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1. Introduction  
 

Thermal cracks are cracks that commonly form at early 

ages in mass concrete. Research on thermal cracks includes 

studies of thermal stress calculations, temperature fields, 

and thermal crack propagation in concrete (Zhu 2010). 

Many studies have investigated temperature and stress 

fields of early-age mass concrete. Waller and Cussigh 

(2004) studied the maturity level of concrete due to the 

application of thermal stress at an early age. Schutter (2002) 

studied early-age thermal stresses in mass concrete based on 

hydration. Zhu and Chen (2017) performed research on 

concrete hydration and used the results to study the 

thermodynamic properties of concrete. Wang and Navi 

(1997) studied the mechanical properties of early-age 

concrete in a project structure. Zhu and Qiang (2013) 

presented an equivalent algorithm and discrete iterative 

algorithm for mass concrete containing a water pipe. Kim 

(2001) developed a temperature field algorithm for mass 

concrete containing a water pipe based on the principle of 

thermal equilibrium and the linear element method. Wang 

and Yan (2013) developed an algorithm to evaluate early 

age mechanical properties of concrete. 

These investigations mainly studied the temperature and 

stress fields in concrete. Because stress is not the direct 

cause of crack propagation and the conventional finite 

element method cannot predict the condition of concrete 

after the development of cracks, fracture mechanics is  
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required to study the propagation of thermal cracks in early-

age concrete. 

Many studies have focused on numerical simulation 

methods of fracturing in concrete, such as the embedded 

finite element method (EFEM) (Linder and Armero 2007, 

Linder and Armero 2009, Dvorkin and Cuitino 2010), 

meshfree methods (MMs) (Belytschko and Lu 1994, Liu 

and Jun 1995, Atluri 2002, Bordas and Rabczuk 2008), and 

boundary element methods (BEMs) (Aliabadi 1997, Pan 

and Yuan 2000, Sfantos and Aliabadi 2007, Simpson and 

Bordas 2012). The extended finite element method (XFEM) 

was first proposed by the research group of Prof. 

Belytschko and Prof. Moes at Northwestern University in 

the United States in 1999 and has since been significantly 

extended (Belytschko and Black, 1999, Moës and Dolvow 

1999, Stolarska and Chopp 2016, Belytschko and Chen 

2003). Crack propagation is calculated using XFEM, and 

remeshing is not conducted during the crack propagation 

process. XFEM has several advantages over the 

conventional finite element method and is widely used in 

crack propagation analyses. XFEM has attracted increasing 

attention and has been widely used in many fields of 

numerical simulation (Zuo and Hu 2015, Himanshu and 

Akhilendra 2012, Jiang and Tay 2013, Liu and Hu 2013, 

Elena 2014, Jrad 2018). 

The elastic modulus of mass concrete changes during 

the pouring process. Therefore, calculations of the thermal 

stress and displacement require the use of incremental 

methods, i.e., the time domain must be divided into several 

steps, and the solutions must be calculated in each step to 

obtain the total displacement and stress of the structure. For 

early-age concrete, the displacement and stress can be 

obtained accurately only by using the incremental method. 

However, taking crack propagation into account using the 
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incremental method is difficult. For this reason, this paper 

presents the incremental XFEM method to address the 

thermal stress problem of early-age concrete. 
 

 

2. Basic principle of analysis 
 

2.1 Basic principle of XFEM 
 

T Belytschko et al. proposed XFEM for analyzing 

cracking problems. To reconstruct the displacement in the 

region around the crack surface, the idea of a partition of 

unity was applied to strengthen the nodes around the 

discontinuous surface using an additional function, which 

reflects the discontinuity of the crack surface. By further 

developing the extended finite element, the description of 

the displacement is improved continuously, and the 

accuracy and convergence speed are also enhanced. This 

paper introduces the extended finite element displacement 

mode that was employed in this paper (Belytschko and 

Black, 1999, Moës and Dolvow 1999, Stolarska and Chopp 

2016, Belytschko and Chen 2003). 

The elements that are penetrated by cracks are enhanced 

by the discontinuous general Heaviside function (Fig. 1; the 

hollow circles represent nodes). The element that contains a 

crack tip is enhanced through the application of a crack tip 

progressive displacement field function (Fig. 2; the solid 

circles represent nodes) to reflect the local characteristics of 

the crack tip region. The additional function can indirectly 

reflect the existence of a crack surface. Thus, when the 

finite element mesh is divided, the crack surface and the 

finite element mesh can be independent of each other. The 

crack surface can be located anywhere on the grid, which 

overcomes the difficulties associated with high-density 

grids in regions of high stress and concentrated 

deformation, such as a crack tip. When simulating crack 

propagation, remeshing is not necessary. The outer-layer 

elements surrounding the crack tip element can be enhanced 

to ensure computational accuracy, as shown in Fig. 2. 

