
Structural Engineering and Mechanics, Vol. 69, No. 1 (2019) 105-120 

DOI: https://doi.org/10.12989/sem.2019.69.1.105                                                                 105 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

Over recent decades, computer performance has 

improved significantly, and this allows us to simulate larger 

and more complex structures by modeling with finite 

elements (FE). However, despite this improvement, 

structural modal analysis of large FE models that requires 

solving eigenvalue problems is still a time-consuming task. 

Furthermore, considering the fact that design modifications 

generally occur several times until design completion, it is 

highly inefficient to perform structural modal analysis 

repeatedly at each design change. Therefore, to resolve this 

computational burden, it is attractive to employ model 

reduction methods, such as component mode synthesis 

(CMS) (Craig and Bampton 1968, Benfield and Hruda 

1971, Rubin 1975, Papadimiriou and Papadioti 2013). 

For CMS, a global FE model is divided into several 

substructural models to construct a reduced model more 

efficiently. For this reason, CMS methods have been often 

referred to as a substructuring technique. In structural 

modal reanalysis using CMS methods (Chen and Rong 

2002, Perdahcıoğlu et al. 2011, Kaveh and Faxli 2011, Jian-

Jun et al. 2015), the key feature of the substructuring 

technique (all computations are accomplished based on the 

substructures) is utilized effectively. If design modifications 

affecting such as thickness, materials, or mesh changes 

occur in particular substructures, the substructural normal 

modes and constraint modes corresponding to those 

substructures are computed newly, and then only the new 

results are used to update the previous reduced model.  
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Therefore, much of the computation time needed to 

construct a reduced model for the new design can be saved. 

However, CMS methods are based on domain-based 

substructuring (Leung 1979, Soize and Mziou 2003, Han 

2014), in which the substructuring process is performed 

considering geometrical characteristics of the structure. 

Therefore, if a large FE model is considered, it is not easy 

to make such a large number of substructures, and the 

substructures must contain relatively large degrees of 

freedom (DOFs). Thus, huge computational costs are 

required for the eigenvalue analysis and for the inverse 

process of the stiffness matrix for substructures (Boo and 

Oh 2017, Boo et al. 2018).  

Recalling that the main purpose for employing the 

substructuring technique is to compute the reduced model 

efficiently, domain-based substructuring has the limitation 

to deal with larger, more complicated FE models involving 

several millions of DOFs. 

To address this limitation, the automated substructuring 

algorithm (George 1973, Hendrickson and Rothberg 1997, 

Karypis and Kumar 1998) was developed. In the automated 

substructuring algorithm, the global matrix is appropriately 

permutated, and the permuted matrix is automatically 

partitioned into hundreds of submatrices (substructures) 

from the algebraic perspective. Automated substructuring 

has been applied successfully to CMS methods, and several 

robust methods, such as the automated multi-level 

substructuring (AMLS) method (Kaplan 2001, Bennighof 

and Lehoucq 2004), algebraic dynamic condensation 

(ADC) method (Boo and Lee 2017), and iterative algebraic 

dynamic condensation (IADC) method (Boo and Lee 2017) 

have been developed. These methods allow handling of FE 

models with more than a million DOFs with remarkable 

computational efficiency. 

In this paper, a new, more efficient structural modal 
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reanalysis method is proposed employing the automated 

matrix permutation and substructuring. First, a global FE 

model is divided into a residual part not to be modified and 

a target part to be modified. The automated matrix 

permutation and substructuring algorithm is applied to these 

parts, and each reduced model is calculated using the 

AMLS method. The reduced model for the residual part, 

including most of the total DOFs, is saved in the initial 

analysis, and is reused in each structural modal reanalysis. 

On the other hand, the reduced model for the target part 

is calculated repeatedly, whenever design modifications are 

considered. Because the reduced model for the target part is 

assembled with that of the residual part already saved, the 

final reduced model corresponding to the new design can be 

obtained easily and quickly. This is the most significant 

feature for reducing computation times with the proposed 

structural modal reanalysis method. 

In the following sections, the general structural modal 

reanalysis procedure for handling the global FE models is 

briefly demonstrated, and the formulation of the proposed 

method is derived in detail with a form of submatrix 

computation. Then, the computational efficiency and 

reanalysis ability of the proposed method are demonstrated 

through several large engineering FE models. 

 

 

2. Structural modal reanalysis for global FE models 
 

The structural modal analysis for an initial global FE 

model is conducted using the following generalized 

eigenvalue problem 

=Κφ Μφ  (1) 

where M  and K  denote the initial global mass and 

stiffness matrices, respectively, and φ  and   denote the 

eigenvector and eigenvalue of the initial global structure, 

respectively. 

Considering design modifications without increasing the 

DOFs, the following updated global mass and stiffness 

matrices are obtained. 

= +M M M , = +K K K  (2) 

in which M  and K  are the added mass and stiffness 

matrices resulting from the design modifications 

considered, and the notation ~ represents the updated terms. 

Thus, the generalized eigenvalue problem for the 

modified global FE model can be defined as 

=Κφ Μφ  (3) 

where φ  and   denote the eigenvector and eigenvalue 

of the modified global structure, respectively. 

However, when solving large FE models containing 

several hundreds of thousands of DOFs, the generalized 

eigenvalue problems in Eq. (1) and Eq. (3) require huge 

computation times and computer resources. Furthermore, 

considering that design modifications would be reflected 

several times during the stages of design, it would be highly 

inefficient to compute the eigenpairs of such large FE 

models repeatedly at each new stage of design. To handle 

this inefficiency, a new structural modal reanalysis method 

is proposed in this paper. 
 

 

3. New structural modal reanalysis method 
 

In this section, a new structural modal reanalysis method 

is described. The key processes of the proposed method are: 

(1) Definition of the residual and target parts, (2) 

Automated matrix permutation and substructuring, (3) 

Reduction of the target and residual parts, (4) Assemblage 

of the reduced matrices and solving the reduced system. 
 

3.1 Definition of the residual and target parts 
 

Let us consider a global FE model requiring design 

modifications, as shown in Fig. 1(a). The global structure is 

divided into three parts: a , b , and 
Γ

 . Here, 
Γ

  

denotes the interface boundary between a  and b , and 

Γ
  can be divided into 

α
  and 

β
 , as shown in Fig. 

1(b). This means that 
Γ α β

 =   . 

