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1. Introduction  
 

The composite materials made of different plates are 

widely used as the structural members due to their 

mechanical advantages. Bimetal, which is a type of these 

materials and may be produced by joining steel and 

stainless steel elements, have great importance in the 

industrial structures such as petrochemical process vessels 

and pressure vessels in reactors. The linear coefficients of 

thermal expansion of steel and stainless steel are 

remarkably different. Some defects may occur on the 

structural members made of bimetal when these are exposed 

to external effects such as chemical liquids with high 

pressures (Abdulaliyev et al. 2010). Cracks occur around 

these defects due to the mechanical and thermal effects that 

change with high gradient. In some cases, the cycles of 

high-temperature changes lead to brittle fatigue crack of 

material. Therefore, the precise analyses of thermal stresses 

around various types of cavities are very important for 

design so that stress analysis at the tip of a crack can be 

obtained by an extrapolation on the variation with respect to 

decreased radius of curvature of the cavity. In addition to 

this, the location of a cavity should be investigated for this 

type of material mentioned here. 

In technical literature, some stress analyses were 

performed around cracks using various methods. The 

theoretical and numerical solutions were developed for the 

stress analysis around a crack on the plane of interface of  
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two-material composites under thermal effect (Zhao et al. 

2016, Dang et al. 2016). The method of photoelasticity and 

the finite element method (FEM), which were used here, 

were also utilized to analyze the stress intensity factor in 

past works. The stress intensity factor for the crack on the 

interface of bimetal under transient thermal effect was 

studied by using the method of photoelasticity (Simon et al. 

2009). The stress intensity factor for the interface crack 

under thermal effect was also investigated by the FEM 

(Ikeda and Sun 2001). There are also some works related to 

the dynamic behavior of bimaterials. The time-depending 

stress model of PB-SN solders under cycling loading was 

developed (Kucukarslan 2003) .  The method of 

photoelasticity was also utilized in some recent works. The 

stress analysis at the tip of a notch at the junction of 

different materials was performed by photoelasticity 

(Ayatollahi et al. 2011). The stress state was investigated at 

the tip of a crack in a thin glass plate by dynamic 

photoelasticity (Sakaue et al. 2008). The effect of the 

welding direction on the stress distribution around the 

interface of two different materials was cleared by an 

experimental analysis (Abdulaliyev et al. 2007). The 

change of the thermal stress concentration due to the 

direction of the cavity near the interface in a plate made of 

different materials on which the thermal stress was modeled 

in one direction was obtained by experimental and 

numerical analyses (Abdulaliyev et al. 2012). Because 

bimetal plate can be considered as a special case of 

laminated composites or functionally graded materials, this 

study can be extended to this area using the methods and 

results obtained here. The stress analysis and optimization 

for holes with various geometries on laminated composites 

were performed by using some functions specially defined 

and FEM (Su et al. 2018). The stress field was investigated  
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(a) The cylindrical specimen axially loaded 

 
(b) The plan view of the model and the slice taken from the 

model 

Fig. 1 The specimen, the model, and the slice taken from 

the model 

 

 

around a rectangular hole on a functionally graded plate 

(Dave and Dharmendra 2018). A bimetal beam was 

analyzed for crack propagation under thermal and 

mechanical loading by FEA (Chama et al. 2014). The effect 

of a uniform temperature loading was investigated for the 

elasto-plastic stress distributions on a functionally graded 

material (Demir et al. 2017). In case of moving thermal 

source, the stress distribution on a plate heated from one 

side was obtained by numerical analysis (Ozisik and Genc 

2008). Considering these several works, stress analyses on 

bimetal plates for a variety of problems must be acquired 

due to its importance. 

In this study, the stress distribution around a cavity that 

is perpendicular to the interface of the bimetal plate 

exposed to thermal effect was analyzed by using the method 

of strain freezing of photothermoelasticity. The type of 

defect was selected among the cavity types that occur in 

these type of structures, which were considered in Ref. 