The displacement mode of the extended finite element 

can be expressed as 

 
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(1) 

where n is the number of conventional element nodes, 

( )jN x  is the shape function, ju is the degree of freedom 

vector for a conventional finite element node, mh is the 

number of enhanced nodes on both sides of the crack 

surface, ( )H x  is the value of the Heaviside function at the 

Gaussian point x, ( )hH x  is the value of the Heaviside 

function at point h, ha  is the degree of freedom vector of 

the enhanced node on both sides of the crack surface, mt is 

the number of enhanced nodes at the crack tip, ( )lF x  is 

the value of the crack tip enhancement function at the 

Gaussian point x, ( )l kF x  is the value of the crack tip 

enhancement function at the enhancement node, and 
l

kb  is  

 

Fig. 1 A crack located on a grid 

 

 

Fig. 2 Enhancement of the crack tip element nodes 

 

 

Fig. 3 Local crack tip coordinate system 

 

 

the degree of freedom vector for the enhanced node at the 

crack tip. 

By dividing the crack into two sides, the Heaviside 

enhancement function ( )H x , which is 1 on one side of the 

crack and –1 on the other side, is expressed mathematically 

as follows 

*

*

1 ( ) 0
( )

1 ( ) 0

x x n
H x

x x n

 − 
= 

− − 
 (2) 

where x is the point that is examined, 
*x  is the point on 

the crack surface closest to x, and n is the unit outer normal 

vector of the crack at 
*x .  

lF  is the crack tip enhancement function, which is a set 

of linearly independent bases that was extracted from the 

analytical expression of the crack tip displacement field 

from linear elastic fracture mechanics. When defined in the 

polar coordinate system at the crack tip, the expression of 

each material term in the same row is 

 
4

1
( , ) sin , cos , sin sin , sin cos

2 2 2 2
l l

F r r r r r
   

  
=

 
=  
 

 (3) 

where r and   are expressed as polar coordinates in the 

local crack tip coordinate system, as shown in Fig. 3. 

Eqs. (1) to (3) are the basic displacement format of the 

extended finite element that was applied in this study. 
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Although the integration method for the stiffness matrix and 

the overall stiffness matrix of the extended finite element 

are more complicated, in principle, they are not different 

from that of the conventional finite element. 
 

2.2 Calculation method for the thermal stress field of 
mass concrete 
 

During the concrete hardening process, the elastic 

modulus changes continuously. By taking changes in the 

elastic modulus into account, accurate solutions can be 

found for the stress and strain during the hardening of mass 

concrete. The thermal stress field of mass concrete is 

similar to the linear elastic stress field, which can be solved 

using only the incremental method; therefore, the stress and 

displacement of concrete can be accurately calculated. The 

calculation method for the thermal stress field of mass 

concrete is described below (Zhu 1998). 

The calculation time is divided into m periods. The 

thermal strain increment generated during period mt  is 

     1( ) ( )T

m m mt t   − = −  (4) 

where  T

m  is the thermal strain increment. 

In the finite element calculation, the stiffness matrix of 

the element can be expressed as 

      
e T

mk B D B dxdy=   (5) 

where the matrix [B] is the strain matrix of the element, and 

[Dm] is the elastic matrix of the element.  

The element load increment induced by a two-

dimensional finite-element non-stress deformation can be 

expressed as 

     
T T T

m m me
P B D dxdy  =    (6) 

where  
T

m e
P  is the element node load increment caused 

by temperature. 

The nodal force and nodal load are combined to obtain 

the overall equilibrium equation 

    
T

m mK P =   (7) 

where  
T

mP  is the node load increment caused by 

temperature. 
 

2.3 Integration method for the stress intensity factors 
 

A previous study (Herrmann 1981) described the energy 

integral method that solves the stress intensity factors in 

detail. 

The crack tip is set as the origin and the tangent to the 

crack surface as the x1 axis of the local polar coordinate 

system. In terms of the composite loading mode, the 

relation between the J integral and the stress intensity 

factors is 

2 2

I II

* *

K K
J

E E
= +  (8) 

where E* is related to the Young’s modulus E and 

Poisson’s ratio  , *E E=  (plane stress), 
*

21-

E
E


=  

(plane strain), and IK  and IIK  are type I and II stress 

intensity factors, respectively.  

