency 

intend to linear frequency through the time. 

Fig. 9 is shown the effect of the aspect ratio and the ratio 

on the frequency ratio. The decreasing effect of the aspect 

ratio on the frequency ratio is shown clearly in this figure. 

The decay rate of the aspect ratio on the frequency ratio in 

the X distribution type is more than the O distribution type. 

Unlike the aspect ratio, the area ratio has increasing effect 

on the frequency ratio. Fig. 9 exhibits that the area ratio has  

 

Fig. 10 Frequency-amplitude curves for different porosity 

distribution and elastic foundation types 

 

 

Fig. 11 Amplitude of response versus amplitude of 

excitation force for different porosity distribution types and 

nonlocal parameters 

 

 

Fig. 12 Amplitude of response versus amplitude of 

excitation force for different porosity volume fractions and 

aspect ratio parameters 

 

 

dramatic effect in the smaller aspect ratio. 
 

 

5. Force vibration results 
 

In this section, the numerical results of the nonlinear 

force vibration of the composite nanoplate are presented.  

The amplitude-frequency curve is plotted in Fig. 10. In 

this figure, the influences of distribution types and the 

foundation are investigated. It is completely obvious that 

the nonlinearity of the system is more in the FG core with X 

distribution type rather than the O distribution type. This is 

because that the amplitude-frequency curves bend away to 

right side as the distribution type changes to X type. 

Moreover, the system shows a hardening behavior as the  
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Fig. 13 Frequency-amplitude curves for different porosity 

distribution and structural damping parameters and super 

harmonic resonance case 

 

 

Fig. 14 Frequency-amplitude curves for different porosity 

distribution types and volume fraction porosity parameters 
 

 

composite nanoplate is located on the foundation. This is 

because that the nonlinear part of the governing equation 

increases as the system is embedded on the foundation.  

Fig. 11 is shown the vibration amplitude versus the 

amplitude of the excitation force. Two different distribution 

porosities are investigated in the local and nonlocal solution 

cases.  

It is clear that the composite nanoplate in the local case 

shows more stiffness behavior than that the nonlocal case. 

Thus, the local solution with X distribution porosity type 

shows the most stiffness behavior in compare with other 

cases. This is because that the nonlocal parameter decreases 

the stiffness of the composite nanoplate. 

The influences of the aspect ratio and the porosity 

volume fraction are investigated in Fig. 12. This figure is 

shown that the nonlinearity of the system is related to the 

aspect ratio and the porosity volume fraction. The aspect 

ratio and the porosity volume fraction have same effect on 

the nonlinearity of the system. Thus, the nonlinearity of the 

system decreases as the aspect ratio or the porosity volume 

fraction increases. These are obviously facts because the 

stiffness of the system decreases by creating the porosity in 

the core of system. Furthermore, the flexibility of the 

system increases as the aspect ratio increases and the shape 

of the nanoplate changes to nanobeam. 

The super harmonic resonance case is shown in Fig. 13. 

In this figure, the influences of the damping structure and 

porosity volume fraction on the backbone curves are 

studied. It is obvious that the structural damping decreases 

the peak of the amplitude-frequency curves. Also, the 

influences of the porosity distribution types on the super 

harmonic resonance are distinguished. The system with X 

distribution type shows more stiffness than the system with 

the O distribution type. 

The effects of the porosity distribution types and the 

porosity volume fraction on the subharmonic resonance 

case are investigated in Fig. 14. This figure confirms the 

obtained results in the previous figures. This figure shows 

that the effect of the porosity distribution type on the 

amplitude-frequency curves in the subharmonic resonance 

case and the super harmonic resonance case is similar. This 

figure reveals that the porosity volume fraction on the 

hardening of the system has decreasing effect in the 

subharmonic resonance case. It is obvious that the stiffness 

of the system decreases by creating the porosity in the FG 

core. 

 

 

6. Conclusions 
 

In this study, the nonlinear vibration analysis of the 

composite nanoplate is studied. It is assumed that the core 

of the composite nanoplate is fabricated by three directional 

functional graded. This is the first time that the nonlinear 

vibration composite nanoplate with three directional FG 

materials is investigated. The core of the nanoplate is 

covered by the lipid layers at top and bottom of it. The 

influences of two different porosity distribution types on the 

nonlinear vibration behavior are studied. The primary and 

the secondary resonance cases are considered. The 

following points are revealed by this study: 

• The porosity distribution types change the stiffness of 

the system.  

• The time effect on the time history of the system with 

X distribution porosity is more important in compare with 

the O distribution type. 

• The frequency ratio is changed by the structural 

damping and the amplitude of the composite nanoplate. 

• The nonlinear foundation increases the nonlinearity of 

the system. 

• The aspect ratio and the porosity volume fraction 

decrease the hardening of the system. 
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