Thus, the global FE model can be partitioned into two 

parts, A  and B , as shown in Fig. 1(b). Here, A  

denotes the “residual” part that would not be modified, and 

B  denotes the “target” part that would be modified due 

to design modifications affecting such as thickness, 

materials, or mesh changes. 

The target part B  is divided into updating and 

intermediate regions, as shown in Fig. 1(c). The 

intermediate region would not be changed to avoid 

unnecessary updating at the interface boundary 
β

 . The 

updating region is indicated with a blue color, and after 

reflecting design modifications in the updating region, the 

target part B  would be updated to ˆ
B . 

Based on Fig. 1(a), the mass and stiffness matrices for 

the initial global FE model are expressed as 

,

, ,

,

a a

T
a b

T
b b



  



 
 
 =
 
 
 

Μ Μ 0

Μ Μ Μ Μ

0 Μ Μ

,

,

, ,

,

a a

T
a b

T
b b



  



 
 
 =
 
 
 

Κ Κ 0

Κ Κ Κ Κ

0 Κ Κ

 (4) 

where the subscripts a  and b  denote the quantities 

corresponding to a  and b , and   denotes the 

quantity corresponding to the interface boundary 
Γ

 . 

The matrices Μ  and Κ  in Eq. (4), corresponding 

to the interface boundary  , can be divided into parts as 

follows 

  = +Μ Μ Μ ,   = +Κ Κ Κ  (5) 

in which the subscripts   and   represent the quantities 

corresponding to   and  , respectively. 

From Eq. (5) and Fig. 1(b), the initial global mass and 

stiffness matrices M and K in Eq. (4) can be partitioned 
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as follows 

,

,

a a

A T
a 





 
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  

Μ Μ
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Μ Μ
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b

B T
b b

 



 
=  
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Μ Μ
Μ

Μ Μ
 

,
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a a

A T
a 





 
 =
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Κ Κ
Κ

Κ Κ
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,

,

b

B T
b b

 



 
 =
  

Κ Κ
Κ

Κ Κ
 

(6) 

where 
A

Μ  and 
A

Κ  are the mass and stiffness matrices 

corresponding to the residual part A , and BΜ  and BΚ  

are the mass and stiffness matrices corresponding to the 

target part B . 

After reflecting design modifications, the mass and 

stiffness matrices BΜ  and BΚ  (corresponding to the 

target part 
B ) are updated as follows 

Γ

Γ

β ,b

B T
,b b

 
 =
 
 

Μ Μ
Μ

Μ Μ
, 

Γ

Γ

β ,b

B T
,b b

 
 =
 
 

Κ Κ
Κ

Κ Κ
. (7) 

Note that the matrices corresponding to the residual part 

A  (
A

Μ  and 
A

Κ ) would not be changed by the design 

modifications considered. 
 

3.2 Automated matrix permutation and substructuring 
 

The automated matrix permutation and substructuring 

algorithm (Karypis and Kumar 1998) gives a permutation 

vector P , and using this vector, an arbitrary sparse matrix 

A  is permuted as follows 

 

 

( , )p =A A P P  (8) 

where pA  denotes the permuted sparse matrix. The 

matrix permutation is equivalent to the renumbering of 

nodes in FE models. Therefore, the physical characteristic 

of the original FE model is not changed.  

After the permutation, the matrix pA  is divided into 

many submatrices. Then, those submatrices are designated 

as substructures in the algebraic perspective, and the 

substructural leveling graph, which defines the relationships 

among the substructures, is constructed. For better 

understanding, the details are drawn in Fig. 2. 

In the proposed method, the automated matrix 

permutation and substructuring algorithm is applied to the 

residual part A  and to the target part B , individually. 

Thus, the permutation vectors AP  and BP  

(corresponding to A  and B ) are derived. 

The permutation vectors AP  and BP  are rearranged 

beforehand to prepare the matrix assemblage for A  and 

B  as follows, which is the last process of the proposed 

method. 

a
A



 
 =  

 

P
P

P
, B

b

 
 =  

 

P
P

P
 (9) 

where AP  and BP  are the rearranged vectors for AP  

and BP , respectively, and aP , bP , P , and P  are the 

vectors corresponding to a , b ,  , and   in the 

 
(a) Original global structure requiring design modifications 

 

 

(b) Definition of the residual and target parts (c) Updating the target part B  to ˆ
B  

Fig. 1 General illustration of updating design modifications 
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permutation vectors AP  and BP . This rearrange is 

conducted easily by considering the node numbers of a , 

b ,  , and  . 

From Eq. (8) and Eq. (9), the permuted mass and 

stiffness matrices for A  and B  are obtained as 

follows 

( , )A A A A =Μ Μ P P , ( , )A A A A
 =K K P P  (10a) 

( , )B B B B =Μ Μ P P , ( , )B B B B
 =K K P P . (10b) 

Note that, to avoid confusion from the usage of different  

 

 

 

matrix notations, the same notation is used for the original 

and permuted matrices in Eq. (10). 

The detailed process of automated matrix permutation 

and substructuring for A  and B  are illustrated in Fig. 

3. Here, five substructures and the interface boundaries (

  and  ) are defined with three substructural levels 

for A  and B . Note that the number of substructural 

levels and substructures depends on the number of DOFs in 

A  and B . 

Based on Fig. 3, the matrices AM  and AK  for the 

residual part A ( )a =    are represented in 

  

(a) Arbitrary large sparse matrix (b) Permuted matrix pA  

  
(c) Definition of substructures (d) Substructural leveling graph 

Fig. 2 Automated matrix permutation and substructuring 

 
(a) For the residual part A  

 
(b) For the target part B  

Fig. 3 Automated matrix permutation and substructuring in the proposed method 
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substructural matrix form as follows 

1 1,3 1,5 1,

2 2,3 2,5 2,

3 3,5 3,
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5 5,.
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K 0 K K
K

K K K

K K

K

 

(11) 

where iΜ  and iΚ  are the diagonal component mass and 

stiffness matrices of the i th substructure, respectively, and 

i, jΜ  and i, jΚ  are the coupled mass and stiffness 

matrices between the i th and j th substructures, 

respectively. The matrices i,Μ and i,Κ  are the coupled 

mass and stiffness matrices between the i th substructure 

and the interface boundary  . 

