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1. Introduction  
 

Skew composite laminates find wide application in 

aircraft, marine, civil and mechanical engineering industry. 

Skew laminates serve various functional, structural or 

aesthetic requirements in these sectors. Some common uses 

are wings, tails, fins of swept-wing aircraft, missiles, ship 

hulls, skew bridge decks etc. (Lee and Park 2009, Vosoughi 

et al. 2018). From a designer’s perspective, their dynamic 

response is of great interest. It is often desired that such 

structural components are not in resonance with the external 

excitation frequencies. Resonance may be avoided by 

designing the structures such that they operate well beyond 

the range of external sources. However, for any particular 

application the geometric dimensions like length, width, 

thickness, skewness etc. are not independently alterable. 

Changing one such geometric parameter would mean 

significant changes in the design and therefore, would 

require not only a revision of the composite structure but of 

its associated components as well. In contrast, changing the 

fiber angles to alter the frequency parameters is not 

associated with such complications. For any pre-decided 

thickness, material and number of plies, the fiber angles can  
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be independently altered without disturbing the physical 

design. This is why studies concerning optimal layup angles 

to maximize fundamental frequency (Ameri et al. 2012, 

Apalak et al. 2014) or frequency separation (Farshi and 

Rabiei 2007, Duffy and Adali 1991) has been so popular.  

The optimal fiber angle combination problem is an NP-

hard problem. Over time, both deterministic and stochastic 

search algorithms have been used to tackle this 

combinatorial optimization problem. Genetic algorithm 

(GA) (Ameri et al. 2012, Apalak et al. 2014) ant colony 

optimization (ACO) (Koide et al. 2013, Koide and Luersen 

2013), PSO (Bargh and Sadr 2012, Ghashochi-Bargh and 

Sadr 2013), artificial bee colony (ABC) (Apalak et al. 

2014) are the some of the most commonly used stochastic 

search algorithms in composite laminate optimization. 

Le Riche and Haftka were among the first researchers to 

apply GA to composite laminate optimization problems. 

They used GA for buckling load maximization (Le Riche 

and Haftka 1993), thickness minimization (Le Riche and 

Haftka 1995), laminate optimization (Grosset et al. 2006), 

etc. However, there are only a few comparative studies on 

the performance of different stochastic search algorithms in 

composite laminate frequency parameter optimization. 

Apalak et al. (2014) used an ABC algorithm and a GA to 

maximize the fundamental frequency of composite plates 

using fiber angles as a design variable. They observed that 

despite the ABC algorithm having a simpler structure than 
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GA, was as much effective. Ameri et al. (2012) used a 

hybrid Nelder-Mead algorithm and a GA to find optimal 

fiber angles to maximize fundamental frequency. They 

observed that the hybrid Nelder-Mead algorithm was faster 

and more accurate than the GA. However, it is hard to state 

whether the superior performance of the Nelder-Mead 

algorithm was genuinely due to algorithmic superiority or 

because the authors chose to incorporate the design 

variables as continuous in Nelder-Mead algorithm whereas 

in GA they considered discrete values. Similarly, Koide et 

al. (2013) used an ACO algorithm to maximize the 

fundamental frequency in cylindrical shells and compared 

their optimal solutions with GA solutions from literature. 

The ACO predictions were at par with the GA counterparts. 

Tabakov and Moyo (2017) compared the performance of 

GA, PSO and Big Bang-Big Crunch algorithm while 

considering a burst pressure maximization problem in a 

composite cylinder. Hemmatian et al. (2014) used an 

imperialist competitive algorithm (ICA) along with GA and 

ACO to simultaneously optimize the weight and cost of a 

rectangular composite plate. They reported that in terms of 

objective function magnitude and constraint accuracy, ICA 

outperformed GA and ACO.  

Another category in which the literature lacks is in the 

application of optimization algorithms to multi-criteria 

design optimization of composite laminates. Primarily, the 

multi-criteria design optimization results may be broadly 

expressed in two forms-a set of not-dominated optimal 

solution points called Pareto front or a unique solution 

corresponding to any particular pre-decided decision 

criteria. Any solution is said to be Pareto optimal if one of 

its objectives can be improved only by worsening at least 

one of its other objectives. However, in practice, usually, 

only one solution is required (Jakob and Blume 2014) and 

thus, the search for Pareto optimal fronts in high-fidelity 

applications involving finite element simulations would 

lead to huge computation cost. Nevertheless, the importance 

of presenting the decision maker with a host of non-

dominated solutions to choose from and thus, taking a 

better-informed decision cannot be denied. Correia et al. 

(2017) considered stacking sequence as the design variables 

while maximizing frequency parameters and minimizing 

strain energy in composite plates with piezoelectric layers. 

Vo-Duy et al. (2017) used non-dominated sorting genetic 

algorithm II (NSGA-II) in conjunction with finite element 

method to minimize weight and maximize the frequency of 

composite plates. Ghasemi and Hajmohammad (2017) used 

a similar NSGA-II based strategy to minimize the cost of 

composite shells while increasing its buckling strength. 

While Correia et al. (2017), Vo-Duy et al. (2017), and 

Ghasemi and Hajmohammad (2017) made use of Pareto 

fronts, other like Abachizadeh and Tahani (2009), Sudhagar 

et al. (2017), Hemmatian et al. (2014) and Topal (2009) 

have used weighted sum approach to report unique 

multiobjective solution points.  

In this article, several problems on multiobjective 

optimization of skew composite laminates are solved using 

three different nature-inspired optimization algorithms. A 

genetic algorithm is selected as the first optimization 

algorithm due to its wide popularity. GA, since its inception  

 
Fig. 1 Schematic of the skew plate with finite element mesh 

 

 
Fig. 2 Algorithm for FE-GA 

 

 

in the 1970s, has been virtually applied to all classes of 

optimization problems with significant success. Thus, it is 

an interesting exercise to see how well the other two 

algorithms fare against GA. Particle swarm optimization is 

another popular bio-inspired swarm intelligence-based 

optimization algorithm that has gained significant 

popularity due to its easy to implement structure. According 

to Zhang et al. (2015), PSO is the most widely used swarm 

intelligence-based optimization algorithm. Thus, in this 

research, the standard PSO is upgraded to form a robust 

high-fidelity optimization tool by incorporating certain 

advanced memetic features in it. In addition to these two 

algorithms, a cuckoo search algorithm is also in the current 

work. Cuckoo search is a recent but powerful addition to 

the nature-inspired optimization family. So far, it has shown 

significant potential in tackling several NP-hard problems. 

