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1. Introduction  
 

The anisotropy of rocks is an important property which 

should be considered in many engineering applications such 

as mining, tunneling and civil where the surface and 

underground rock excavations and structures are to be 

designed in different types of rock masses. 

Many rock masses exhibit some apparent anisotropic 

characteristics so that most of their mechanical, thermal, 

seismic, and hydraulic properties may vary with direction of 

applied loading. It means that no consideration of the 

anisotropy may produce considerable errors in the 

engineering application of rock masses in different rock 

structures (Amadei 1982, 1983, 1996, Barla 1974, Pinto 

1966, 1970, 1979, Rodrigues 1966, Salamon 1968). Among 

these the layered rocks impose anisotropy because they 

usually contain many planes of weaknesses in form of 

random cracks, schistosity, joints, beddings, faults and fault 

zones As an example, the anisotropy may has profound 

effects on the compressive and tensile strengths of rock 

masses because these rocks contain the weak planes called 

the transversely isotropic planes (Chen 1998, Chou 2008, 

Exadaktylos 2001, Nasseri 1997, 2003, Ramamurthy 1993, 

Tien 2000. As the direction of the bedding (weak) planes 

changes the failure process of a bedded rock mass also 

changes (Tien 2006, Tavallali 2010a, b). Two kinds of 

failure process may occur in a bedded rock formation: i) the  
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compressive failure process which includes the internal 

compression shear failure usually occurs along the bedding 

planes in form of sliding failure, and ii) three forms of 

tensile failure process may occur in forms of pure tensile 

failure or shearing failure or both tensile and shearing 

failures. The experimental results obtained from the 

laboratory tests conducted on many rock samples of 

different rock types have shown that in several types of 

rocks (especially those of metamorphic and sedimentary 

types) there are some kind of inherent or structural 

anisotropy (Saeidi et al. 2013, Hoek 1964, McLamore and 

Gray 1967, Horino and Ellickson 1970, Kwasniewski 1993, 

Nasseri et al. 2003, Al-Harthi 1998).  

Most of the sedimentary rocks may be considered as 

isotropic or anisotropic rocks depending on the spacing in 

between the bedding planes or lamination of the rock 

structure during their formations. In most cases, the 

metamorphic rocks can be considered as anisotropic due to 

their inherent structures in form of schistosity and cleavage 

(Singh et al. 1989, Ramamurthy 1993). The effects of 

schistosity orientation on the Brazilian tensile strength 

(BTS) of many metamorphic rocks have been studied by 

several researchers such as Berenbaum and Brodie (1959), 

Hobbs (1963) and Debecker and Vervoort (2009). The 

indirect tensile strength of most sedimentary rocks is also 

affected by the layer orientations and has been investigated 

based on the Brazilian tensile tests in many rock mechanics 

laboratories (Hobbs 1963, McLamore and Gray 1967, 

Tavallali and Vervoort 2010a, b, Chen et al. 1998). Various 

modes of rock failures have been reported in the rock 

mechanics literature. These rock failure tests have been 

conducted on several anisotropic rock samples. Chen et al. 

(1998) conducted some experimental works and suggested 

two major modes of tensile splitting of the sandstone 
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samples along the loaded diameter of the specimens and 

one shear modes of failure along the sandstone layers. In 

another experimental investigation, Tavallali and Vervoort 

(2010b) identified three types of failure modes in the 

Brazilian disc-shaped specimens of anisotropic rocks under 

indirect tensile conditions i.e., i) activation of layers 

(fractures are formed roughly parallel to the layers 

direction), ii) formation of central fractures [these fractures 

are induced roughly parallel to the loading direction at the 

central part of the specimen, and iii) development of non-

central fractures. A few experiments and simulations have 

been reported for the breakage analysis of rock-type and 

concrete specimens under different loading (Zhou et al. 

2014, Haeri et al. 2014, Zhou et al. 2012, Lancaster et al. 

2013, Mobasher et al. 2014, Noel and Soudki 2014, 

Oliveira and Leonel, 2014, Kim and Taha 2014, Tiang et al. 