Unlike the residual part A  described in Eq. (11), for 

the target part B , the substructural matrix numbering is 

accomplished in backorder. Thus, the mass and stiffness 

matrices BM  and BK  are represented as follows 

5, 5

4, 4,5 4

3, 3,5 3

2, 2,5 2,3 2

1, 1,5 1,3 1

.
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
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 
 
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  

M

M M

M M M
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M M 0 M
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
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





 
 
 
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=  
 
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 
  
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K K K
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K K 0 K

K K 0 K K
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(12) 

note that, although the same substructural number notations 

are used for the residual part ( AM  and AK ) and the target 

part ( BM  and BK ), the substructural matrices are 

different from each other. This means that, the substructural 

matrix 1Μ  in AM  is different from 1Μ  in BM . 

In Fig. 3, the substructural leveling graphs for the 

residual and target parts are described. Based on these 

graphs, the substructures can be classified into bottom 

substructures, and the highest substructure (Bennighof and 

Lehoucq 2004). In the proposed method, the interface 

boundaries   and   will be the highest 

substructures for the residual and target parts, respectively. 

In addition, by considering the substructural level to 

which each substructure belongs, its ancestor and child 

substructural sets can be defined. 

Let us consider the substructural leveling graph for the 

residual part A  in Fig. 3(a). Then, let B  and H  be 

the bottom and higher substructural sets, and let iA  and 

iC  be the ancestor and child substructural sets for the i th 

substructure. The bottom and higher substructural sets are 

defined as {1,2}B =  and {3,4,5, }H = , respectively, 

and the ancestor substructural sets for the 1st, 3rd, and 5th 

substructures are defined as 1 {3,5, }A = , 3 {5, }A = , 

and 5 { }A = . The child substructural sets for the 3rd and 

5th substructures are defined as 3 {1,2}C =  and 

5 {1,2,3,4}C = , and the child substructural sets for the 

interface   is defined as {1,2,3,4,5}C = . The other 

ancestor and child substructural sets can be defined in the 

same way. 

Note that the defined substructural sets play an 

important role in performing efficient matrix computations 

during the sequential transformation procedures of the 

proposed method. 

 

3.3 Reduction of the target and residual parts 
 

In the proposed method, the residual and target parts, 

A  and B , are reduced independently by employing 

the AMLS method. The reduction process for the residual 

part, including most of the total DOFs, is conducted only 

one time at the initial analysis, and its reduced matrix is 

saved for the structural modal reanalysis. On the other hand, 

the reduction process for the target part is repeated, 

whenever the design modifications are considered. The 

reduction processes for the target and residual parts are 

described below. 

For the matrices BM  and BK  in Eq. (12), 

corresponding to the target part B , the substructural 

eigenvalue problem for the 1st substructure is given by 

1 1 1 1 1=K Φ MΦ Λ  

with 1 1 1[ ]d t=Φ Φ Φ , 
1

1

1

d

t

 
=  
  

Λ 0
Λ

0 Λ
 

(13) 

in which 1Φ  and 1Λ  are the substructural eigenvector 

and eigenvalue matrices corresponding to the 1st 

substructure, and those are decomposed into the dominant 

terms ( 1
d

Φ  and 1
d
Λ ) and the truncated terms ( 1

t
Φ  and 

1
t
Λ ). 

Note that, to save computation time, a small fraction of 

the total number of substructural eigenpairs is computed in 

the substructural eigenvalue problems and the dominant 

modes can be selected considering several mode selection 

techniques (Givoli et al. 2004). In the proposed method, the 

frequency cut-off method is employed to select the 

dominant modes (Craig and Bampton 1968). 
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The substructural constraint modes matrix for the 1st 

substructure is defined by 

1
1, 1 1,j j

−= −Ψ K K  for 1j A  (14) 

where 1, jΨ  is the substructural constraint modes matrix 

between the 1st substructure and its ancestor substructures (

j th substructure). 

Using Eq. (13) and Eq. (14), the 1st transformation 

matrix for the target part B  is defined by 

5

4

1
3

2

1, 1,5 1,3 1

B

d





 
 
 
 
 =
 
 
 
 
 

I

0 I 0

0 0 I
T

0 0 0 I

0 0 0 0 I

Ψ Ψ 0 Ψ 0 Φ

 (15) 

in which iI  and I  are the identity matrix 

corresponding to the i th substructure and the interface 

boundary  , respectively. The transformation matrices 

for the target part B  are lower triangular matrices. 

Using the 1st transformation matrix 1
B

T , the 1st 

transformed mass and stiffness matrices for the target part 

B  are obtained as follows 

(1)
1 1

ˆ ( B T B
BB =Μ T ) Μ T , (1)

1 1
ˆ ( B T B

BB =Κ T ) Κ T  (16) 

where the hat ^ denotes the incompletely transformed term 

during the transformation procedures. 

The 1st transformed matrices (1)ˆ
BΜ  and (1)ˆ

BΚ  are 

represented in a substructural matrix form as follows 

(1)

(1) (1)
5, 5

4, 4,5 4(1)

(1) (1) (1)
3, 3,5 3

2, 2,5 2,3 2

(1) (1) (1)
11, 1,5 1,3

ˆ

ˆ ˆ .

ˆ
ˆ ˆ ˆB

d

sym













 
 
 
 
 
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 
 
 
 
 

M

M M

M M M
Μ

M M 0 M

M M 0 M M

M M 0 M 0 I

 

(1)

(1) (1)
5, 5

4, 4,5 4(1)

(1) (1) (1)
3, 3,5 3

2, 2,5 2,3 2

1

ˆ

ˆ ˆ .

ˆ
ˆ ˆ ˆB

d

sym











 
 
 
 
 

=  
 
 
 
  

Κ

Κ Κ

Κ Κ Κ
Κ

Κ Κ 0 Κ

Κ Κ 0 Κ Κ

0 0 0 0 0 Λ

 

(17) 

(1)
1 1, 1 1,1, ( ) ( )d T

j jj = +Μ Φ M M Ψ  for 1j A  (18a) 

(1)
, , 1, 1, 1, 1, 1, 1 1,

ˆ T T T
i j i j i j i j i j= + + +M M Ψ M M Ψ Ψ M Ψ  

for 1,i j A  
(18b) 

(1)
1, 1,

ˆ T
i, j i, j i j= +Κ Κ Ψ Κ  for 1,i j A  (18c) 

1 1 1 1( ) ( )d d T d=I Φ M Φ , 1 1 1 1( ) ( )d d T d=Λ Φ K Φ  (18d) 

Note that, in the mass matrix (1)ˆ
BΜ , the substructural 

matrices related to the 1st substructure and its ancestor 

substructures ( 1A ) are only updated by 1
B

T . For the 

stiffness matrix (1)ˆ
BΚ , the updating characteristic is similar 

to that of (1)ˆ
BΜ , except that the off-diagonal substructural 

matrices in the 1st row become zero matrices. 