Due to the relatively less amount of work done on it so far, 

tremendous potential exists to improve it further to form 

more powerful variants. Thus, in this research, the standard 

cuckoo search is significantly improved by incorporating 

certain new features to the basic algorithm design. In this 

research, these three metaheuristic algorithms are combined 

with a first order shear deformation theory based finite 

element model to form a high-fidelity optimization tool for 

frequency parameter optimization of laminated composites. 

The applicability of the weighted sum approach to predict 

optimal designs that satisfy multiple objectives is shown.  
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2. Problem description 
 

A symmetric layered composite with dimensions (a × b 

× h) having n layers is considered in this study (Fig. 1). The 

plate is skewed at an angle 𝛼. Material is considered as a 

Graphite-epoxy composite (Jones, 1975) 𝐸1 = 138 𝐺𝑃𝑎,
𝐸2 = 8.96 𝐺𝑃𝑎, 𝐺12 = 7.1 𝐺𝑃𝑎, 𝜐12 = 0.3. The thickness 

of the plate is considered to be moderate h/a=0.01. The 

objective is to simultaneously maximize fundamental 

frequency (𝝀𝟏) and frequency separation between the first 

two modes ( 𝝀𝟐𝟏 ) based on the optimal ply-angle 

arrangements for a given set of geometric parameters and 

boundary conditions.  

The problems are formulated as unconstrained 

optimization problems. Each multiobjective problem is 

converted to an equivalent single-objective problem by 

applying the concept of weighted-sum. Weighted-sum 

approach allows aggregation of different optimization 

criteria to a single quality value (Jakob and Blume 2014, 

Abachizadeh and Tahani 2009). Since 𝜆1 and 𝜆21  have 

different scales, first, they must be normalized. 

𝜆1𝑛𝑜𝑟𝑚
=

𝜆1

𝜆1𝑚𝑎𝑥

 𝑎𝑛𝑑 𝜆21𝑛𝑜𝑟𝑚
=

𝜆21

𝜆21𝑚𝑎𝑥

 (1) 

Where, 𝜆1𝑚𝑎𝑥
 𝑎𝑛𝑑 𝜆21𝑚𝑎𝑥

 are the global maxima for 

fundamental frequency and frequency separation reported in 

Kalita (2018). 

The unconstrained optimization problem may be stated 

as, 

Maximize 𝜆1−21 = 𝑤1 · 𝜆1𝑛𝑜𝑟𝑚
+ 𝑤2  · 𝜆21𝑛𝑜𝑟𝑚

 (2) 

with the limits, −90𝑜 ≤ 𝜃𝑗 ≤ 90𝑜  

where, 𝜃𝑗 is the ply-angle of the jth ply among total n plies. 

𝑤1 and 𝑤2  are the weights assigned to objective 1 and 

objective 2 respectively. The weights can be anything 

provided that the sum of weights equals unity. The 

individual weight values for each objective is decided by 

the designer depending on the priorities of the target output 

responses. In this work, equal weights are imposed on 𝜆1 

and 𝜆21 i.e. 𝑤1 = 𝑤2 = 0.5. 

 

 

3. Methodology 
 

In the current work, a finite element (FE) formulation is 

used to simulate the natural frequencies. The FE 

formulation uses a nine-node isoparametric plate bending 

element. Rotary inertia and shear deformation are included 

by considering first order shear deformation theory (FSDT). 

The finite element formulation used in the present work has 

been extensively used, discussed and validated by the 

author(s) in their previous papers (Kalita and Haldar 2017, 

Kalita et al. 2016, 2018). 

 

3.1 Genetic algorithm 
 

Genetic Algorithm (GA) is a population -based 

evolutionary algorithm. It is based on the principle of 

natural selection, which states that biological evolution is a  

 
Fig. 3 Algorithm for FE-RPSOLC 

 

 

continuous process (Kalita et al. 2018). Any typical GA 

contains four main characteristics, (1) a population of 

candidate solutions, (2) a means of calculating the goodness 

of solutions, (3) a method of combining certain parts of 

‘good’ solutions to form, in general, ‘better’ solutions, (4) a 

way to introduce some random diversity into the solutions.  

GA initiates by assuming a set of candidate solutions, 

called population. Using its inherent rule-based mechanism, 

the GA updates the population, trying to make the 

population ‘fitter’ as generations progress. In each 

generation, the GA uses the current generation population 

to create the next generation population. The updating of 

the population is done by means of selection, crossover and 

mutation. Selection is the mechanism by which the GA 

selects certain members, called parents, to undergo 

crossover. Parts of these parents are randomly recombined 

to form children that make up the next generation. Random 

changes are made in certain individuals to form new 

individuals by means of mutation. This process continues 

until the termination criteria are met. In this case, the 

algorithm terminates when the total predetermined number 

of finite-element iterations is reached, and it reports back 

the best solution encountered among all the generation. The 

algorithm of the FE-GA is illustrated in Fig. 2. 

 

3.2 Repulsive particle swarm optimization with local 
search and chaotic perturbation  
 

Much like GA, particle swarm optimization (PSO) too is 

a population-based algorithm. It is based on the flocking 

behavior of birds or swarm behavior of insects. The 

standard particle swarm optimization (SPSO) algorithm  
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Fig. 4 Algorithm for FE-CHP 

 

 

starts by assuming a swarm, St of ‘n' particles. Every 

particle that makes up the swarm has access to some 

information. Firstly, they know the current value of their 

solution and their current position which is a solution to the 

problem, the algorithm is trying to solve. Each particle 

tracks its personal best value it has attained (‘pBest’) and 

the position that was achieved. Each particle also has access 

to the global best solution value (‘gBest’) and the positions 

at which this was discovered. Lastly, a particle is aware of 

its current velocity, i.e., how fast its position is changing. 

Any kth particle continuously updates its velocity and 

position as follows 

𝑣𝑡+1
𝑘 = 𝜔. 𝑣𝑡

𝑘 + 𝑐1. 𝑟1. (𝑝𝐵𝑒𝑠𝑡𝑘 − 𝑥𝑡
𝑘)

+ 𝑐2. 𝑟2. (𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑡
𝑘) (3) 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝑣𝑡+1
𝑘 (4) 

Where, subscripts 𝑡 and (𝑡 + 1)  represent the current 

and the next iteration, 𝑟1, 𝑟2  generates random numbers 

between 0 to 1, 𝑐1 and 𝑐2  are the cognitive and social 

parameters respectively. 𝑣 and 𝑥  represent velocity and 

position respectively. 𝜔  is inertia weight, which controls 

the influence of the last velocity on the current velocity. 