Two stress states are considered: state 1 
(1) (1) (1)( , , )ij ij iju   

is the real state, and state 2 
(2) (2) (2)( , , )ij ij iju   is the auxiliary 

state. If state 2 is set as the progressive field, then the J 

integral of the sum of the two states is 
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Rearranging this equation gives 

(1 2) (1) (2) (1 2)J J J M+ += + +  (10) 

where (1 2)M +  is called the mutual integral of states 1 and 

2, which is 
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where (1 2)M + is the interactive strain energy 

(1 2) (1) (2) (2) (1)

ij ij ij ijM    + = =  (12) 

Eq. (12) can be written as 

(1 2) (1) (2) (1) (2) (1) (2)

I I II II*

2
( )J J J K K K K

E

+ = + + +  (13) 

Combining Eq. (10) with Eq. (13) gives 

(1 2) (1) (2) (1) (2)

I I II II*

2
( )M K K K K

E

+ = +  (14) 

State 2 is set as the progressive field of the type I stress 

intensity factor. In addition, 
(2)

I 1K = , 
(2)

II 0K = , which 

gives the type I stress intensity factor for state 1 

*
(1) (1 mode I)

I
2

E
K M= ，

 (15) 

State 2 is set as the progressive field of the type II stress 

intensity factor. 
(2)

I 0K =  and 
(2)

II 1K = , which gives the 

type II stress intensity factor for state 1 

*
(1) (1 mode II)

II
2

E
K M= ，

 (16) 

The contour integral (11) can be rewritten as 

(2) (1)

(1 2) (1 2) (1) (2)

1

1 1

i i

j ij ij j
C

u u
M W qm d

x x
  +
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= − −  

  


，  (17) 

where 0C C C+ −= + + + , and 
jm is the unit outer 

normal vector of the contour C. According to Green’s 

formula, Eq. (18) can be rewritten in integral form on area 

A 
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Fig. 4 Mutual integration diagram 

 

 

Fig. 5 M integral element selection and node integral weight 

around the crack tip 
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In Eq. (18), state 1 is selected as the true state of the 

problem, to which the finite element solution applies. State 

2 is the progressive solution of the crack tip denoted by aux, 

and Eq. (18) can be further expanded 

(1 2)
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x xy x xy ij ij
A

auxaux
y yaux auxx x

xy y xy y

u uu u q
M

x x x x x

u uu u q
dA

x x x x y

     

   

+
    

= + + −       

    
+ + +          


 (19) 

Region A is shown in Fig. 4. In Eq. (19), q is defined as 

the weight function, q is 1 (solid point in Fig. 5) when the 

node is within the integration region A, and q is 0 (hollow 

point in Fig. 5) when the node is outside the integration 

region A. The inserted value through the element node at an 

arbitrary point q of the element is 
4

1

i i

i

q N q
=

= . 

 

2.4 Integration method for the stress intensity factors 
 

According to the basic principles of linear elastic 

fracture mechanics, the displacement field, strain field and 

stress field that are caused by the linear elastic stress near 

the crack tip can be calculated as follows (Sneddon 1946). 
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where 3-4 =  (plane strain), 
3-
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3. Temperature load extended finite element 
 

3.1 The extended finite element-incremental method 
 

For early-age concrete, factors such as the change of 

elastic modulus and creep should be considered, and the 

incremental method is required to solve for the 

displacement and stress caused by the temperature load and 

autogenous deformation.  

As shown in Fig. 6, the crack propagation is divided into 

n steps, and the displacement and stress of the structure 

after the nth crack propagation can be expressed as 

1

1

n n n

n n n

u u u

  

+

+

= + 


= + 

 (26) 

where un is the initial displacement of crack propagation at 

the nth step, nu  is the displacement increment after a  
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Fig. 6 Plane propagation of cracks 

 

 

Fig. 7 Sub-element division of a crack 

 

 

Fig. 8 Stress element in a planar problem 

 

 

stress of the same magnitude but in the opposite direction is 

applied to the new crack surface, n  is the initial stress of 

the crack propagation at the nth step, and n  is the stress 

increment after a stress of the same magnitude but in the 

opposite direction is applied to the new crack surface. 