In the same way, the 2nd transformation matrix 2
B

T  can 

be computed, and the 2nd transformed mass and stiffness 

matrices for the target part B  are obtained as 

(2) (1)
2 2

ˆ ˆ( )B T B
B B=Μ T Μ T , (2) (1)

2 2
ˆ ˆ( B T B

B B=Κ T ) Κ T . (19) 

After the transformation procedures for the bottom 

substructures ( B ), the transformation procedures for the 

higher substructures ( H ) are accomplished. For the 3rd 

substructure, the higher substructure belonging to the 2nd 

substructural level, the substructural eigenvalue problem is 

given by 

(2) (2)
3 3 33 3

ˆ ˆ=K Φ M Φ Λ  

with 3 3 3[ ]d t=Φ Φ Φ , 
3

3

3

d

t

 
=  
  

Λ 0
Λ

0 Λ
 

(20) 

and the substructural constraint modes matrix for the 3rd 

substructure is calculated by 

(2) (2)1
3, 3 3,

ˆ ˆ( )j j
−= −Ψ K K  for 3j A  (21) 

where (2)
3M̂  and (2)

3K̂  are the substructural mass and 

stiffness matrix corresponding to the 3rd substructure in 
(2)ˆ
BM  and (2)ˆ

BK  in Eq. (19). The matrix (2)
3,

ˆ
jK  denotes the 

off-diagonal component matrix to couple the 3rd 

substructure and its ancestor substructures in (2)ˆ
BK . 

Using Eq. (20) and Eq. (21), the 3rd transformation 

matrix 3
B

T  is obtained by 

5

4

3
3, 3,5 3

2

1

B
d

d

d





 
 
 
 
 =
 
 
 
 
 

I

0 I 0

0 0 I
T

Ψ Ψ 0 Φ

0 0 0 0 I

0 0 0 0 0 I

 
(22) 

and then, the 3rd transformed mass and stiffness matrices for 

the target part B  are obtained by 

(3) (2)
3 3

ˆ ˆ( )B T B
B B=Μ T Μ T , (3) (2)

3 3
ˆ ˆ( B T B

B B=Κ T ) Κ T . (23) 

The detailed formulations for (3)ˆ
BΜ  and (3)ˆ

BΚ  are 
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represented as 
(3)

(3) (3)
5, 5

(3) (3) (3)
4, 4,5 4(3)

(3) (3)
33, 3,5

(3) (3)
2,3 22, 2,5

(3) (3)
1,3 11, 1,5

ˆ

ˆ ˆ .

ˆ ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

B d

d

d

sym













 
 
 
 
 
 =
 
 
 
 
  

Μ

Μ Μ

Μ Μ Μ
Μ

Μ Μ 0 I

Μ Μ 0 Μ I

Μ Μ 0 Μ 0 I

 

(3)

(3) (3)
5, 5

(3) (3) (3)
(3) 4, 4,5 4

3

2

1

ˆ

ˆ ˆ .

ˆ ˆ ˆ
ˆ

B
d

d

d

sym







 
 
 
 
 

=  
 
 
 
 
 

Κ

Κ Κ

Κ Κ Κ
Κ

0 0 0 Λ

0 0 0 0 Λ

0 0 0 0 0 Λ

 

(24) 

for 3i C
 

(25a) 

(3) (2) (2)
3 3,3, 3, 3

ˆ ˆ ˆ( ) ( )d T
jj j= +M Φ M M Ψ  for 3j A  (25b) 

(2)(3) (2)
, , 3,,3

ˆ ˆ ˆ
i j i j jiM M M Ψ= +  for 3i C  and 3j A  (25c) 

(2) (2) (2)(3) (2)
, , 3, 3, 3, 3,3, 3, 3

ˆ ˆ ˆ ˆ ˆ( )T T T
i j i j i j i jj i= + + +M M Ψ M M Ψ Ψ M Ψ  

for 3,i j A  
(25d) 

(2)(3) (2)ˆ ˆ ˆT
i, j i, j 3,i 3, j= +Κ Κ Ψ Κ  for 3,i j A  (25e) 

(2)
3 3 33

ˆ( ) ( )d d T d=I Φ M Φ , (2)
3 3 33

ˆ( ) ( )d d T d=Λ Φ K Φ . (25f) 

In the same way, the transformation matrices 4
B

T  and 

5
B

T , corresponding to the remaining higher substructures 

(∈H), can be computed. After conducting the 

transformation procedures with 4
B

T  and 5
B

T  

sequentially, the completely transformed reduced mass and 

stiffness matrices for the target part, BΜ  and BΚ , are 

obtained as follows 

(4)
5 5

ˆ( )B T B
B B=Μ T Μ T , (4)

5 5
ˆ( B T B

B B=Κ T ) Κ T , 

with (4) (3)
4 4

ˆ ˆ( )B T B
B B=Μ T Μ T , (4) (3)

4 4
ˆ ˆ( B T B

B B=Κ T ) Κ T . 
(26) 

The detailed formulations of the final reduced mass and 

stiffness matrices for the target part B , BΜ  and BΚ , 

are expressed as 
(5)

(5)
55,

(5)
4,5 44,

(5)
3,5 33,

(5)
2,5 2,3 22,

(5)
1,5 1,3 11,

ˆ .

ˆ

ˆ .

ˆ

ˆ

ˆ

d

d

B d

d

d

sym

sym













 
 
 
 
 
 =
 
 
 
 
  

Μ

Μ I

Μ Μ I
Μ

Μ Μ 0 I

Μ Μ 0 Μ I

Μ Μ 0 Μ 0 I

 

(5)

5

4

3

2

1

ˆ .

.

d

d

B
d

d

d

sym

sym


 
 
 
 
 

=  
 
 
 
 
 

Κ

0 Λ

0 0 Λ
Κ

0 0 0 Λ

0 0 0 0 Λ

0 0 0 0 0 Λ

 

(27) 

for  (28a) 

 
(28b) 

for  
(28c) 

 
(28d) 

 
(28e) 

(4)
5 5 55

ˆ( ) ( )d d T d
I Φ M Φ= , (4)

5 5 55
ˆ( ) ( )d d T d

Λ Φ K Φ= . (28f) 

In the proposed method, the mass and stiffness matrices 

corresponding to the interface boundary   (= the 

highest substructure), and , will not be 
transformed. This is because the physical coordinates of the 

interface boundary   will be used to assemble the 

reduced matrices for the target and residual parts. This will 

be explained in the following section.                