Repulsive particle swarm optimization (RPSO), 

developed by Urfalıoglu in (2004) is a PSO variant in which 

the velocity of the particle is updated as, 

𝑣𝑡+1
𝑘 = 𝜔. 𝑣𝑡

𝑘 + 𝛼. 𝑟1. (𝑝𝐵𝑒𝑠𝑡𝑘 − 𝑥𝑡
𝑘)

+ 𝜔. 𝛽. 𝑟2. (𝑝𝐵𝑒𝑠𝑡𝑚 − 𝑥𝑡
𝑘)

+ 𝜔. 𝛾. 𝑟3. 𝑣𝑡
𝑟 

(5) 

Table 1 Non-dimensional fundamental frequencies  

𝛌 = 𝛚𝐚𝟐 𝐡⁄ √𝛒 𝐄𝟐⁄   for simply supported cross-ply 

(00/900) square laminates. [E1/E2 = 40, G12 = G13= 0.6E2, 

G23 = 0.5E2, ν12= 0.25] 

Source 
h/a 

0.25 0.1 0.05 0.02 0.01 

Current 8.0350 10.4730 11.0780 11.2700 11.3000 

RPT (Thai and Kim 2010) 

(Error %) 

8.2651 

(2.78) 

10.548 

(0.71) 

11.0997 

(0.20) 

11.2742 

(0.04) 

11.2999 

(0.00) 

TSDT (Reddy 1997) 

(Error %) 

8.3546 

(3.83) 

10.568 

(0.90) 

11.1052 

(0.24) 

11.2751 

(0.05) 

11.3002 

(0.00) 

FSDT (Whitney and Pagano 1970) 

(Error %) 

8.0349 

(0.00) 

10.4731 

(0.00) 

11.0779 

(0.00) 

11.2705 

(0.00) 

11.2990 

(-0.01) 

 

 

Here, 𝛼, 𝛽, 𝛾 are constants, 𝑝𝐵𝑒𝑠𝑡𝑘 is the personal best 

position of the kth particle whereas 𝑝𝐵𝑒𝑠𝑡𝑚 is the personal 

best position of a randomly chosen mth particle from the 

swarm population. 𝑣𝑡
𝑟 is a random velocity component.  

In the current work, the traditional RPSO is further 

modified by augmenting its local search capability as per 

the suggestions of Mishra et al. (2010). Instead of making 

complicated changes to the existing velocity updating 

scheme of RPSO, a separate independent module is built-in 

to help the particles in local search. Each particle can visit 

its surrounding and search for a better solution. The domain 

of its search is controlled by a local search. This local 

search has no preference for gradients in any direction and 

resembles closely to tunneling (Santos et al. 2010). This 

added exploration capability makes the modified RPSO 

more realistic. Another important feature, called chaotic 

perturbation (𝑟𝑐ℎ𝑎𝑜𝑠) is also included. Whenever a particle 

gets trapped in local optima, a chaotic perturbation is 

included by multiplying it to the velocity component in 

particle position updating equation reported in eqn. 4, such 

that 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝑣𝑡+1
𝑘 . (1 + 𝑟𝑐ℎ𝑎𝑜𝑠) (6) 

The modified RPSO is henceforth called as Repulsive 

Particle Swarm Optimization with local search and chaotic 

perturbation (RPSOLC). The algorithm of the FE-RPSOLC 

is illustrated in Fig. 3. 

 

3.3 Co-evolutionary host-parasite optimization 
 

Cuckoo search algorithm (CS), is an algorithmic 

implementation of the parasitic behavior of cuckoos in 

laying eggs in crow nests. In the current work, the 

traditional cuckoo search is endowed with better memetic 

attributes. The traditional CS does not present a strategy for 

the crows to regenerate their nests and thus, there is no 

scope of coevolution. This is countered in the present work 

by allowing crows to take Lévy flights. Secondly, in the 

traditional cuckoo search, the detection probability is pre-

decided (Mishra 2013), which in real life scenario is not 

necessarily true. In fact, wherever there is cuckoo and crow 

interaction the detection rate would increase. This is 

modeled in the current work by using the Gompertz 

function, a sigmoid curve to model the detection parameter. 

The modified cuckoo search, originally proposed by Mishra 

(2013) is called Co-evolutionary host-parasite (CHP). 

24



 

Weighted sum multi-objective optimization of skew composite laminates 

 

 

 

CHP is initialized by assuming a population of ‘nh’ hosts 

and ‘np’ parasites each distributed randomly in the search 

space. The fitness of each host and parasite is evaluated. 

The fitness of kth host in the host population nh and the mth 

parasite in the parasite population np is expressed 

as  𝑓(ℎ𝑡
𝑘) 𝑎𝑛𝑑 𝑓(𝑝𝑡

𝑚) . The suffix 𝑡  represents the 

generation or iteration counter. Each parasite than takes a 

Lévy flight and tries to update its position, which is given 

for the mth parasite as, 

𝑝𝑡+1
𝑚 = 𝑝𝑡

𝑚 + [𝛼(𝑟1 − 0.5). 𝐿𝑒𝑣𝑦(𝛽)]. [ℎ𝑡 − 𝑝𝑡
𝑚] (7) 

Where 𝛼 = 0.0001 + 𝑟2
2; 𝛽 =

3

2
  

If the parasite’s post-flight fitness is worse than its pre-

flight fitness, then it does not attempt to update its position. 

However, if its post-flight fitness is better than the pre-flight 

fitness, it randomly chooses a host nest that has not been 

invaded yet and lays an egg provided that the host egg is 

inferior to the parasite egg. But the parasite eggs may be 

detected with a probability,  𝑃𝑡
𝑑𝑒𝑡  and destroyed by the 

host. At each next iteration (t+1), 𝑃𝑡+1
𝑑𝑒𝑡  increase as per 

the Gompertz growth curve rule as 

𝑃𝑡+1
𝑑𝑒𝑡  = 𝑃𝑚𝑎𝑥.

𝑑𝑒𝑡 . 𝑒−2.𝑒
−(1+ln (1+ 𝑃𝑡

𝑑𝑒𝑡))
−1

 
(8) 

However, if undetected, the parasite egg hatches and 

joins the parasite population. But only the best np parasites 

enter the next generation. This is like elitism used in genetic 

algorithms.  

