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1. Introduction  
 

With the development of science and technology, many 

structural facilities are becoming large and complex. 

Damage arises in those structures owing to aggressive 

environmental conditions, sudden external events and/or 

unpredictable inner changes of the materials. Structural 

strength, stiffness and stability are greatly affected by 

structural damage, and even structural safety accidents 

probably occur. Therefore, it is of great importance to 

localize and quantify the structural damage. 

Generally, a structure can be represented as a finite 

element model composed of piecewise distributed 

parameters in elements, such as mass, stiffness and 

damping. When damage occurs, the local structural 

parameters are changed together with natural frequencies, 

mode shapes and dynamic responses of the whole system. 

Thus, damages can be identified through monitoring those 

data, and two kinds of damage detection methods are 

proposed: frequency-domain methods and time-domain 

methods. Time-domain methods often use the displacement 

or acceleration response data for structural damage 

detection (Ni 2016, Zhang 2017, Li 2017, Ni 2018), which 

require less sensors and are sensitive to structural damage 

even a local damage. On the other hand, frequency-domain 

methods are efficient, low-cost and non-destructive (Fan 

and Qiao 2011). Frequency and modal data are independent 

to damping and external excitation. The modeling errors in 

frequency-domain methods are smaller than those in time-

domain methods because damping is difficult to measure  
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and external excitation is unpredictable. Thus, the 

frequency-domain methods have been widely used in 

engineering communities. 

From a mathematical point of view, the damage 

identification can be transformed into an optimization 

problem. For accessing the optimum solution, an objective 

function is established to be minimized, which is defined by 

the discrepancies between the measured data and the 

computed results. Researchers have put forward lots of 

conventional optimizat ion methods: least-squares 

estimation, Lagrangian multiplier method, and maximum 

likelihood method, for example. However, those traditional 

methods are sensitive to initial values and require the 

objective function being analytic, which are difficult to be 

employed in engineering practice. In recent years, 

numerous swarm intelligence algorithms are utilized for 

structure damage detection, such as simulated annealing 

algorithm (SA), genetic algorithm (GA), artificial ant 

colony algorithm (ABC), artificial bee colony algorithm 

(BCO), particle swarm optimization (PSO) and fruit fly 

optimization algorithm (FOA). It has been proved that the 

swarm intelligence algorithms could overcome the 

drawbacks of conventional algorithms in term of operability 

and analyticity, but would usually lead to a local optimal 

solution. Hence, researchers have done a great deal of work 

to improve the original swarm intelligence algorithms in 

order to apply them into structural damage detection. For 

instance, Mare and Surace (1996) made used of the GA in 

damage detection of elastic structures; Chou and Ghaboussi 

(2001) successfully detected the location and extent of the 

damage of truss structures with the assistance of the GA; 

Yin et al. (2006) presented an improved genetic algorithm 

to detect damage of frame structures; Huang et al. (2012) 

proposed a structural damage identification method  
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Fig. 1 Schematic diagram of the BB-BC 
 

 

combining the GA with an improved damage identification 

factor under noise; Begambrea and Laier (2009) put 

forward the hybrid PSO-Simplex algorithm according to 

damage identification procedure using frequency domain 

data; Kang et al. (2012) united the PSO with the artificial 

immune system and hence presented an immunity enhanced 

particle swarm optimization algorithm for damage detection 

of structures; Guo and Li (2014) suggested a two-stage 

damage identification method, incorporating evidence 

fusion and the improved particle swarm optimization, in 

order to solve a structural multi-damage identification 

problem; Aditi et al. (2014) used the continuous ant colony 

optimization for structural damage detection based on 

modal parameters; Li and Lu (2015) identified the damage 

of simply supported beams and trusses using the multi-

swarm fruit fly optimization (Yuan et al. 2014); Kaveh and 

Zolghadr (2015) reported an improved charged system 

search algorithm to tackle the problem of damage 

identification of truss structures; Zheng (2018) identified 

structural damage of beam and plate in time domain using a 

could model based fruit fly optimization algorithm. 

The Big Bang-Big Crunch (BB-BC) algorithm is a new 

optimization technique of swarm intelligence proposed by 

Osman and Ibrahim (2006). The original BB-BC converges 

faster and implements more conveniently compared with 

the classic GA (Osman and Ibrahim 2006). The BB-BC 

have been found wide applications in the aspect of 

construction design optimization: Charles (2007) attempted 

to put the BB-BC into the use of the design of space trusses; 

Kaveh and Talatahari (2009) introduced a hybrid Big Bang-

Big Crunch optimization algorithm for optimal design of 

truss structures, and then used the algorithm for the charged 

system search (Kaveh and Zolghadr 2012); Prayogo et al. 