The reduction procedure for the residual part A  is 

very similar to that of the target part B  described above. 

The transformation matrix for the 1st substructure of the 

residual part A  is defined by 

1 1,3 1,5 1,

2

3
1

4

5

d

A




 
 
 
 
 =
 
 
 
  

Φ 0 Ψ 0 Ψ Ψ

I 0 0 0 0

I 0 0 0
T

I 0 0

0 I 0

0 I

 (29) 

where the transformation matrix 1
A

T  is an upper triangular 

matrix, unlike the transformation matrix 1
B

T  in Eq. (15). 

Thus, after the sequential transformation procedures 

with 2
A

T , 3
A

T , 4
A

T , and 5
A

T , the mass and stiffness 

matrices for the residual part, AM  and AK , in Eq. (11) 

are reduced as follows 
(5)

1 1,3 1,5 1,

(5)
2 2,3 2,5 2,

(5)
3 3,5 3,

(5)
4 4,5 4,

(5)
5 5,

(5)

ˆ

ˆ

ˆ

ˆ

ˆ.

ˆ

d

d

d

A
d

dsym













 
 
 
 
 
 =
 
 
 
 
 
 

I 0 Μ 0 Μ Μ

I Μ 0 Μ Μ

I 0 Μ Μ
Μ

I Μ Μ

I Μ

Μ

 

1

2

3

4

5

(5)

.

ˆ

d

d

d

A d

dsym



 
 
 
 
 

=  
 
 
 
 
 

Λ 0 0 0 0 0

Λ 0 0 0 0

Λ 0 0 0
Κ

Λ 0 0

Λ 0

Κ

 

(30) 
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where AΜ  and AΚ  are the completely transformed 

reduced mass and stiffness matrices for the residual part 

A . The substructural matrix computations for the residual 

part A  are almost same as that of the target part B , 

except for conducting the transformation in order. The 

substructural computation strategy for the reduction has 

already been well-described by Kaplan (2001). 
 

3.4 Assemblage of the reduced matrices and solving 
the reduced system 
 

From Eq. (27) and Eq. (30), the reduced matrices AΜ , 

BΜ , AΚ , and BΚ  are simply rewritten as 

,

(5)
,

ˆ

ˆ ˆ

a a

A T
a 





 
 =
 
 

Μ Μ
Μ

Μ Μ
, 

(5)
,

,

ˆ ˆ

ˆ

b

B T
b b

 



 
 =
 
 

Μ Μ
Μ

Μ Μ
 

(5)ˆ

d
a

A



 
 =
 
 

Λ 0
Κ

0 Κ
, 

(5)ˆ

B d
b


 
 =
 
 

Κ 0
Κ

0 Λ
 

(31) 

where AΜ  and AΚ  are A AN N  matrices, and BΜ  

and BΚ  are B BN N  matrices. Here, AN  and BN   

 

 

are the size of the reduced models corresponding to the 

residual and target parts, respectively. 

Then, conducting the assemblage of the reduced 

matrices in Eq. (31), the final reduced mass and stiffness 

matrices in the proposed method are obtained as follows 

 

,

(5)
, ,

,

ˆ

ˆ ˆ ˆ

ˆ

a a

T
a b

T
b b



 



 
 
 =
 
 
  

Μ Μ 0

Μ Μ Μ Μ

0 Μ Μ

(5)ˆ

d
a

d
b



 
 

=  
 
  

Λ 0 0

K 0 K 0

0 0 Λ

, 

with 
(5) (5)(5)ˆ ˆ ˆ

  = +Μ Μ Μ , 
(5) (5)(5)ˆ ˆ ˆ

  = +K K K  

(32) 

 

in which Μ  and Κ  are N N  matrices (

A BN = N N N+ − , where N  is the size of the interface 

boundary  ). 

The eigenvalues and eigenvectors are then approximated 

from the following reduced eigenvalue problem 

i i i=Kφ Μφ  for 1,2, ,i N=  (33) 

where i  and iφ  are the approximated eigenvalues and 

eigenvectors, respectively.  

 

Fig. 4 Algorithm flow chart of the proposed structural modal reanalysis method 
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To compute the approximated global eigenvectors, a 

transformation matrix corresponding to the reduced 

matrices in Eq. (32) is computed. The whole transformation 

matrices for the residual and target parts are defined by 
5

1 2 5

1

A A A A
A i

i=

= =T T T T T , 
5

1 2 5

1

B B B B
B i

i=

= =T T T T T . (34) 

The substructural matrix computing forms for AT  and 

BT  are represented as 

1 1,3 1,5 1,

2 2,3 2,5 2,

3 3,5 3,

4 4,5 4,

5 5,

ˆ

ˆ

ˆ

ˆ

ˆ

d

d

d

A d

d













 
 
 
 
 

=  
 
 
 
 
 

Φ 0 Ψ 0 Ψ Ψ

Φ Ψ 0 Ψ Ψ

Φ 0 Ψ Ψ
T

Φ Ψ Ψ

0 Φ Ψ

0 I

  

 

(35) 

 
5, 5

4, 4,5 4

3, 3,5 3

2, 2,5 2,3 2

1, 1,5 1,3 1

ˆ

ˆ

ˆ

ˆ

ˆ

d

d

B d

d

d













 
 
 
 
 

=  
 
 
 
 
 

I 0

Ψ Φ

Ψ Ψ Φ 0
T

Ψ Ψ 0 Φ

Ψ Ψ 0 Ψ Φ

Ψ Ψ 0 Ψ 0 Φ

 

, , , ,
ˆ ˆ

i j i j i k k j= +Ψ Ψ Ψ Ψ  for i jk A C  and 

ji C  
(36a) 

 

 

, ,
ˆ d

i j i j j=Ψ Ψ Φ  for ji C . (36b) 

Note that, although the same substructural matrix 

notations are used in AT  and BT , the matrices 
d
iΦ , 

,i jΨ , and ,
ˆ

i jΨ  in AT  are different from the matrices 

d
iΦ , ,i jΨ , and ,

ˆ
i jΨ  in BT . 