Like the parasites, after every iteration, each uninvaded  

 

 

host also takes a Lévy flight to update its position which is 

given for the kth host as, 

ℎ𝑡+1
𝑘 = ℎ𝑡

𝑘 + [𝜔(𝑟3 − 0.5). 𝐿𝑒𝑣𝑦(𝛾)]. [𝑝𝑡 − ℎ𝑡
𝑘] (9) 

Where 𝜔 = 0.0001 + 𝑟4
2; 𝛾 =

5

3
  

If a better post-flight fitness is found, the host updates 

itself otherwise maintains its pre-flight position. This 

continues until a pre-specified tolerance level or the 

maximum number of generations is not reached. The 

algorithm of the modified CS i.e., FE-CHP is illustrated in 

Fig. . 

 
 
4. Results and discussion 
 

In this section, the finite element coupled metaheuristic 

approaches discussed in section 3 are used to solve certain 

composite laminate weighted sum multiobjective 

optimization problems. Due to the paucity of space, 

validation of the finite element formulation is reported very 

briefly. Table 1 shows the comparison of the current FSDT 

based FE simulation results along with solutions obtained 

using RPT (Thai and Kim 2010), TSDT (Reddy 1997) and 

Pagano’s FSDT (Whitney and Pagano 1970). It is clear that 

for the range of thickness (i.e., h/a=0.01) considered in this 

study, the current FSDT is as accurate as RPT and TSDT. 

Thus, for this study, the current FSDT based FE formulation 

can be confidently used without worrying about the inherent 

limitations of FSDT. 

Table 2 Optimal layer orientation for 8-layered symmetric [𝜃1 𝜃2⁄ 𝜃3⁄ 𝜃4⁄ ]𝑠  rhombic composite plate (a/b=1) for 

max. 𝜆1−21 

BC 

FE-GA FE-RPSOLC FE-CHP 

𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 

Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 

SSSS [30/-65/-55/-40]s 0.8971 [65/-403]s 0.8803 [30/-603]s 0.8975 [70/-403]s 0.8840 [30/-603]s 0.8975 [-40/75/70/-55]s 0.8812 

SSSF [20/-65/-80/20]s 0.8499 [-20/-903]s 0.9500 [-70/102/-70]s 0.8329 [-25/85/-90/-85]s 0.9530 [15/-75/-60/-55]s 0.8513 [-25/85/-902]s 0.9531 

SSSC [-20/802/-90]s 0.9117 [-55/802/-65]s 0.9255 [-20/80/752]s 0.9118 [-50/85/752]s 0.9245 [-20/75/-90/40]s 0.9111 [-50/85/80/85]s 0.9246 

SSFF [30/-55/-65/30]s 0.9406 [20/-80/∓5]s 0.9813 [30/-602/25]s 0.9418 [15/-75/152]s 0.9961 [30/-602/25]s 0.9418 [15/-70/15/0]s 0.9920 

SSCF [20/-653]s 0.7957 [-65/-552/-65]s 0.9638 [20/-65/-80/-65]s 0.7947 [-604]s 0.9646 [20/-75/-65/-45]s 0.7950 [-55/-65/90/-80]s 0.9588 

SSCC [80/-203]s 0.9545 [-90/-552/-80]s 0.9931 [70/-253]s 0.9547 [-65/75/-60/80]s 0.9907 [-20/802/65]s 0.9540 [-60/802/-25]s 0.9907 

SFCF [-304]s 0.8218 [-40/-552/20]s 0.8608 [-304]s 0.8218 [-50/-30/50/-10]s 0.8618 [-35/-30/-15/-30]s 0.8131 [-45/-25/55/30]s 0.8598 

SCSF [-80/53]s 0.8968 [-20/802/-30]s 0.9789 [10/-90/-60/-65]s 0.8895 [-20/802/-20]s 0.9792 [15/-75/-60/-55]s 0.8973 [-20/802/65]s 0.9781 

SCSC [-20/80/-5/80]s 0.8327 [-552/80/90]s 0.8852 [-15/80/-20/80]s 0.8331 [-50/90/-50/-55]s 0.8858 [-20/65/-80/-30]s 0.8307 [-50/-65/75/-55]s 0.8847 

SCFF [30/-55/5/-55]s 0.9282 [20/5/-802]s 0.9753 [25/-602/20]s 0.9339 [15/-80/102]s 0.9828 [25/-602/20]s 0.9339 [15/-80/102]s 0.9828 

SCCF [-80/20/52]s 0.8436 [-80/-40/-55/-65]s 0.9648 [-80/15/102]s 0.8467 [-80/-40/-55/-65]s 0.9648 [-80/15/102]s 0.8467 [-75/-35/-75/-70]s 0.9661 

CSCF [-65/303]s 0.8219 [-40/-80/-55/-40]s 0.9860 [-65/302/25]s 0.8220 [-40/-80/-502]s 0.9862 [-65/302/25]s 0.8220 [-40/-80/-502]s 0.9862 

CFFF [20/-403]s 0.8146 [-40/202/5]s 0.9041 [25/-453]s 0.8212 [-45/15/20/15]s 0.9079 [25/-453]s 0.8212 [-45/15/20/15]s 0.9079 

CFCF [30/-65/302]s 0.7300 [5/802/5]s 0.7786 [(30/-70) 2]s 0.7359 [10/70/15/10]s 0.7820 [(30/-70) 2]s 0.7359 [10/752/10]s 0.7991 

CCFF [20/65/-402]s 0.9634 [20/5/-80/-65]s 0.9936 [30/-45/80/45]s 0.9622 [152/-752]s 0.9981 [30/-45/70/55]s 0.9638 [152/-752]s 0.9981 

CCCS [80/-203]s 0.8994 [-804]s 0.9592 [80/-203]s 0.8994 [-804]s 0.9592 [80/-203]s 0.8994 [-804]s 0.9592 

CCCF [-80/202/-80]s 0.8080 [-40/-80/-30/-65]s 0.9862 [-75/25/20/-75]s 0.8106 [-35/-80/-65/-40]s 0.9872 [-75/25/20/-75]s 0.8106 [-35/-80/-70/-40]s 0.9873 

CCCC [-20/803]s 0.9500 [-80/-65/-802]s 0.9944 [80/-20/-30/75]s 0.9439 [-754]s 0.9970 [-20/802/85]s 0.9500 [-754]s 0.9970 
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Fig. 5 Variation of maxima with respect to different 

boundary condition, skew angle and aspect ratio for 8-ply 

symmetric laminate 
 

 

The FE-GA approach used in this work was validated 

against published works of Apalak et al. (2014) and Narita 

(2003) in a very recent work by the author(s) (Kalita et al. 