(Abdulaliyev et al. 2010). Abdulaliyev et al. (2010) 

performed an analysis for a similar problem under 

mechanical effects. The structural element considered here 

was also analyzed by FEM under thermal effect and the 

variation of stress concentration factor was obtained with 

respect to the distance of the cavity tip to the interface and 

the radius of the cavity tip (Bulut 2018). 

In the present work, the experimental model was 

produced from Araldite, which is an optically sensitive 

material. Therefore, experimental results obtained here 

validates the models of FEM and the assumptions of the 

analytical solutions of these type of problems. The state of 

strain in the prototype that consists of two materials having 

different coefficients of thermal expansion under the same 

temperature change was modeled as the case of a plate 

made of a single material exposed to two different 

temperature changes. This analogy is discussed in the 

literature (Bulut 2018, Bakioglu et al. 2011). The strains 

due to the temperature change were modeled in the related 

region by mechanical modeling. 

The analytical solution of a plate under temperature 

change, which is expressed by a function varying along the 

thickness direction, was given by (Timoshenko and Goodier 

1970, Boley and Weiner 1997). This solution was verified 

by the stress data obtained from the corresponding region of 

the experimental model. 

Moreover, the model, which was developed for the 

problem considered here, was also analyzed by a 

commercial finite element (FE) package called ABAQUS 

(Dassault Systèmes, Vélizy-Vilacoublay, France). This 

numerical solution was verified by using the results 

obtained from the analytical solution. The results of the 

experimental and FE analyses around the cavity were 

compared. They agree well with each other. 

This study can be considered as the verification of the 

experimental and numerical methods in order to extend the 

work to thermal stress analyzes at the tip of a crack oriented 

in the perpendicular direction to the interface of bimetal 

plate and to application of functionally graded materials.  
 

 

2. The experimental study 
 

The experimental model was made of Araldite that is an 

optically sensitive material. The material was homogeneous 

and isotropic and the linear-elastic behavior was considered. 

The thermal effect generated by a temperature change on 

the prototype was created by different temperature changes 

on the model (Bulut 2018, Bakioglu et al. 2011). According 

to this, two different temperature changes were loaded to 

two regions on a single material of the model, which 

represent the different materials of the prototype. Because 

the materials in the prototype have the same material 

constants except the coefficient of thermal expansion, the 

state of strain on the prototype due to the difference of this  
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(a) The dimensionless stress distributions near the cavity 

and along the direction for which the analytical solution 

was compared 

 
(b) The dimensionless stress distribution along the path 

starting at the tip of cavity 

Fig. 2 The dimensionless stress distributions on the photo of 

isochromatic fringes obtained from the experiment and the 

deformed shape of the model 

 

 

coefficient could be simulated by the difference of 

temperature change in the experimental model (Frocht 

1947, Durelli et al. 1958, Timoshenko and Goodier 1970). 

For simplicity, it was considered that one of this region 

does not have a temperature change while the other one has 

a temperature change different from zero. The region of the 

experimental model having the temperature change was 

obtained from a cylindrical Araldite specimen, which was 

prepared in accordance with the photoelastic investigation. 

The thermal strains on this part were equivalently obtained 

by the method of mechanical modeling. In order to do this, 

once the viscoelastic temperature degree of the material was 

determined as 155oC, the process of the strain freezing 

method was applied to the specimen. The sketch and 

dimensions of the specimen were given in Fig. 1(a). A 

compressive force of P=1367 N was axially loaded to this 

specimen and the elastic strains were fixed on it under this 

effect. This fixing process respectively includes heating the 

loaded specimen up to the material’s viscoelastic 

temperature determined previously and cooling it to the 

room temperature with a rate of 5oC/hour. The uniformly 

distributed mechanical strains in this specimen were 

measured using a Mitutoyo digital micrometer as  

( ) 0.018
m m m

T =  =  (1) 

where, the strain m  is equated to free thermal expansion 

value which is calculated by the product of the linear 

thermal expansion coefficient of the material m  and the 

temperature change mT . As a result of this heating-

loading-cooling process, the elastic strains on the specimen 

were made permanent even if the load is removed. 