The transformation matrices in Eq. (35) can simply be 

rewritten in the following partitioned matrix form 

r
a c

A


 
=  
  

T T
T

0 I
, B t

c b

 
=  
  

I 0
T

T T
 (37) 

and thus, the assembled transformation matrix used to 

compute the approximated global eigenvectors is obtained 

as 

r

a c

t

c b



 
 

=  
 
 

T T 0

T 0 I 0

0 T T

. (38) 

Finally, the approximated global eigenvectors of the 

proposed method is calculated as follows 

( )g i i=φ Tφ  for 1,2, ,i N= . (39) 

Calculation of the reduced matrices AΜ  and AΚ , and 

the transformation matrix AT , which correspond to the  

 
(a) Initial analysis procedure 

 
(b) Reanalysis procedure for the design modification with no increase in DOFs 

 
(c) Reanalysis procedure for the design modification with increased DOFs 

Fig. 5 Global matrix dividing, reduction, and assemblage schematic of the proposed method 
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residual part A , require relatively large computation 

times. This is because the residual part A  generally has 

most of the total DOFs. 

Fortunately, as mentioned previously, the reduction 

process for the residual part A  is conducted only one 

time in the initial analysis. When design modifications are 

required and the structural modal reanalysis is needed 

several times, we just calculate the reduced matrices BΜ  

and BΚ , and the transformation matrix BT  repeatedly, 

which correspond to the target part B  and contain 

relatively few DOFs. Because the reduced model for the 

target part is assembled with that of the residual part already 

saved, the final reduced model corresponding to the new 

design can be obtained very quickly. The algorithm flow 

chart of the proposed structural modal reanalysis method is 

described in Fig. 4. 

Another attractive feature of the proposed method is that 

it can handle topological modification problems very 

effectively; however, this induces a change of the number of 

DOFs (increase or decrease) in FE models. Fig. 5 shows the 

global matrix dividing, reduction, and assemblage 

schematic of the proposed method, and Fig. 5(c) shows the 

reanalysis procedure for the design modification that 

induces a change of the number of DOFs.  

The things mentioned above are the most attractive 

features of the proposed method, and these are discussed, 

along with several engineering examples, in the following 

section. 
 

 

4. Numerical examples 

 

 

In this section, to investigate the performance of the 

proposed method, a stiffened plate, a cargo-hold structure, 

and a spar structure are tested. These involve from 52662 to 

1182162 DOFs. For all the structural problems, the free 

boundary condition is imposed. The performance of the 

proposed method is compared to that of reanalysis using the  

AMLS method (Bennighof and Lehoucq 2004), which is 

the most efficient substructuring method for solving large 

FE models. For a fair comparison, the same size of reduced 

model is considered for the proposed and AMLS methods. 

The automated matrix permutation and substructuring is 

accomplished using METIS (Karypis and Kumar 1998), 

which is an efficient matrix permutation and substructuring 

software package. 

The numerical code is implemented with MATLAB and 

a personal computer (Intel core (TM) i7-3770, 3.40 GHz 

CPU, 32 GB RAM) is used for computation. 

To verify the reliability of the proposed method, the 

approximated eigenvalues ( i ) and eigenvectors ( gφ ) 

obtained from the reduced model are compared with its 

exact values obtained from the global FE model. For this, 

the following relative eigenvalue error and the modal 

assurance criterion (MAC) (Pastor et al. 2012) are used. 

i i
i

i

 




−
=  (40a) 

2| ( ) ( ) |
MAC( , )

(( ) ( ) )(( ) ( ) )

T
g i g j

T T
g i g i g j g j

i j =
φ φ

φ φ φ φ
 

for , 1, 2, ,i j N=  

(40b) 

 
(a) Dividing of the stiffened plate 

 

(b) Updated target part ˆ
B ( ˆ

b=   ) 

Fig. 6 Stiffened plate problem 
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Table 1 Exact eigenvalue i  corresponding to the 1st–10th 

modes of the initial, 1st modified, and 2nd modified stiffened 

plates 

Mode 

number 

Exact eigenvalue i  

Initial 1st modified 2nd modified 

1 9.78E+00 1.55E+01 2.94E+01 

2 2.73E+02 3.30E+02 3.79E+02 

3 3.08E+02 3.95E+02 6.08E+02 

4 7.99E+02 8.22E+02 8.44E+02 

5 9.90E+02 1.01E+03 9.85E+02 

6 1.90E+03 2.00E+03 2.09E+03 

7 1.96E+03 2.24E+03 2.57E+03 

8 2.07E+03 2.40E+03 2.65E+03 

9 3.63E+03 4.94E+03 5.26E+03 

10 5.18E+03 5.24E+03 5.53E+03 

 

Table 2 Relative eigenvalue errors and diagonal MAC 

values corresponding to the 1st-10th modes for the stiffened 

plate problem, derived from the 1st and 2nd structural modal 

reanalysis using the proposed method 

Mode 

number 

Relative eigenvalue errors i  Diagonal MAC values 

1st  

reanalysis 

2nd  

reanalysis 

1st 

reanalysis 

2nd 

reanalysis 

1 1.41E-06 2.65E-06 1.00 1.00 

2 2.42E-05 2.76E-05 1.00 1.00 

3 2.69E-05 3.89E-05 1.00 1.00 

4 8.97E-05 7.48E-05 1.00 1.00 

5 4.18E-05 3.83E-05 1.00 1.00 

6 1.75E-04 1.86E-04 1.00 1.00 

7 9.70E-05 1.06E-04 1.00 1.00 

8 1.86E-04 2.18E-04 1.00 1.00 

9 2.91E-04 3.19E-03 1.00 1.00 

10 3.28E-03 4.91E-04 0.99 1.00 

 

Table 3 Computation times for the structural modal 

reanalysis in the stiffened plate problem 

Methods 
Computation times (sec) 

Initial 1st reanalysis 2nd reanalysis 

Global 376.78 375.69 376.26 

AMLS 35.46 34.92 33.96 

Proposed 35.60 7.31 6.57 

 

 
in which i  denotes the relative eigenvalue error, and i  

and ( )g iφ  denote the exact global eigenvalue and 

eigenvector for the i
th mode. 

To calculate the exact eigenpairs, i  and gφ , the 

‘eigs’ function in MATLAB is used, which is usually 

employed for solving large scale eigenvalue problems with 

sparse matrices. It gives a subset of eigenpairs. The MAC 

values indicate consistency between eigenvectors gφ  and 

gφ  by a value from zero to unity. If the MAC value is near 

unity, the eigenvectors, gφ  and gφ , are considered 

consistent. 
 