2018). It was shown that the current FE-GA is capable of 

producing optimal results at par with the artificial bee 

colony (Apalak et al. 2014) and Ritz-based layerwise 

method (Narita 2003).  

In the current work, the maximum function evaluations 

(i.e., total FE iterations) for a particular trial is fixed at 

50,000, based on author(s) previous study (Kalita et al.  

 

 
Fig. 6 Variation of maxima with respect to different 

boundary condition, skew angle and aspect ratio for 12-ply 

symmetric laminate 

 

 

2018). A mesh size of 4×4 elements is used in each FE 

iteration. Based on (Kalita et al. 2018), the various GA 

tuning parameters are set as-population size 500, generation 

100, crossover and mutation probabilities as 0.85 and 0.1 

respectively. For adjusting the tuning parameters of the 

RPSOLC algorithm, recommendations of Santos et al. 

(2011), Santos et al. (2010) are followed. Thus, in this  

Table 3 Optimal layer orientation for 8-layered symmetric [𝜃1 𝜃2⁄ 𝜃3⁄ 𝜃4⁄ ]𝑠  skew composite plate (a/b=2) for 

max. 𝜆1−21 

BC 

FE-GA FE-RPSOLC FE-CHP 

𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 

Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 

SSSS [-40/403]s 0.8260 [∓40/±40]s 0.8021 [-45/403]s 0.8267 [∓45/±45]s 0.8128 [-40/402/-55]s 0.8253 [-45/452/-45]s 0.8128 

SSSF [5/-55/202]s 0.9432 [-30/55/-20/-5]s 0.9835 [10/-55/52]s 0.9447 [25/60/-30/-20]s 0.8018 [10/-55/52]s 0.9447 [-25/60/-30/-20]s 0.9857 

SSSC [-40/403]s 0.7885 [∓40/±40]s 0.7643 [-35/40/35/30]s 0.7858 [(-35/40) 2]s 0.7591 [-40/35/40/35]s 0.7890 [-40/402/-55]s 0.7638 

SSFF [30/-552/30]s 0.9785 [20/-55/52]s 0.9216 [30/-502/30]s 0.9807 [15/-55/202]s 0.9232 [30/-50/-60/-55]s 0.9774 [15/-55/202]s 0.9232 

SSCF [-5/80/-302]s 0.9296 [-40/55/-402]s 0.9591 [-10/-90/±15]s 0.9302 [-40/60/-40/-30]s 0.9597 [-10/-90/±15]s 0.9302 [-35/60/-55/25]s 0.9565 

SSCC [-30/40/-302]s 0.7812 [∓40/-30/-40]s 0.7585 [∓35/±35]s 0.7840 [∓35/-352]s 0.7531 [∓35/-30/35]s 0.7794 [∓35/-352]s 0.7531 

SFCF [(20/-55)2]s 0.7990 [-5/-65/-55/5]s 0.9243 [(20/-55)2]s 0.7990 [0/-602/-10]s 0.9239 [(20/-55)2]s 0.7990 [0/-602/-10]s 0.9239 

SCSF [5/-65/-5/-20]s 0.8764 [(-30/55)2]s 0.8672 [0/-65/10/5]s 0.8767 [-35/552/-30]s 0.8687 [0/-65/10/50]s 0.8758 [-30/60/-15/-55]s 0.8662 

SCSC [-30/303]s 0.7251 [-904]s 0.5607 [∓35/302]s 0.7277 [-30/35/-352]s 0.7240 [-40/35/40/0]s 0.7232 [-30/35/-352]s 0.7240 

SCFF [30/-653]s 0.8242 [80/20/5/80]s 0.8854 [30/-653]s 0.8242 [75/15/80/15]s 0.8867 [30/-602/50]s 0.8222 [(75/15) 2]s 0.8867 

SCCF [-20/65/-52]s 0.9692 [-40/55/-40/-20]s 0.8915 [-15/65/-152]s 0.9698 [-40/55/-35/-25]s 0.8916 [-10/-80/0/-10]s 0.9668 [-35/60/-55/25]s 0.8892 

CSCF [-5/80/-55/-5]s 0.9056 [-40/55/-302]s 0.9662 [-10/85/45/-15]s 0.9056 [-35/55/-40/-35]s 0.9668 [-10/80/45/75]s 0.9032 [-35/55/-40/-35]s 0.9668 

CFFF [20/-40/∓30]s 0.8406 [5/-40/30/20]s 0.9126 [20/-35/-40/30]s 0.8411 [10/-40/20/-35]s 0.9169 [20/-35/-20/30]s 0.8366 [10/-40/20/-35]s 0.9169 

CFCF [30/-552/20]s 0.7692 [-65/302/-55]s 0.7869 [30/-552/25]s 0.7692 [-60/30/±45]s 0.7790 [30/-602/50]s 0.7647 [-60/252/-60]s 0.7902 

CCFF [30/-652/20]s 0.7896 [80/20/5/80]s 0.8884 [25/-60/25/-65]s 0.7912 [75/15/80/15]s 0.8903 [25/-65/-55/60]s 0.7889 [75/15/80/15]s 0.8903 

CCCS [-30/40/-302]s 0.7894 [∓40/-402]s 0.7816 [-35/45/-352]s 0.7917 [∓45/-452]s 0.7879 [-30/40/-40/-70]s 0.7870 [∓45/-452]s 0.7879 

CCCF [-5/80/-20/-5]s 0.9697 [-30/55/-402]s 0.8897 [-10/70/-102]s 0.9745 [-35/50/-35/-30]s 0.8908 [-15/70/0/65]s 0.9683 [-35/50/-35/-30]s 0.8908 

CCCC [-30/40/-302]s 0.7421 [∓40/-402]s 0.7820 [-25/35/-252]s 0.7403 [∓40/-40/-45]s 0.7821 [∓35/-30/35]s 0.7375 [∓40/-40/-45]s 0.7821 
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Fig. 7 Stochastic performance of the three metaheuristics 

 

 

work, a swarm of 50 particles is allowed to iterate for 100 

generations with local search for each particle as 10. In the 

current work, for the CHP algorithm, nh= np=50 is used 

based on Gandomi et al. (2013)’s suggestion. The 

maximum detection probability i.e., 𝑃𝑚𝑎𝑥.
𝑑𝑒𝑡 in eqn. 8 is 

set as 0.7. 