Measuring the strains of this specimen under 

compression, the modulus of elasticity of the material was 

also obtained. Besides, this modulus was obtained by the 

film tension and 3-P bending tests in a Q800 Dynamic 

Mechanical Analyzer (DMA) (TA Instruments, New Castle, 

DE) for the specimens in the convenient dimensions. The 

mean value of these results gave the modulus of the 

elasticity of the material at the viscoelastic temperature as 

follows 

19.3
m

E MPa=  (2) 

The coefficient of optical sensitivity of the material 
1.0
0  was determined using a disk taken from the same 

material, which was loaded diametrically by 0
16.03P N= . 

The formula of this coefficient for thin disks was given as 

follows (Frocht 1947) 

1.0 0

0

8P

Dm



=  (3) 

where D represents the diameter of the disk and equals to 

50 mm in this study. The photoelastic fringe number at the 

midpoint of the disk was measured as m=3.581. 

Substituting this value into the Eq. (3), the coefficient was 

determined as follows 

1.0

0 0.233
.

N

mm fringe
 =  (4) 

The part of the model on which the thermal strains were 

fixed was cut out from the cylindrical specimen by a precise 

mechanical cutting process. This part was actually a disk 

with a thickness of 5.12 mm (Fig. 1(b)). 

The other part of the model was not under any load and 

it was also a cylindrical plate with 13.12 mm thickness (Fig. 

1b). The diameter of the second part was the same with that 

of the former one after the strain freezing process. 

Two obtained parts were glued to each other by a 

specific process. During this process, the adhesive is 

applied as a very thin layer so that the strain at the interface 

coming from one part will be entirely transferred to the 

other one. The adhesive was obtained by mixing the epoxy 

resin and the hardener in a specific ratio and it was applied 

to the interfaces, homogeneously. The model, which was 

obtained by the mentioned way, was exposed to the heating-

cooling process at the same regime with the method 

aforementioned. As a result of the first step of this process, 

the state of strains initially frozen in one part became active 

in the model and it produced a new distribution. In the 

second step, the cooling step, the final state of strains was 

fixed in the model. This also represents a stress distribution, 

which represents the final state of the thermal stress in the 

prototype. In order to analyze the stresses around the cavity, 

a slice with the 2.5 mm thickness was cut out from the 

model (Fig. 1(b)). This slice was analyzed in the x-z plane, 

so the photoelastic fringe patterns, which are the results of 

the thermal stresses modeled by the mechanical loading, 

were determined along the z-axis and around the cavity. For 
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this aim, the Berek compensator mounted in a polarization 

microscope Leica DM 4500 P was used. At each specified 

point, the number of the fringe pattern was obtained by 

means of a sufficient number of measurements. The 

obtained fringe numbers were used in the equation (Frocht 

1947) given below 

1.0

1 2 0

m

t
  − =  (5) 

and the absolute values of the differences of the principle 

stresses at the corresponding points were calculated. Here, 

m is the measured number of the fringe pattern, t is the 

thickness through which the light passes at the measuring 

point, and σ1 and σ2 are the components of the principal 

stresses. The stress magnitudes obtained by Eq. (5) were 

converted to dimensionless quantities dividing them to the 

value given as follows 

( )
0.6948

1

m m m

m

E T
MPa






=

−
 (6) 

which was obtained by the values given in Eqs. (1)-(2). The 

value of vm used in this calculation is the Poisson’s ratio of 

the model’s material at viscoelastic temperature and it 

nearly equals to 0.5. The distributions of the dimensionless 

quantities, which are so-called as dimensionless stresses, 

were given in Figs. 2(a)-2(b) along the paths, around the 

cavity and in two directions of the thickness. 