(2018) presented a differential Big Bang-Big Crunch 

algorithm for construction-engineering design optimization. 

However, less attentions have been paid on the application 

of the BB-BC in damage detection (Zahra et al. 2013, 

Huang and Lu 2017). One possible reason lies in that the 

original BB-BC is easily trapped into the local optimal 

solution. The algorithm developed by Zahra et al. (2013) 

can only avoid the local optimal solution in some certain 

cases because their revisions make candidates as a function 

the best global solution in all iterations but fail to limit the 

variation rate. The estimated best global solution would just 

approximate the real best global solution occasionally based 

on the inherent property of the BB-BC. Thus, the drawback 

of the BB-BC has not been completely tackled. 

To better prevent local optimization and improve 

convergence, an improved Big Bang-Big Crunch (IBB-BC) 

algorithm is put forward in this study for structural damage 

detection. The performance of IBB-BC has been examined 

by various unimodal and multimodal benchmark test 

functions. The IBB-BC is also applied in the damage 

detection under noise in frequency domain for a simply 

supported beam structure and a European Space Agency 

structure. Two damage scenarios have been considered: 

damage only existed in stiffness and damage existed in both 

stiffness and mass. An existing experimental study is further 

used for the validation of the proposed algorithm. 

 

 

2. The algorithm 
 

2.1 The basic Big Bang-Big Crunch algorithm 
 

The Big Bang-Big Crunch algorithm is based on the Big 

Bang and Big Crunch theory of the evolution universe. The 

procedure of the BB-BC is shown in Fig. 1, which is 

composed of the Big Bang phase and the Big Crunch phase. 

In the Big Bang phrase, candidates are generated 

randomly and disorderly in a searching area from a 

temporary optimum point (called mass center). The i-th 

candidate 𝑋𝑖⃗⃗  ⃗ is generated by the following distribution rule 

(Osman and Ibrahim 2006) 

𝑋 𝑖 = 𝑋 
C + 𝑟�⃗� (𝑘) (1) 

where 𝑋 C  is the mass center; r is normal distributed 

random number with a zero mean and a standard deviation 

of 1; �⃗� (𝑘) =
�⃗� max−�⃗� min

2
∙
1

𝑘
 is the radius of the explosion; k 

is the number of iterations; �⃗� max and �⃗� min are the upper 

and lower bounds of the search area respectively. 

In the Big Crunch phrase, those candidates are drawn 

into an order and aggregated into a new mass center by 

gravitation. The position of the new mass center is related 

to the energy state of each candidate based on the following 

equation (Osman and Ibrahim 2006) 

𝑋 C =
∑

𝑋 𝑖
𝑓𝑖

𝑛
𝑖=1

∑
1
𝑓𝑖

𝑛
𝑖=1

 (2) 

where n is the number of the candidates; 𝑓𝑖 is a fitness 

value of the i-th candidate, which stands for its energy state. 

 

2.2 Improved Big Bang-Big Crunch algorithm 
 

Two drawbacks are found in the basic BB-BC 

algorithm: (a) it is easy to be trapped into the local optimum 

because the radius of explosion rapidly reduces with the 

advance of iteration according to Eq. (1), and (b) randomly 

generated candidates make mass centers between successive 

two generations independent, reducing the speed of 
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convergence. To overcome these drawbacks, an improved 

Big Bang-Big Crunch algorithm (IBB-BC) is proposed in 

this paper with the following improvements: 

To tackle the drawback of local optimum, the function 

of the radius of explosion is revised as the following 

equation 

�⃗� (𝑘) =
�⃗� 

2
∙ (1 −

𝑘

𝑘max
)
2

 (3) 

where 𝑘max  is the maximum number of iteration. This 

revision makes the update of the radius of explosion �⃗� (𝑘) 
slower due to the use of a second order function of k in 

comparison with the inverse proportional function in Eq. 

(1). This is able to avoid being trapped in the local optimum 

to the most degree while maintaining fast convergence, and 

thus improve the accuracy of optimization. It is worth 

pointing out that the deceleration of the reduction of radius 

may slow down the convergence. Hence, the following 

measures are supplemented: 

(i) Reduce the standard deviation of the random variable 

r from 1 to 1/π. The probability for r out of [-1, 1] is less 

than 0.2%, making more candidates fall into the searching 

area. In this way, the candidates distribute more 

concentrated around the temporary optimum point. Thus, 

the convergence of the algorithm is accelerated. 