 

4.1 Problems on skew plates 
 

Independently combining the finite element model with 

each of the three metaheuristic algorithms discussed in 

section 3, high-fidelity design optimization approaches are 

developed. Several sparsely solved examples from the 

literature are solved using these approaches to depict the 

efficacy of the developed optimization routines. Maximized 

𝝀𝟏−𝟐𝟏  (i.e., simultaneously maximized 𝝀𝟏  and 𝝀𝟐𝟏 ) for 

rhombic 8-ply symmetric composite laminate are reported 

in Table 2. Similar results for 8-ply skew (a/b=2) symmetric 

composite laminates are reported Table 3. Simultaneously 

maximized 𝜆1  and 𝜆21  for 12-ply skew symmetric 

composite laminates for a/b=1 and a/b=2 at different skew 

angles are reported in Tables 4-5 respectively. 

The weighted sum multiobjective optimization index 

(𝜆1−21) indicates a scaled function and as such the ideal 

case value would be 1, provided that the global optima 

values of the single objective optimization are provided to 

the algorithm initially. Because the weighted sum 

multiobjective optimization index is essentially a 

unification of two scaled single objectives, a conclusive 

trend with respect to variation in geometric parameters like 

aspect ratio, skew angle, number of plies is not seen. The 

variation of global maxima with respect to various 

boundary conditions, skew angle and aspect ratio is shown 

in Figs. 5 and 6 for 8-ply and 12-ply symmetric laminate 

respectively. It is seen that in general, the weighted sum 

multiobjective frequency parameter increases with an 

increase in skew angle. It is also observed that the weighted 

sum multiobjective optimization index decreases with an 

increase in aspect ratio (a/b). 

 
4.2 Performance comparison of the metaheuristics 

 
In total, 144 new problems (8 geometric configurations 

with 18 boundary conditions each) are reported in this 

article. Among the 144 individual cases reported in Tables 

2-5, FE-CHP successfully located the maxima in 

approximately 102 (~71%) cases, while FE-RPSOLC and 

FE-GA were successful on 77 (~53.5%) and 18 (~12.5%)  

 
Fig. 8 Iterative improvement of feasible solutions towards 

optimality in a typical case 

 

 
Fig. 9 Distribution of 50,000 function evaluations by GA, 

RPSOLC and CHP in two typical cases 
 

 

cases respectively. However, in most cases, even when FE-

CHP could not locate the maxima in absolute terms, it was 

seen to be in the near-maxima; zone. FE-GA and FE-

RPSOLC, on the other hand, seem to have landed in the pit 

of local optima, at least one time each-Table 3, skew 60˚, 

SCSC and SSSF respectively. 

Each trial was repeated 10 times to account for the 

variability in the prediction of the stochastic algorithms. 

Naturally, it is desirable to have a metaheuristic algorithm 

that could predict the maxima 10 out 10 times. Though only 

the absolute maximum among the 10 trials in each case is 

reported in Tables 2-5, the standard deviations for each of 

the 144 cases were recorded. Fig. 7 shows the spread of 

standard deviation for each of the three metaheuristics in all 

the 144 cases. It is seen that the variability is the optimal 

predictions is most in FE-GA and least in FE-CHP. This 

means that on an average, FE-CHP is a more stable and 

robust approach as compared to FE-GA and FE-RPSOLC. 

FE-CHP is successful in locating the global optima 

repeatedly on multiple trials. Thus, from Fig. 7, in terms of 

precision the three approaches may be ranked as FE-CHP > 

FE-RPSOLC > FE-GA. Additionally, it should be noted 

that, in general, the variability of FE-GA is less than 

0.00125, with outliers ranging as high as 0.00225. Thus, it  
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is imperative to point out that FE-GA would serve as a 

reliable solver-optimizer for most practical purpose 

problems where near optimal solutions are equally 

acceptable.   

The convergence and iterative improvement capability 

of the three metaheuristics are depicted in Fig. 8 for a 

typical case. In this example, FE-GA converged to a sub-

optimal solution. However, it is important to state here that 

FE-GA on repeated trials (using 10 different random seeds) 

was indeed able to locate the maxima as seen in Table 4. 

Though both FE-RPSOLC and FE-CHP were able to locate 

the maxima, the convergence of FE-CHP was much faster. 

It is also worth mentioning here that despite converging to 

the same global maxima in terms of magnitude FE-

RPSOLC and FE-CHP in Fig. 8 predicted different sets of 

optimal fiber angles. This further reinforces the belief that 

the function domain is highly multimodal and likely to 

contain multiple global maxima. In fact, baring a few out of 

144 cases (Tables 2-5), in cases where the three 

metaheuristic algorithms predicted the same maxima, in 

general, non-identical optimal fiber-angle combinations, 

were reported. Another interesting stochastic iterative 

improvement trait that is seen in Fig. 8 is that despite FE-

GA being at a better initial solution as compared to FE-

RPSOLC and FE-CHP, it converged to a sub-optimal 

solution. The superior search capability of FE-RPSOLC and  

                                           
1Due to paucity of space, FE-GA predicted optimal layups 

are not included in Tables 3 and 4. Moreover, in general, 

the predicted maxima of FE-RPSOLC and FE-CHP are 

better than that of FE-GA.  

 

 

FE-CHP could be perhaps due to the advanced memetic 

attributes introduced in them. 

To further understand the superiority of FE-RPSOLC 

and FE-CHP, Box plots containing the information 

regarding 50,000 function evaluations (FE iterations) for 

two typical cases are reported in Fig. 9. The total spread 

length (on objective function scale) of all the 50,000 

evaluations for the three metaheuristics is similar. However, 

the nature of spread i.e. the accumulation of evaluated 

functions on the objective function scale shows stark 

differences. While in the case of FE-GA the evaluated 

functions are seen to be uniformly distributed across the 

spread length, in FE-CHP there is a significant 

accumulation above the mean value with a light tail. This 

signifies that the FE-GA takes a lot of function evaluations 

to reach an optimum value. Thus, for this same problem, if 

the maximum number of function evaluations is decreased 

(say to 10,000 iterations), it is quite possible that FE-GA 

could fail miserably in locating the absolute maxima. In 

other words, the iterative improvement capability of FE-GA 

is somewhat sluggish. Contrarily, for FE-CHP the region 

above 3rd quartile (i.e., ~75%) of the Box plots have 

negligible spread length and lie above the mean value of 

50,000 evaluations. This signifies that FE-CHP is quickly 

able to locate the zone of global optima. It is continuously 

able to keep track of best solutions and thus, effectively and 

quickly able to locate the global optima, thereby imparting 

it a very fast convergence rate. FE-RPSOLC shows 

somewhat similar spread and evaluated function 

accumulation like FE-GA, though it appears to be 

marginally better.  