 

3.2 Loading mode of newly developed surface stress 
 

The extended finite element can be divided into crack 

tip elements, crack elements and conventional elements. As 

shown in Fig. 7, when solving for structural crack 

propagation using the extended finite element, the element 

in which the crack is located can be divided into several 

sub-elements, which are used to arrange the integration 

points. When calculating crack propagation using the 

incremental method, the newly developed crack surface 

should experience a stress of the same magnitude but in the 

opposite direction. The specific implementation methods 

include the stress method based on an integration point near 

the newly developed crack surface and the progressive field 

analytical solution fitting method. Considering the error that 

exists in the extended finite element, if the mesh is 

sufficiently detailed, the analytical solution can be used to 

perform the fitting to obtain higher calculation accuracy. 

In Fig. 8, the crack represents the origin of the 

coordinate system, the x-direction is the direction in which 

the crack propagates, and the y-direction is normal to the 

crack surface. In the case that the stress intensity factor is 

known, an infinitely flat plate containing type I and II 

composite cracks is subjected to a uniform load. According 

to linear elastic fracture mechanics, the stress near the crack 

tip can be written as follows 

n I, n mode I, n II, n mode II, nK K  = +  (27) 

The meaning of each parameter in the formula is the 

same as in Section 2.4. 

As shown in Fig. 8, 0 =  is the direction in which the 

crack propagates. According to Eq. (27), if 0 = , the 

stress distribution on the crack surface prior to crack 

propagation can be obtained 
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When calculating the stress and displacement in step 

n+1 by means of the extended finite element-incremental 

method, stress should be exerted on the newly developed 

crack surface; that is, a stress of the same magnitude but in 

the opposite direction is applied to the newly formed crack 

surface. The extended finite element loading mode is the 

same as that in the finite element. In the conventional units 

of the extended finite element, there are two degrees of 

freedom for the node load; for crack-penetrated elements, 

the node load has 4 degrees of freedom. For the elements in 

which the crack tip is located, the node load has 10 or 12 

degrees of freedom. The degrees of freedom for the 

extended finite element node load can be expressed as 
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， ，

 
(29) 

where CE is a conventional element, CPE is a crack-

penetrated element, and CTE is a crack tip element. 

The loading method given in Eq. (29) is similar to that 

for the hydraulic fracturing load on cracks. A detailed 

derivation of the relevant loading method is given in a 

previous report (Dong and Ren 2011). 

 

3.3 Stress-strain and M-integral methods of hardened 

concrete in the case of a non-propagated crack 
 

The time domain is divided into m periods. The elastic 

strain caused by thermal load in the mth period can be 

obtained by 

     e T

m m m   =  −   (30) 

where  e

m  is elastic strain and  m is the strain 
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calculated by Eq. (7). 

and the elastic stress satisfies  

    e e

m mD  =   (31) 

The elastic stress at the end of the mth period can be 

expressed as 

1m m m  + = +   (32) 

where 
m  is the initial elastic stress in the mth period, and 

m is the thermal stress increment in the mth period. 

Because the concrete elastic modulus changes in the mth 

step, based on the relation between the elastic stress and the 

elastic strain, the elastic strain that forms at the end of 

period m due to the elastic stress can be expressed by the 

following formula 

1

1

e e em
m m m

m

E

E
  +

+

= +   (33) 

where Em represents the initial elastic modulus of the 

concrete in the mth period, +1mE  represents the initial 

elastic modulus of the concrete in period m+1 (i.e., the 

elastic modulus of the concrete at the end of period m), 
e

m  

is the initial elastic strain in the mth period, and 
e

m  is 

the elastic strain increment in the mth period. 

 

3.4 Calculation methods for the concrete stress and 
strain in the case of crack propagation 
 

The extended finite element can be divided into 

conventional elements, crack-penetrated elements and crack 

tip elements. During crack propagation, if the type of 

element does not change, then the position of the integration 

point within the element will not change. At this point, the 

stress (or strain) of the integration point prior to crack 

propagation together with the newly developed stress and 

strain are briefly superimposed, and the stress (or strain) 

after crack propagation is given. The relation between the 

stress and the strain before and after crack propagation can 

be expressed as follows. 

For elements whose integration point does not change 

before and after crack propagation, the stress after the nth 

propagation is 

1n n n  + = +   (34) 

where n  is the initial stress at the nth propagation, and 

n  is the stress increment caused by the structure after a 

stress of the same magnitude but in the opposite direction is 

applied to the newly developed crack surface. 