 

 

3. The analytical solution 
 

The formula given in the literature for the state of 

thermal stresses (Timoshenko and Goodier 1970, Boley and 

Weiner 1997) was used in order to compare the solution 

with the experimental stress distribution in the 

corresponding region and to reveal the agreement of the 

experimental and analytical approach to the problem. This 

solution was given for the mid-region of a plate with a 

thickness whose edges are free and the temperature change 

in this plate is a function of the z-coordinate axis in the 

thickness direction, that is, T=T(z). Therefore, the 

expression to be obtained from this solution does not 

provide the stress distribution in the vicinity of the cavity 

and edges of the model. However, it was assumed that the 

distribution of stresses in the model is the same with that 

obtained by analytical solution in the regions where no 

discontinuity occurs due to the cavity and edges of the 

model. 

  The stress components for the considered case were 

given as follows (Timoshenko and Goodier 1970, Boley and 

Weiner 1997) 

 1 2

0,

1

zz xz yx zy

xx yy

E
T C C z

   


 



= = = =

= = − + +
−

 (7) 

Here, C1 and C2 are constants of integration and they are 

obtained applying the boundary conditions. The cylindrical 

components of the state of stress can be easily obtained  

Table 1 The values of the stress components σrr obtained by 

analytical solution 

z coordinates rr (MPa) 
rr (dimensionless) 

-13.12 0.2214 0.3187 

-10.12 0.0857 0.1233 

-7.12 -0.0501 -0.0720 

-4.12 -0.1858 -0.2674 

-1.12 -0.3215 -0.4627 

0 -0.3722 -0.5357 

0 0.3090 0.4447 

2.12 0.2131 0.3067 

2.99 0.1737 0.2500 

5.12 0.0774 0.1114 

 

 

using these Cartesian coordinate components as follows 

0,
zz rz r z

xx yy rr

 



   

   

= = = =

= = =
 (8) 

The loading conditions of the problem can be written in 

the form of resultant force and resultant moments as follows 

( ) ( )

( ) ( )

0

0

b b

xx yy

z a z a

b b

xx yy

z a z a

dz dz

z dz z dz

 

 

=− =−

=− =−

= =

= =

 

 

 (9) 

The temperature function T(z) was defined as a step 

function in the model, that is, 

, 0
( )

0, 0

T a z
T z

z b

−  
=

 





 (10) 

Using the Eqs. (7), (9) and (10), the constants of 

integration were obtained as follows 

3 3 2 2

1 2
3 3 2 2

2 2

2 2
3 3 2 2

3 2
,

1

3 2

2

1

3 2

b a b a

E
C

b a b a
h

b a
h

E
C

b a b a
h

 



 



+ −
−

=
− + −

−

−
−

=
− + −

−

   
   
   

   
   
   

 
 
 

   
   
   

 (11) 

Here, h is the total thickness of the plate, i.e., h=a+b, 

and the symbols are given as follows 

   ( ) , ( )

b b

a a

T z dz T z z dz   
− −

= =    (12) 

If the expression for T(z) in Eq. (10) is substituted into 

the Eq. (12), then one can obtain 
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( ) ( )

( ) ( )

0

0

0 2

0

0

0
2

b

a

b

a

T dz dz Ta

Ta
Tz dz z dz

  


 

−

−

= + =

= +  = −

 

 

 (13) 

When these expressions in Eq. (13) are used in Eq. (11) 

and obtained results are substituted into Eq. (7), the formula 

for the stress distribution along the related direction in the 

model is obtained. The obtained values of the component σrr 

were listed in Table 1 and the variation of this stress 

component, which is divided by the value given in Eq. (6), 

is shown in Fig. 3(a). 