Table 4 Optimal layer orientation for 12-layered symmetric skew composite plate (a/b=1) for max. 𝜆1−21 

BC 

FE-GA1 FE-RPSOLC FE-CHP 

 𝜆1−21 𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 

𝛼 = 30𝑜 𝛼 = 60𝑜 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 

SSSS 0.9003 0.8862 [30/-80/-352/-70/45]s 0.9003 [70/-402/70/-402]s 0.8898 [-60/10/552/15/-20]s 0.9003 [70/-402/70/-40/-45]s 0.8899 

SSSF 0.8515 0.9627 [15/-80/-75/20/25/0]s 0.8530 [85/-253/-80/-25]s 0.9645 [-75/152/20/15/-70]s 0.8562 [-25/85/-90/-253]s 0.9649 

SSSC 0.9167 0.9513 [80/-202/-15/-25/70]s 0.9169 [-50/75/-50/802/-90]s 0.9529 [80/-202/-15/-20/80]s 0.9169 [-45/802/-502/-80]s 0.9529 

SSFF 0.9406 0.9859 [30/-60/30/-65/252]s 0.9421 [10/-75/25/20/30/15]s 0.9879 [(30/-60)2/252]s 0.9428 [152/-752/152]s 0.9947 

SSCF 0.7938 0.9683 [15/-75/-85/35/-60/20]s 0.7859 [-603/-65/-602]s 0.9691 [-70/203/-702]s 0.7965 [-602/-65/-602]s 0.9691 

SSCC 0.9600 0.9958 [80/-20/-15/75/0/-50]s 0.9589 [85/-603/-80/-75]s 0.9958 [80/-202/75/-20/-25]s 0.9602 [-55/852/-65/-85/-70]s 0.9959 

SFCF 0.8267 0.8666 [-306]s 0.8275 [-50/-40/-45/402/-5]s 0.8659 [-306]s 0.8275 [-50/-45/35/-452/-20]s 0.8656 

SCSF 0.9051 0.9817 [-75/153/-10/-65]s 0.9047 [-20/90/-15/80/-25/-20]s 0.9750 [10/-802/152/-80]s 0.9094 [80/-205]s 0.9821 

SCSC 0.8350 0.8865 [-15/80/-202/802]s 0.8359 [-552/80/-50/-55/-65]s 0.8868 [-15/80/-202/802]s 0.8359 [-552/80/-50/-55/-65]s 0.8868 

SCFF 0.9317 0.9868 [25/-60/25/-55/20/25]s 0.9346 [152/-80/10/-75/5]s 0.9925 [25/-60/25/-55/20/25]s 0.9346 [152/-80/10/-75/50]s 0.9916 

SCCF 0.8322 0.9710 [20/-80/-65/5/45/-25]s 0.8275 [-752/-30/-35/-80/-65]s 0.9725 [15/-80/-752/152]s 0.8367 [-752/-30/-35/-75/-70]s 0.9725 

CSCF 0.8249 0.9874 [-65/302/-652/60]s 0.8246 [-452/90/-502/-45]s 0.9882 [-65/302/-652/25]s 0.8252 [-452/90/-502/-45]s 0.9882 

CFFF 0.8176 0.9060 [25/-452/252/15]s 0.8219 [-45/152/-452/20]s 0.9098 [25/-452/253]s 0.8220 [15/-453/20/15]s 0.9099 

CFCF 0.7292 0.7707 [30/-70/25/30/35/25]s 0.7339 [15/70/75/15/25/55]s 0.7719 [30/(-75/30)2/25]s 0.7376 [15/75/152/75/10]s 0.7906 

CCFF 0.9620 0.9902 [20/50/-55/-65/-20/55]s 0.9617 [152/-75/15/10/25]s 0.9970 [20/50/-65/-30/352]s 0.9633 [152/-75/153]s 0.9972 

CCCS 0.8987 0.9646 [80/-25/75/-20/-10/-5]s 0.8982 [-80/-85/-75/-80/-85/-75]s 0.9648 [-20/802/75/80/-20]s 0.8998 [-806]s 0.9652 

CCCF 0.8053 0.9875 [-75/25/-75/202/-70]s 0.8086 [-75/-30/-35/-40/-502]s 0.9879 [-75/25/-75/202/-70]s 0.8086 [-75/-30/-352/-70/-50]s 0.9879 

CCCC 0.9599 0.9966 [-20/802/-20/75/85]s 0.9600 [-756]s 0.9992 [-20/802/-20/80/85]s 0.9600 [-756]s 0.9992 
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Table 6 Paired sample t-Test between FE-GA, FE-RPSOLC 

and FE-CHP (Case Table 5, SCFF) 

Optimization 

method 
N Mean SD SE Median t-value p-value 

FE-GA 10 0.8838 0.0011 0.0004 0.8843 
-6.6074 4.92E-05 

FE-RPSOLC 10 0.8861 0.0000 0.0000 0.8861 

Estimate for average difference: -0.00232 

Ho: mean (FE-GA) >= mean (FE-RPSOLC) 

Ha:  mean (FE-GA) < mean (FE-RPSOLC) 

FE-GA 10 0.8838 0.0011 0.0004 0.8843 
-9.2478 3.42E-06 

FE-CHP 10 0.8871 0.0000 0.0000 0.8871 

Estimate for average difference: -0.00325 

Ho: mean (FE-GA) >= mean (FE-CHP) 

Ha:  mean (FE-GA) < mean (FE-CHP) 

FE-RPSOLC 10 0.8861 0.0000 0.0000 0.8861 
-- -- 

FE-CHP 10 0.8871 0.0000 0.0000 0.8871 

Estimate for average difference: -0.00093 

Ho: mean (FE-RPSOLC) >= mean (FE-CHP) 

Ha:  mean (FE-RPSOLC) < mean (FE-CHP) 

 
 

Additionally, two-sample paired t-tests between FE-GA, 

FE-RPSOLC and FE-CHP are carried out (Table 6). In all 

the three t-tests, the p-value is very close to 0. Thus, it is 

safe to reject the null hypothesis (Ho). At 5% significance 

level, the optimization performance of FE-CHP is 

significantly superior to FE-GA and FE-RPSOLC. 

Moreover, there is 95% confidence that the FE-RPSOLC 

could outperform FE-GA.  