2015, Haeri 2015, Haeri et al. 2015a, b, c, Wan Ibrahim et 

al. 2015, Silva et al. 2015, Gerges et al. 2015, Liu et al. 

2015, Fan et al. 2016, Li et al. 2016, Sardemir 2016, 

Shuraim 2016, Sarfarazi et al. 2016, Haeri et al. 2016a, b, c, 

Haeri and Sarfarazi 2016). Many numerical methods can be 

applied to investigate the effect of bedding Layer 

geometrical properties on the punch shear test, such as 

General Particle Dynamics (GPD) (Bi et al. 2017, Zhou et 

al. 2016, Bi et al. 2015). Peridynamics(PD) (Silling 2000, 

Zhou 2015, Yunteng 2017, Wang 2018), The Extended 

Finite Element Method (Zhou 2015a, b). 

In this study, the Brazilian discs of laminated rocks are 

numerically simulated to approximately determine the 

effects of weak (laminar) planes on the failure strengths and 

fracture patterns of the bedded rocks. 

 
 

2. Numerical modeling with PFC2D 
 

A particular rock mass can be considered as an 

assemblage of rigid particles bonded to each other at a 

specified number of contact points (Cundall 1971, 

Potyondy and Cundall 2004). In a two dimensional particle 

flow code (PFC2D), the circular discs are modelled in such 

a way that they are connected to each other at the specified 

contact points considering the cohesive and frictional 

bonds and then confined with planar walls. In this study, 

the parallel bond modelling approach is adopted to 

numerically simulate the contacts points in between the 

bonded particles. However, the assigned values for the 

bonding strengths influence the macro strength of the 

simulated samples, the nature of cracking and the failure 

process occurs during the loading. As far as the particles 

stay in contact, the specified coefficient of friction is 

mobilized. When the applied normal stress exceeds that of 

the specified normal bonding strength, the tensile cracks 

are occurred within the sample. On the other hand, the 

shear cracks are generated when the induced shear stress 

surplus those of the specified shear strengths of the 

bonding due to rotation or in-plane shearing of particles. 

After the bond breaks, the tensile strength at the contact 

immediately drops to zero while the shear strength of the 

bond decreases to that of the residual friction value (Itasca 

Consulting Group Inc. 2004, Cho et al. 2007, 2008, 

Potyondy and Cundall 2004, Sarfarazi et al. 2014). In  

Table 1 micro properties used to represent the intact rock 

Parameter Value Parameter Value 

Type of particle disc Parallel bond radius multiplier 1 

density 3500 
Young modulus of parallel 

bond (GPa) 
32 

Minimum radius 0.27 Parallel bond stiffness ratio 2 

Size ratio 1.56 Particle friction coefficient 0.5 

Porosity ratio 0.08 
Parallel bond normal strength, 

mean (MPa) 
20 

Damping coefficient 0.7 
Parallel bond normal strength, 

SD (MPa) 
2 

Contact young 

modulus (GPa) 
32 

Parallel bond shear strength, 

mean (MPa) 
20 

Stiffness ratio 2 
Parallel bond shear strength, 

SD (MPa) 
2 

 

Table 2 micro properties used to represent the bedding 

interfaces 

Parameter Value Parameter Value 

n_bond 1e3 s_bond 1e3 

fric 0.25   

 

 

PFC2D, it is only necessary to select the basic micro-

parameters to describe the contact bond stiffness, the bond 

strength and the coefficient of contact friction for all these 

microscopic behaviors. It is of particular importance that 

these micro-parameters should provide a macro-scale 

behavior for the material being modeled.  

For the solution of each particular problem, this 

discrete element code uses an explicit finite difference 

scheme to solve the equation of force and motion. 

Therefore, one may easily track the initiation and 

propagation of bonding fractures through the particles 

system (Potyondy and Cundall 2004). However, a 

calibrated PFC2D modelling an assembly of particles can 

be created by adopting the micro-properties listed in Table 1 

and by using the standard calibration procedures (Potyondy 

and Cundall 2004).  