4.1 Stiffened plate problem 
 

As shown in Fig. 6, a stiffened plate (a primary 

component of ships and offshore structures), is considered. 

Its length L and breadth B are 26 and 6 m, respectively, and 

the stiffener spacing S is 2.0 m. The stiffener s composed of 

a flange of breadth 0.2 m and a vertical web of height 0.5 

m. The thickness h is 0.019 m. The stiffened plate is 

modeled with 8580 shell finite elements, and its number of 

DOFs is 52662. 

If a design modification (in this case, a change of 

thickness) is required at the center of the stiffened plate, 

based on Fig. 1, the stiffened plate is divided into a , b

, and   (  =   ), as shown in Fig. 6(a). The target 

part B ( b=   ) to be modified is highlighted in 

yellow. In this problem, the thickness change at the target 

part is considered two times (0.050 and 0.075 m, 

respectively). The number of DOFs of the target part B  

is 6030, and Fig. 6(b) shows the updated target part ˆ
B (

ˆ
b=   ). 

Using METIS, the mass and stiffness matrices for the 

residual part A  are partitioned into 255 substructures 

and the interface boundary  , and the substructural 

leveling graph is constructed with eight levels. For the 

target part B , the mass and stiffness matrices are 

partitioned into 63 substructures and the interface boundary 

  with six substructural levels. The size of the reduced 

matrix constructed using the proposed method is 3474N =  

( A BN = N N N+ − , where 3206AN = , 1072BN = , and 

804N = ) for the two cases considered. 

Table 1 demonstrates the exact eigenvalues i  for the 

initial, 1st modified, and 2nd modified stiffened plates, which 

correspond to the 1st–10th modes. Table 2 represents the 

relative eigenvalue errors and diagonal MAC values, which 

are derived from the 1st and 2nd structural modal reanalysis 

using the proposed method. 

Table 3 shows the computation times for the stiffened 

plate problem. The proposed method requires 7.31 and 6.57 

seconds to conduct the 1st and 2nd structural modal 

reanalysis, while the original AMLS method requires 34.92 

and 33.96 seconds. Note that, the computation times for the 

1st reanalysis of the proposed method is dramatically 

reduced compared to that of the initial analysis. This is 

because the reduced model for the residual part A , which 

is already obtained in the initial analysis, is reused, and only 

the reduction process of the updated target part ˆ
B  is 

conducted. This is the most efficient aspect of the proposed 

method for reducing the computation time for structural 

modal reanalysis. From these results, we confirm the 

excellent computational efficiency of the proposed method. 
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Table 4 Exact eigenvalue i  corresponding to the 1st-10th 

modes of the initial, 1st modified, and 2nd modified cargo-

hold structures 

Mode 

number 

Exact eigenvalue i  

Initial 1st modified 2nd modified 

1 2.42E+00 2.99E+00 2.99E+00 

2 3.30E+00 3.60E+00 3.60E+00 

3 4.99E+00 5.32E+00 5.32E+00 

4 5.10E+00 6.70E+00 6.70E+00 

5 6.14E+00 7.25E+00 7.25E+00 

6 6.64E+00 8.22E+00 8.22E+00 

7 7.97E+00 8.31E+00 8.31E+00 

8 7.99E+00 8.44E+00 8.44E+00 

9 8.03E+00 8.56E+00 8.56E+00 

10 8.09E+00 8.93E+00 8.93E+00 

 

 

 
Table 5 Relative eigenvalue errors and diagonal MAC 

values corresponding to the 1st-10th modes for the cargo-

hold structure problem, derived from the 1st and 2nd 

structural modal reanalysis using the proposed method 

Mode 

number 

Relative eigenvalue errors 

i  
Diagonal MAC values 

1st reanalysis 2nd reanalysis 1st reanalysis 2nd reanalysis 

1 2.90E-05 2.87E-05 1.00 1.00 

2 3.24E-05 3.24E-05 1.00 1.00 

3 5.64E-05 5.63E-05 1.00 1.00 

4 7.15E-05 6.80E-05 1.00 1.00 

5 8.91E-05 8.85E-05 1.00 1.00 

6 5.80E-05 5.80E-05 1.00 1.00 

7 1.52E-04 1.52E-04 1.00 1.00 

8 1.52E-04 1.51E-04 1.00 1.00 

9 2.88E-04 2.88E-04 1.00 1.00 

10 1.32E-04 1.30E-04 1.00 1.00 

 
(a) Dividing of the cargo-hold structure 

 
(b) The 1st modification (thickness) 

 
(c) The 2nd modification (re-mesh) 

Fig. 7 Cargo-hold structure problem 
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Table 6 Computation times for the structural modal 

reanalysis in the cargo-hold structure problem 

Methods 
Computation times (sec) 

Initial 1st reanalysis 2nd reanalysis 

Global 857.27 861.87 905.57 

AMLS 332.30 329.71 334.48 

Proposed 346.53 34.18 43.87 

 

Table 7 Relative eigenvalue errors and diagonal MAC 

values corresponding to the 1st–15th modes for the spar 

structure problem, derived from the 1st and 2nd structural 

modal reanalysis using the proposed method 

Mode 

number 

Relative eigenvalue errors 

i  
Diagonal MAC values 

1st reanalysis 

(thickness) 

2nd reanalysis 

(topology) 

1st reanalysis 

(thickness) 

2nd reanalysis 

(topology) 

1 6.06E-04 5.59E-04 1.00 1.00 

2 1.91E-03 1.96E-03 1.00 1.00 

3 1.46E-03 1.49E-03 1.00 1.00 

4 5.37E-04 6.91E-03 1.00 1.00 

5 3.14E-04 1.12E-03 1.00 1.00 

6 3.86E-04 3.13E-04 1.00 1.00 

7 1.36E-02 3.89E-04 1.00 1.00 

8 6.50E-03 8.78E-04 1.00 1.00 

9 8.72E-04 5.59E-03 1.00 1.00 

10 5.59E-03 9.14E-03 1.00 1.00 

11 1.21E-02 7.29E-03 0.88 1.00 

12 1.35E-02 8.98E-03 0.88 1.00 

13 7.89E-03 7.21E-02 1.00 1.00 

14 9.39E-03 1.73E-01 1.00 1.00 

15 8.51E-03 1.67E-01 1.00 1.00 

 

 

4.2 Cargo-hold structure problem 
 

Here, a cargo-hold structure of an oil carrier is 

considered, as shown in Fig. 7. The height H, breadth B, 

length L, and thickness t are 30.0, 50.0, 87.0, and 0.012 m, 

respectively. For finite element modeling, 26761 shell  

 

 

elements and 26228 nodes are used, and the number of total 

DOFs is 157368. 