 

 

5. Conclusions 

 
 

In this article, three nature-inspired optimization 

algorithms-genetic algorithm (GA), repulsive particle 

swarm optimization with local search and chaotic 

perturbation (RPSOLC) and co-evolutionary host-parasite 

(CHP) are separately combined with a nine-node 

isoparametric finite element formulation (FE) to design 

optimized skew laminates. The rotary inertia and shear 

deformation are accounted for by considering first-order 

shear deformation theory. Using fiber-angles as the design 

variables, skew laminates are optimized such that the 

fundamental frequency and frequency separation between 

the first two modes is simultaneously maximized. Several 

examples of skew plates with different boundary conditions, 

geometry and number of layers are used to validate the 

accuracy of the FE-GA, FE-RPSOLC and FE-CHP. It is 

found that all the three approaches FE-GA, FE-RPSOLC 

and FE-CHP have high potential in finding the optimal 

stacking sequence of composite laminates. FE-CHP 

comprehensively outperformed the other two approaches. It 

showed quick convergence and low dispersion of the 

evaluated function population, making it ideal for 

application in highly computationally expensive structural 

optimization problems. FE-CHP successful located the 

maxima in about 71% of the total 144 examples, whereas 

FE-RPSO and FE-GA managed to do so in about 53% and 

12.5% examples respectively. In the remaining 29% of the 

trials where FE-CHP could not locate the absolute maxima, 

it very marginally missed the maxima (which was found by 

either FE-GA or FE-RPSO). FE-RPSOLC performed a little 

better than FE-GA and could also serve as a robust tool to 

maximize the frequency parameters of composite plates by 

Table 5 Optimal layer orientation for 12-layered symmetric skew composite plate (a/b=2) for max. 𝜆1−21 

BC 

FE-GA FE-RPSOLC FE-CHP 

 𝜆1−21 𝛼 = 30𝑜 𝛼 = 60𝑜 𝛼 = 30𝑜 𝛼 = 60𝑜 

𝛼 = 30𝑜 𝛼 = 60𝑜 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 Optimal layup  𝜆1−21 

SSSS 0.8287 0.8022 [40/-45/-40/-50/402]s 0.8298 [∓45/(-40/45)2]s 0.8112 [40/-452/402]s 0.8307 [(-45/45)2/±45]s 0.8129 

SSSF 0.9430 0.9879 [5/10/-602/10/0]s 0.9439 [-25/60/-10/-30/-15/-20]s 0.9865 [5/10/-602/10/0]s 0.9439 [-25/60/-253/-10]s 0.9896 

SSSC 0.7773 0.7785 [-45/35/40/-402/20]s 0.7773 [(-40/40) 2/±40]s 0.7804 [-40/352/-402/40]s 0.7789 [(-40/40) 2/±40]s 0.7804 

SSFF 0.9760 0.9224 [30/-50/25/-502/35]s 0.9770 [15/20/-60/15/-55/15]s 0.9254 [30/-50/30/-502/30]s 0.9783 [15/20/-60/15/-55/15]s 0.9254 

SSCF 0.9413 0.9778 [5/-30/±75/-15/10]s 0.9413 [-40/65/-353/-20]s 0.9780 [5/-30/±75/-15/10]s 0.9413 [-40/65/-353/-20]s 0.9780 

SSCC 0.7812 0.7369 [-35/40/-30/35/-40/-50]s 0.7843 [30/-352/-30/35/-25]s 0.7320 [-35/40/∓35/-352]s 0.7854 [∓35/-352/±35]s 0.7502 

SFCF 0.8008 0.9247 [20/15/-60/-55/-50/30]s 0.7964 [0/-60/-5/-65/0/-55]s 0.9258 [20/-55/202/-55/15]s 0.8011 [0/-60/-50/-65/0/-55]s 0.9040 

SCSF 0.8815 0.8726 [02/-70/0/-75/-5]s 0.8824 [-35/55/-30/60/-30/-20]s 0.8734 [02/-70/0/-75/-50]s 0.8823 [-35/55/-30/60/-30/-20]s 0.8734 

SCSC 0.7390 0.7136 [-35/25/±35/25/-40]s 0.7376 [(∓35)2/-352]s 0.7252 [-35/302/-35/30/-35]s 0.7406 [(∓35)2/-352]s 0.7252 

SCFF 0.8246 0.8849 [-65/303/-65/45]s 0.8249 [75/15/752/10/75]s 0.8861 [-65/303/-65/30]s 0.8250 [80/15/75/15/752]s 0.8871 

SCCF 0.9639 0.8965 [-10/-15/85/55/-15/-10]s 0.9646 [-35/-30/65/35/-252]s 0.8954 [-10/-15/85/55/-15/-10]s 0.9646 [-35/-30/65/35/-252]s 0.8954 

CSCF 0.9063 0.9816 [-5/85/-10/75/-10/0]s 0.9067 [-40/-35/552/-15/-70]s 0.9804 [-5/85/-10/75/-10/0]s 0.9067 [-35/60/-352/-302]s 0.9822 

CFFF 0.8397 0.9174 [20/-40/25/-352/20]s 0.8412 [10/-40/15/-30/20/10]s 0.9188 [20/-40/25/-352/20]s 0.8412 [10/-40/15/-30/20/10]s 0.9188 

CFCF 0.7680 0.7977 [-55/303/25/20]s 0.7685 [(-65/30)2/-65/-70]s 0.7984 [-55/302/253]s 0.7686 [(-65/30)2/-65/-60]s 0.7987 

CCFF 0.7906 0.8853 [25/-60/25/-65/252]s 0.7920 [(80/15)2/80/45]s 0.8872 [25/-60/25/-65/252]s 0.7920 [(80/15)2/752]s 0.8874 

CCCS 0.8056 0.7936 [-25/-30/50/40/-35/20]s 0.8033 [∓40/-40/-35/-45/-55]s 0.7949 [-30/45/-304]s 0.8082 [∓40/-403/-45]s 0.7962 

CCCF 0.9741 0.8927 [-10/85/-5/∓10/-25]s 0.9711 [-30/50/-25/-35/-25/-65]s 0.8939 [-52/±80/-202]s 0.9741 [-30/50/-302/-252]s 0.8948 

CCCC 0.7410 0.7596 [-25/35/-254]s 0.7397 [-352/45/-40/-352]s 0.7578 [-25/35/-254]s 0.7397 [-352/40/-352/-40]s 0.7564 
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suggesting suitable ply orientations. Further, it should be 

pointed out that both FE-CHP and FE-RPSOLC employ a 

fewer number of self-tuning parameters than FE-GA 

making them much simpler to operate. Thus, the FE-CHP 

algorithm is recommended for carrying out high-fidelity 

optimization of laminated composites. It can lead to 

tremendous saving in computation effort while achieving 

high functionality.  
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