 

2.1 Numerical biaxial tests on non-persistent open 
joint 
 

2.1.1 Preparing the model 
After calibrating PFC2D, some typical Brazilian tests were 

numerically simulated for modelling the anisotropic rock 

samples by creating a circular modelling scheme as shown in 

Figs. 1, 2 and 3, respectively. The diameter of each 

modelled specimen was selected as 54 mm and a total 

number of 8,179 discs each having a minimum radius of 0.27 

mm were used to complete the numerical modelling of the 

specimen. All particles in the assembly were surrounded by 

two walls of the specimen. Bedding layers were formed in the 

model. Layers thicknesses were 5 mm, 10 mm and 20 mm. in 

constant layer thickness, the layer angularity changes from 0° 

to 90° with increment of 15°.  

In total, 21 specimens containing different bedding layer 

were set up to investigate the influence of Layers thickness 

and layer angularity on failure behavior of models. Micro- 
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(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 1 Anisotropic rock with Layers thicknesses of 5 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, (f) 75° and (g) 

90° 

 

   
(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 2 Anisotropic rock with Layers thicknesses of 10 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, (f) 75° and 

(g) 90° 
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(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 3 Anisotropic rock with Layers thicknesses of 20 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, (f) 75° and 

(g) 90° 

 

   
(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 4 Failure pattern in anisotropic rock with layers thicknesses of 5 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 

60°, (f) 75° and (g) 90° 
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(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 5 Failure pattern in anisotropic rock with layers thicknesses of 10 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 

60°, (f) 75° and (g) 90° 

   
(c) (b) (a) 

   
(f) (e) (d) 

 
(g) 

Fig. 6 Failure pattern in anisotropic rock with layers thicknesses of 20 mm and layer angle of (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 

60°, (f) 75° and (g) 90° 
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Fig. 7 the effect of bedding layer angle on the Brazilian 

tensile strength 

 

 

properties for bedding layer interfaces was chosen too low 

(Table 2). 

 

 

3. Results 
 

3.1 The effect of layer angel on the failure pattern of 
models 

 

Figs. 4, 5 and 6 shows the effect of layer thickness and 

layer angels on the failure pattern of models. Red line and 

black line represent the tensile crack and shear crack, 

respectively. 

When layer angle is less than 15 (Fig. 4(a), (b), Fig. 5(a), 

(b), Fig. 6(a), (b)), tensile cracks initiates between the layers 

and propagate till coalesce with model boundary. Its trace is 

too high. With increasing the layer angle, less layer 

mobilizes in failure process. Also, the failure trace is very 

short. It’s to be noted that number of cracks decrease with 

increasing the layer thickness (Figs. 4, 5, 6). It’s to be notes 

that in Fig. 4(f), one shear crack goes through the model 

because the loading step has maximum value in this figure. 

 
3.2 The effect of bedding layer specification on the 

Brazilian tensile strength 
 
Fig. 7 shows the effect of bedding layer angle on the 

Brazilian tensile strength. Also, the results of bedding layer 

thickness have been shown in this figure. The minimum 

Brazilian strength was occurred when layer angle is 

between the 30° and 60°. The maximum value occurred in 

90°. Also, the Brazilian tensile strength was increased by 

increasing the layer thickness. 

 

 

4. Conclusions 
 

In this work the effect of bedding layers angle and 

layers thickness on the Brazilian failure mechanism of rock 

has been investigated using PFC2D. Firstly calibration of 

PFC2d was performed using laboratory Brazilian tensile 

strength. Secondly Brazilian test was performed on the 

bedding layer. Thickness of layers were 5mm, 10mm and 

20mm. in each thickness layer, layer angles changes from 

0° to 90° with increment of 15°. Totally 21 model were 

simulated and tested. The results show that: 

• When layer angle is less than 15°, tensile cracks 

initiates between the layers and propagate till coalesce with 

model boundary. Its trace is too high.  

• With increasing the layer angle, less layer mobilizes in 

failure process. Also, the failure trace is very short.  

• It’s to be noted that number of cracks decrease with 

increasing the layer thickness.  

• Also, Brazilian tensile strength has minimum value 

when bedding layer angle is between 45° and 75°. The 

maximum one is related to layer angle of 90°. 
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