(ii) Introduce a parameter γ to deal with candidates out 

of the search area. If 𝑘 > 𝛾𝑘max , 3n candidates are 

generated and n of those in the searching area are selected 

in the Big Bang phase; while, if 𝑘 ≤ γ𝑘max, the radius of 

explosion �⃗� (𝑘) is chosen as the following equation 

�⃗� (𝑘) = min [𝑋 CM − �⃗� min, �⃗� max

− 𝑋 CM,
�⃗� 

2
(1 −

𝑘

𝑘max
)
2

] 
(4) 

where 𝑋 CM represents the centroid of the mass centers, 

which is applied as the temporary optimum point in the next 

iteration of the IBB-BC. As the iteration increases, the 

radius of explosion �⃗� (𝑘) is increasingly reduced according 

to Eq. (4). By selecting an appropriate value of parameter γ, 

the reduction of the radius �⃗� (𝑘)  can be properly 

accelerated after the temporary optimum point 

approximates the global optimal solution in early iterations. 

Accordingly, the convergence is enhanced and the 

appearance of the local optimum can be avoided. 

To overcome the second drawback of BB-BC, multiple 

mass centers (say 𝑚max) are generated by repeating the 

two phases 𝑚max times at each iteration. The centroid of 

those mass centers is calculated based on the following 

equation 

𝑋 CM =

∑
𝑋 𝑚
C

𝑓𝑚
C

𝑚max
𝑚=1

∑
1
𝑓𝑚
C

𝑚max
𝑚=1

 (5) 

where 𝑋 𝑚
C  is the m-th mass center, and 𝑓𝑚

C is its fitness 

value. Thus, Eq. (1) is rewritten as follows 
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Fig. 2 Schematic diagram of generating multiple mass 
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Fig. 3 Flowchart of the IBB-BC 
 

 

𝑋 𝑖 = 𝑋 
CM + 𝑟�⃗� (𝑘) (6) 

Fig. 2 illustrates the procedure of generating multiple 

mass centers. According to Eq. (5), the weighted average of 

those mass centers determines the temporary optimum 

point. It will not be stuck even if one of the mass centers 

jumps into the local optimum, because the others will help 

the stuck one out of the local optimum. The connection 

between candidates, mass centers and the temporary 

optimum point has been strengthened. Furthermore, the 

location of the temporary optimum point is optimized again  
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by the convergence of mass centers, which is beneficial for 

the acceleration of global convergence and the reduction of 

iteration time. 

In the first few iterations, it is unlikely that the 

temporary point is trapped in the local optimum due to the 

wide distribution of candidates. In that case, the number of 

mass centers does not need to be increased. On the contrary, 

it is more necessary to increase the number of mass centers 

because the radius of explosion shrinks smaller and 

candidates are more concentrated as the iteration increases. 

Hence, the number of mass centers is set to be dependent 

the time of iteration 

𝑚max = [𝑁𝑇 ∙ (
𝑘

𝑘max
)
𝑎

] (7) 

where NT is the maximum number of mass centers in the 

whole calculation; a is a parameter to limit the rate of the 

change, which is generally within the range (0, 6]. 

 

 

3. Implementations 
 

The flowchart of the IBB-BC is shown in Fig. 3 with 

main steps described as follows: 

Step 1. Initialize parameters of the IBB-BC, such as n, 

kmax, NT, a, γ, and set k = 1, m = 1; 

Step 2. Produce initial n candidates randomly in the 

searching area and calculate their fitness values, and choose 

the best candidate as the first temporary optimum point; 

Step 3. Generate n candidates in a random manner from 

the temporary optimum point by Eq. (6); 

Step 4. Calculate the fitness values of the candidates, 

and astringe them to a mass center 𝑋 𝑚
C  by Eq. (2); 

Step 5. Calculate fitness value 𝑓𝑚 of the mass center. If 

it satisfies a stop criterion (𝑓𝑚 ≤ 𝜀 ), the algorithm is 

terminated and the current mass center is output as the 

global optimal solution. Otherwise, set m = m + 1 and return 

to Step 3 till m > mmax; 

Step 6. Calculate the centroid 𝑋 CM of those mass  

 

 

 

centers 𝑋 𝑚
C  (m = 1, 2…, mmax) by Eq. (5) and the fitness 

value of 𝑋 CM. The computation stops if a criterion (𝑓𝑘 ≤ 𝜀) 

is satisfied, and the current 𝑋 CM is output as the global 

optimal solution. On the contrary, the current 𝑋 CM  is 

regarded as the temporary optimum point. In this case, set k 

= k + 1 and m = 1, and then return to Step 3 till k > kmax. 