 

 

4. The numerical analysis 
 

In this study, the experimental model developed for the 

prototype was also analyzed by FEM. The model was 

axisymmetric and the dimensions were determined in 

accordance with the geometry given in Fig. 1. The modulus 

of elasticity and Poisson’s ratio of the material were given 

as follows 

19.3 , 0.5
m m

E MPa = =  (14) 

The numerical model was created as a single material 

and a static analysis was performed defining a temperature 

change in the related region. The geometry of the model 

was a rectangular shape and the only boundary condition 

was defined in the center edge, about which the model was 

axisymmetric (Fig. 4(a)). In the numerical model, the linear 

coefficient of thermal expansion αsm and the uniform 

temperature change (ΔT)sm in the region were selected in 

accordance with the strain value given in Eq. (1). For 

simplicity in the analysis, these were chosen as follows 

( )(0.018)[1/ ], ( 1)[ ]
sm sm

C T C =   = −   (15) 

where the minus sign comes from the contraction of the part 

on which the elongations due to the axial pressure were 

fixed. This contraction occurred after the heating-cooling 

process of the model. 

The components of stress and strain were resulted in the 

cylindrical coordinates since the model was defined as 

axisymmetric.  

The FE mesh of the model was produced by using the 

elements CAX4R (4 -node bilinear axisymmetric 

quadrilateral) and CAX3 (3-node linear axisymmetric 

triangle) together. The average size of the mesh elements 

was 0.1 mm. The numbers of the quadrilateral and triangle 

elements were 47,426 and 448, respectively. The numerical 

model and the general mesh were given in Fig. 4(a). The 

mesh density and the number of the elements were 

determined by using the method of mesh refinement. The 

convergence of the numerical results to the analytical 

solution in the corresponding region of the model was used 

for this refinement (Fig. 3(a)). This comparison should be 

made along the vertical direction on which no effects of the 

edges and cavity occur. The stress distribution was 

investigated and the convenient direction was determined at  

 

(a) Comparison of the analytical solution and the others in 

the related region of the model (Fig. 2(a)) 

 
(b) Comparison of the experimental and numerical results 

on the path in the cavity direction 

Fig. 3 The comparison of the results obtained from 

experimental, analytical and numerical results (the origin of 

the z coordinates is at the interface) 

 

 

the point 6.68 mm away from the symmetry axis. This 

distance value is the same with that of the vertical path in 

the experimental model in Fig. 2(a). The distribution of the 

radial stress component obtained from FE analysis was 

given in Fig. 4(b). 
 

 

5. Results 
   

As a result of the experiment in this study, the 

distribution of isochromatic fringes on the slice was 

symmetric about the vertical axis passing through the center 

of the plate. Observing the deformed shape of the model, it 

can be said that the mechanical behavior under the effect of 

this temperature change was similar to bending behavior. 

In Fig. 3(a), the comparison of the stress distribution 

obtained from the analytical solution with those of the  
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(a) The model and mesh 

 
(b) The distribution of the radial stress component obtained 

from the FE analysis 

Fig. 4 The FE model and obtained distribution on the 

deformed shape. 

 

 

experiment and numerical analysis were given. These 

distributions on the path, which has the 6.68 mm distance 

from the symmetry axis, show that the analytical and 

numerical results are consistent with those from the 

experiment.  

In Fig. 3(a), the jump value of the distribution of 

dimensionless stress at the interface was calculated as 

0.51+0.49=1.00 along the path, which is not affected by the 

edges and cavity. This jump was also obtained as 1.00 from 

the analytical solution. The jump value at the interface for 

the direction starting from the tip of the cavity equals 

0.54+0.51=1.05 (Fig. 3(b)). According to these values, the 

occurrence of this cavity does not seriously affect the 

jumping amount at the interface. This value was obtained as 

0.97 from the numerical analysis. 