As shown in Fig. 7(a), the design modifications are 

imposed at the center of the deck plate. Then, the cargo-

hold structure is divided into a , b , and   (

 =   ). The target part B ( b=   ) is 

highlighted in yellow, and the number of DOFs in the target 

part B  is 7128. 

Two design modifications are considered in this 

problem. One is to change the thickness of the target part to 

0.025 m, and the other is to change the mesh of the target 

part to very fine elements, as shown in Fig. 7(b) and 7(c). 

Here, the fine mesh increases the number of DOFs in the 

target part by 1280. In this problem, structural modal 

reanalysis is performed for each of the two modifications 

considered. 

From the automated matrix permutation and 

substructuring process, 1023 substructures and the interface 

boundary   are defined with the substructural leveling 

graph of ten levels for the residual part A . For the target 

part B , 63 substructures and the interface boundary   

are defined with the substructural leveling graph with six 

levels. The sizes of the reduced matrices constructed by the 

proposed method are 9252N =  ( 8950AN = , 1550BN =  

, and 1248N = ) and 9656N =  ( 8950AN = , 

1954BN = , and 1248N = ) for the two cases considered. 

The exact eigenvalue i  for the initial, 1st modified, 

and 2nd modified cargo-hold structures are listed in Table 4, 

while Table 5 presents the relative eigenvalue errors and 

diagonal MAC values for the modified cargo-hold 

structures.  

Table 6 shows the computation times of the structural 

modal reanalysis. For the initial model, and the 1st and 2nd 

modified models, the structural modal analysis handling the 

global FE model requires 857.27, 861.87, and 905.57 

seconds, respectively. Here, computation times 

corresponding to the global FE model represent the time to 

calculate a subset of eigenpairs, which is about 0.05 % (780 

eigenpairs) of the total DOFs. 

 

Fig. 8 Spar structure problem 
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(a) Reanalysis for the 1st modification (thickness) 

 
(b) Reanalysis for the 2nd modification (topological) 

Fig. 10 Relative eigenvalue errors for the spar structure 

problem 

 

 

The original AMLS method requires 332.30, 329.71, 

and 334.48 seconds, respectively, and the proposed method  

 

 

requires 346.53, 34.18, and 43.87 seconds, respectively.  

For the 2nd reanalysis of the re-mesh case, the proposed 

method is 7.62 and 20.64 times faster than reanalysis using 

the original AMLS method and global FE model, 

respectively. 

As mentioned previously, this is because the residual 

part A , including most of the total DOFs, is reduced in 

the initial analysis, and this reduced model is reused 

repeatedly in each reanalysis. 
 

4.3 Spar structure problem 
 

A spar structure is considered as shown in Fig. 8. For 

finite element modeling, 203565 shell elements and 189334 

nodes are used, and the number of total DOFs is 1136004.  

For this spar structure problem, as shown in Fig. 9, 

structural modal reanalysis was conducted after considering 

thickness and again after topological modifications. 

The number of DOFs in the target part B  is 51168. 

For the thickness modification case, the thickness of the 

target part is changed from 0.030 to 0.050 m, and for the 

topological modification case, 0.050 m of thickness is 

substituted and the number of DOFs in the target is 

increased to 97326. Structural modal reanalysis is 

performed for each of the two modifications considered. 

In this spar structure problem, 2047 substructures and 11 

substructural levels are used for the residual part A , and 

255 substructures and 8 substructural levels are used for the 

target part B . 

The sizes of the reduced matrices obtained by the 

proposed method are 20595N =  ( 19795AN = , 

3296BN = , and 2496N = ) and 21320N =  ( 

 
(a) The 1st modification (thickness) 

 
(b) The 2nd modification (re-mesh) 

Fig. 9 Design modifications for the spar structure problem 
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19795AN = , 4021BN = , and 2496N = ) respectively, 

for the cases considered. 

Fig. 10 shows the relative eigenvalue errors, derived 

from the 1st and 2nd structural modal reanalysis for the spar 

structure problem. Table 7 lists the relative eigenvalue 

errors and diagonal MAC values corresponding to the 1st-

15th modes.  

Table 8 shows the specific computation times for the 

structural modal reanalysis in the spar structure problem. 

For the global FE model, the initial analysis, and 1st and 2nd 

reanalysis require 8658.75, 8663.24, and 9147.02 seconds, 

respectively, to calculate 500 global eigenpairs. For the 

AMLS method, 5401.75, 5407.99, and 5434.56 seconds are 

required, respectively. In contrast, the proposed method 

requires 5330.14 seconds for the initial analysis, and only 

442.73 and 589.86 seconds for reanalysis.  

From these results, we can clearly see that the proposed 

structural modal reanalysis method shows excellent 

computational efficiency and reanalysis ability. 
 

 

5. Conclusions 
 

In this study, to conduct structural modal analysis 

efficiently for large FE models requiring frequent design 

modification, a novel structural modal reanalysis method 

was proposed.  

• A global FE model was divided into a residual part not 

to be modified and a target part to be modified. 

• An automated matrix permutation and substructuring 

algorithm was employed independently for these two parts, 

and each reduced model was constructed using the AMLS 

method. 

• The reduced model for the residual part was saved in 

the initial analysis, and the reduced model for the target part 

was calculated repeatedly according to the design 

modifications considered, affecting such as thickness, mesh, 

and topological changes. 

• The final reduced model corresponding to the new 

design was easily and quickly constructed through a simple  

 

 

process for assemblage of the reduced model of the residual 

part already saved and that of the target part repeatedly 

calculated. This is the key feature of the proposed method 

for reducing the computation time dramatically for 

structural modal reanalysis.  

• In this paper, the formulation was derived in detail, 

and the excellent computational efficiency and reanalysis 

ability of the proposed method were well demonstrated 

through various practical engineering problems. 

In future work, it would be valuable to employ a 

parametrization scheme (Hong et al. 2013) for the proposed 

method for efficient design optimization. It would also be 

valuable to expand the proposed method to a free-interface 

substructuring technique (Kim et al. 2017), in which each 

substructure is linked with the Lagrange multiplier. 
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