For elements whose integration point does not change 

before and after the crack propagation, the strain after the 

nth propagation is 

1n n n  + = +   (35) 

where 
n  is the initial strain at the nth propagation, and  

 

Fig. 9 Computational grid 

 

 

n  is the strain increment caused by the structure after a 

stress of the same magnitude but in the opposite direction is 

applied to the newly developed crack surface. 

For newly developed cracks, the crack tip element prior 

to crack propagation will become a crack-penetrated 

element, and some of the conventional elements will 

become crack-penetrated elements and crack tip elements. 

For elements whose integration point has changed, the 

calculations of the stress and strain should be based on the 

new integration point, the crack tip stress and the 

progressive strain field. 

For an element whose integration point has changed due 

to crack propagation, the stress of the structure after the nth 

propagation is 

1 I, mode I, II, mode II,n n n n n nK K   + = + +  (36) 

where 
I, nK  and 

II, nK  represent type I and type II stress 

intensity factors at the nth calculation step, respectively, and 

n  is the stress increment caused by the structure after a 

stress of the same magnitude but in the opposite direction is 

applied to the newly developed crack surface.  

For an element whose integration point has changed due 

to crack propagation, the strain of the structure after the nth 

propagation is 

1 I, mode I, II, mode II,n n n n n nK K   + = + +   (37) 

where 
I, nK  and 

II, nK  represent type I and type II stress 

intensity factors at the nth calculation step, respectively, and 

n  is the strain increment caused by the structure after a 

stress of the same magnitude but in the opposite direction is 

applied to the newly developed crack surface. The 

meanings of the other parameters in the formula are the 

same as in Section 2.4. 

 

 

4. Examples  
 

4.1 Basic information 
 

This paper uses three examples to verify the accuracy 

and stability of the model. The three examples include the 

case in which the concrete’s elastic modulus is stable but a 

thermal crack propagates, the case in which the concrete’s 

elastic modulus changes and a thermal crack does not 

propagate, and the simulation of thermal crack propagation 

during concrete pouring. The calculation grid is a concrete 

block 10 m long and 3 m high, as shown in Fig. 9. 
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Fig. 10 The initial crack 

 

 

Fig. 11 Final temperatures 

 

 

Fig. 12 Development of the stress intensity factor KI 

 

 

Fig. 13 Development of the stress intensity factor KII 

 

 

The thermal diffusivity of the concrete is 0.0025 m2/h, 

the thermal conductivity is 6.875 kJ/mh°C, Poisson’s ratio 

is 0.3, and the linear expansion coefficient of the concrete is 

5.510-6. The basic thermal diffusivity of the concrete is 

0.0033 m2/h, the basic thermal conductivity is 7.708 

kJ/mh°C, the basic elastic modulus is 20 GPa, the basic 

Poisson's ratio is 0.3, and the basic linear expansion 

coefficient is 5.510-6. 

 

4.2 Example of thermal crack propagation 
 

This example studies crack propagation in a concrete 

block crack with a stable elastic modulus under varying  

 

Fig. 14 X-direction displacements obtained by the whole 

quantity method 

 

 

Fig. 15 X-direction displacements obtained by the 

incremental method 

 

 

temperature. The elastic modulus of the concrete is 15 GPa, 

and the model and other material properties are the same as 

the basic information given in Section 4.1. The position and 

length of the initial crack are shown in Fig. 10. The initial 

temperature of the concrete is 20°C, and the final 

temperatures of the concrete are shown in Fig. 11. 

The calculated stress intensity factors are shown in Figs. 

12 and 13. The results show that the stress intensity factor 

KI increases rapidly and then becomes stable during crack 

propagation. The stress intensity factor KII decreases rapidly 

and approaches zero. The results of the incremental method 

and the whole quantity method are similar; the error is 

within 5%, and the error did not increase during crack 

propagation. Fig. 14 and Fig. 15 show the crack propagation 

displacements at the 25th step. The results show that the 

displacements obtained using the whole quantity method 

and the incremental methods are consistent. Thus, the 

incremental method that was applied in this paper can 

accurately simulate crack propagation. 
 

4.3 Steady state thermal crack verification example  
 

This example verifies the accuracy of the proposed 

algorithm in calculating the stress intensity factors for a 

non-propagated crack. The initial concrete temperature was 

20°C, and the external temperature was 25°C. The 

concrete’s adiabatic temperature rise was 
0.60.423(1 )e  −= − °C, the elastic modulus of the concrete 

was 
0.350 253.5(1 )E e −= − 。  GPa, and the coefficient of heat 

release of the concrete surface was 6.25 kJ/m2h°C. The 

model and the other material properties were the same as in 

Section 4.1. The initial crack was located on the x-direction 

plane of symmetry of the concrete block (x=0); it was 0.23 

m long, and one end was on the concrete surface. 