In Fig. 3(b), the dimensionless stress value at the tip of 

the cavity was 0.43 was measured from the experiment. If 

the analytical solution is used for this point taking z=2.62 

mm, then this value is calculated as 0.25. Obviously, this 

last value of dimensionless stress is at the corresponding 

point for the same plate with the experimental model but 

having no cavity. Using these, the stress concentration 

factor at this point in the model can be calculated as 

0.43/0.25=1.72. The dimensionless stress value at the tip of 

the cavity was obtained as 0.56 from the numerical analysis, 

so the stress concentration factor calculated from here was 

0.56/0.25=2.24. The numerical analysis gave a 24% larger 

value of the stress concentration factor than that of the 

experiment. The distributions of the dimensionless stress 

along the path passing through the tip of the cavity were 

given in Fig. 3(b) for the results obtained from the 

experiment and numerical analysis. 

The model considered here represents the bimetal plate 

produced by two plates having different coefficients of 

thermal expansion. In the model, the dimensionless stress 

values were obtained at the tip of the cavity and at the 

interface. In order to calculate the actual stress values at the 

corresponding points in the prototype, the following 

formula was used (Frocht 1947, Durelli et al. 1958). 

(1 )

(1 )

m n

n m

n m

E

E


 



−
=

−
 (16) 

Here, the indices m and n indicate the relevant values of 

the model and prototype, respectively.   represents the 

ratio of the free thermal expansion, that is, 

( )

( )

( )
s ssn n

m m m

T

T

 


 

− 
= =


 (17) 

where the indices s and ss indicate the constants, which 

respectively belong to steel and stainless steel. The 

mechanical properties of the material of the prototype are as 

follows 

6 6

3

(16 10 )[1 / ], (12 10 )[1 / ]

200 10 , 0.3

s ss

n s ss n

C C

E E E MPa

 



− −
=   =  

= = =  =
 (18) 

Using these, the stress value at the tip of the cavity in 

the prototype that is resulted by the temperature change 

( ) 200 C
n

T =   was calculated as -102.86 MPa. 

 

 

6. Conclusions 
 

In this study, the state of plane thermal stress was 

analyzed around a cavity for a plate made of two materials 

having different coefficients of thermal expansion by the 

method of photothermoelasticity. The prototype was 

selected as bimetal plate, which produced by steel and 

stainless steel. Under the effect of a temperature change, the 

thermal stress and stress concentration factor were obtained 

at the tip of the cavity for this plate. The thermal strains 

obtained by mechanical modeling were fixed in the 

corresponding region of the model by the strain freezing 

method, which provides the three-dimensional stress 

analyses. FEA of the experimental model was also 

conducted and the results occurred in good agreement. 

The analytical solution was compared with the results 

obtained from the corresponding region of the experimental 

model. According to this comparison given in Fig. 3(a), the 

distribution of the experimental measurements is convenient 

with the linear distribution obtained analytically. The 

distribution on the same path obtained from the numerical 

results has good agreement with the others overall. 

As an actual problem, the values of stress and stress 

concentration factor were derived at the tip of the cavity for 

the change of temperature of 200°C using the experimental 
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measurements. This calculated stress value has an 

importance in terms of the design of the structural steel 

members. Another conclusion inferred is that the 

discontinuity at this location of this cavity has no effect on 

the jumping value at the interface. 

The value of the stress concentration factor obtained 

from numerical analysis was larger than that of the 

experiment. This difference may be decreased developing 

the FE model. A similar case also occurred for the jumping 

value at the interface on the path passing through the tip of 

the cavity in the direction of thickness. As a result of a 

general evaluation, the stress distributions obtained from the 

numerical and experimental analysis along this path were in 

good agreement. 

In conclusion, it can be stated that the experimental 

model is convenient to analyze the stress distribution of the 

plane problem considered in this study. This study 

contributes the experimental and numerical methods for the 

thermal stress analysis around the cavity in bimetal to the 

literature. As a further study, the analysis of the models 

including cavities in different geometries at different 

locations will be performed. By this way, developing a 

comprehensive calculation method for the stress distribution 

in the bimetal plates due to the thermal effect is aimed.      
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