The temperature field distributions of the concrete after 

3, 5, and 10 days are shown in Figs. 16, 17 and 18, 

respectively. The increments in the stress intensity factor 

during the calculation are shown in Fig. 19. The stress  
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Fig. 16 Temperature distribution in the concrete at day 3 

 

 

Fig. 17 Temperature distribution in the concrete at day 5 

 

 

Fig. 18 Temperature distribution in the concrete at day 10 

 

 

Fig. 19 Increment of the stress intensity factor KI obtained 

by the step by step method  
 

 

Fig. 20 Development of the stress intensity factor KI 

 

 

intensity factors and the difference between the stress 

intensity factors that were calculated using Eqs. (30)-(33) 

are shown in Fig. 20. The results show that the stress 

intensity factors obtained by the two methods are identical. 

 

4.4 Example of thermal crack propagation in 
hardened concrete 

 

Fig. 21 Temperatures in the concrete on day 1 

 

 

Fig. 22 Temperatures in the concrete on day 10 

 

 

Fig. 23 X-direction displacements in the concrete on day 1 

 

 

Fig. 24 X-direction displacements in the concrete on day 10 

 

 

The examples in Sections 4.2 and 4.3 verified the 

accuracy of the model. This example confirms the stability 

of the model by studying the displacement variation of a 

newly poured concrete block during gradual crack 

propagation. The initial concrete temperature was 20°C, the 

external temperature was 10°C, the coefficient of heat 

release of the concrete surface was 20.83 kJ/m2h°C, the 

concrete’s adiabatic temperature rise was
0.60.423(1 )e  −= −

°C, the elastic modulus of the concrete was 
0.350.253.5(1 )E e −= −  GPa, and the surface heat release 

coefficient was 6.25 kJ/ m2h°C. The fracture toughness of 

concrete is 
0.350.25

IC 1.5(1 )Mpa mK e −= − . 

The model and other material properties were the same 

as in Section 4.1. The initial crack was located on the x-

direction plane of symmetry of the concrete block (where 

x=0), was 0.175 m long, and one end of the crack was 

located on the concrete surface. 

The temperature field distributions in the concrete after 

1 and 10 days are shown in Figs. 21 and 22, respectively, 
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and Figs. 23 and 24 show the calculated displacement 

distributions. The results show that the displacements are 

symmetrically distributed, and there are no abnormalities in 

the calculated results. Clearly, the algorithm has good 

stability. 

 

 

5. Conclusions  
 

This paper analyzed two cases of crack propagation in 

early-age concrete: one in which the crack does not 

propagate but the elastic modulus of the concrete changes 

and one in which the crack propagates at a point in time. 

This paper focused on the characteristics of the extended 

finite element algorithm when it is applied to these two 

cases and provided computational models for these two 

cases. The results show that: 

(1) For the case in which cracks do not propagate but the 

elastic modulus of the concrete changes, this paper 

presented a method that calculates the strain caused by the 

elastic stress. This method mainly concentrates on the M 

integral; therefore, the stress and strain histories are not 

considered, and the stress intensity factor of the crack can 

be solved in one calculation. 

(2) For the case in which the crack propagates, a stress 

of the same magnitude but in the opposite direction must be 

applied to the newly developed crack surface to simulate 

crack propagation. Based on the stress intensity factor, the 

analytical solution to the progressive field was applied to fit 

the stress of the newly developed crack surface. 

(3) During the crack propagation process, if the type of 

element (conventional element, crack-penetrated element or 

crack tip element) does not change, then the position of the 

integration point within the element does not change; 

therefore, the stress and strain can be expressed by a brief 

superposition. For an element (crack tip element or partial 

conventional element) whose integration point changes, the 

analytical solution to the progressive field is used to 

calculate the stress and strain at the integration point.  

The numerical contrast method was applied to verify the 

accuracy of the proposed model for the case in which the 

elastic modulus of the concrete is stable but the thermal 

crack propagates, the case in which the concrete’s elastic 

modulus changes and the thermal crack does not propagate, 

and the case of thermal crack propagation as well as to 

verify the stability of the algorithm during the concrete 

pouring process. The verification results indicate that the 

method can be used to calculate thermal crack propagation 

with simple programming. In addition to its advantages of 

high computational accuracy and stable results, this method 

can also predict the development of thermal cracks in mass 

concrete. 
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