 

 

4. Benchmark tests 
 

The IBB-BC is tested and compared with the BB-BC by 

several benchmark problems listed in Table 1, including 

Ellipsoid, Sphere, Step, Ackley, Rastrigin and Griewank 

functions (Osman and Ibrahim 2006, Jordehi 2014). These 

functions can be classified into two categories: unimodal 

functions and multimodal functions. 

The dimension N is equal to either 2 or 10 for both six 

functions. The number of candidates n is uniformly set as 

40 and parameters γ and a are chosen to be 0.2 and 3 

respectively. For the purpose of economizing computational 

resource, the maximum of iteration kmax and the maximum 

number of mass centers NT are set differently according to 

the different properties of those functions, which is given as 

follows: when N = 2, 𝑘max from F1 to F6 are successively 

chosen to be 30, 30, 800, 200, 30 and 50 respectively, and 

NT is equal to 2 for all the six functions; when N = 10, 

𝑘max from F1 to F6 are selected to be 500, 50, 800, 1000, 

2000 and 1000 respectively, and NT are equal to 12, 12, 20, 

12, 50 and 30 respectively. Each test is carried out for 100 

independent trails and the average of the optimal solutions 

is taken for the comparison with actual values directly 

calculated by the functions. For describing the accuracy of 

results conveniently, the following function is introduced as 

a performance measure 

∆𝐹𝑖 = |𝐹𝑖 − 𝐹a𝑖| (8) 

where 𝐹𝑖 is the calculated value of the i-th function by 

IBB-BC or BB-BC, and 𝐹a𝑖 is its actual value. If ∆𝐹𝑖 <
10−5  is  sat isfied,  the calculat ion stops and the 

corresponding result is an output as the optimal solution.  

Table 1 List of benchmark test functions 

Function name Equation Range 

Ellipsoid (unimodal) 𝐹1 =∑𝑖𝑥𝑖
2

𝑁

𝑖=1

 [-100, 100] 

Sphere (unimodal)
 

𝐹2 =∑𝑥𝑖
2

𝑁

𝑖=1

 [-5.12, 5.12] 

Step (unimodal) 𝐹3 =∑(|𝑥𝑖| + 0.5)
2

𝑁

𝑖=1

 [-10, 10] 

Ackley (multimodal) 𝐹4 = 20 + e − 20e
−0.2√

1
𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 − e

1
𝑁
∑ cos(2𝜋𝑥𝑖)
𝑁
𝑖=1  

[-10, 10] 

Rastrigin (multimodal) 𝐹5 = 10𝑁 +∑[𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖)]

𝑁

𝑖=1

 [-5.12, 5.12] 

Griewank (multimodal) 𝐹6 = 1 +∑
𝑥𝑖
2

4000

𝑁

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝑁

𝑖=1

 [-50, 50] 
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Fig. 4 shows a comparison of the convergence of the six 

benchmark test functions between the IBB-BC and the BB-

BC. When the dimension N is 2, the iteration numbers of 

the IBB-BC are 29, 16, 26, 42 for Ellipsoid function F1 (Fig. 

4(a)), Sphere function F2 (Fig. 4(b)), Rastrigin function F5 

(Fig. 4(e)), and Griewank function  F6 (Fig. 4(f)), 

respectively; while the iteration numbers are much larger 

for BB-BC, which are 132, 28, 76, 66, respectively. Figs.  

 

 

4(c) and 4(d) show, under the condition of N = 2, that BB-

BC makes Step function F3 and Rastrigin function F4 

having the tendency to converge but fail to obtain accurate 

results; in contrast, IBB-BC is still able to obtain optimal 

solution within the given maximal iteration number. It is 

worth mentioning that BB-BC not always successfully 

obtains the optimal solution for multimodal functions 

among 100 independent trails, while IBB-BC works for all 

 

 

(a) F1 (b) F2 

  

(c) F3 (d) F4 

 

 

(e) F5 (f) F6 

Fig. 4 Comparison of the convergence results of the IBB-BC with the BB-BC on various benchmark test functions 
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trails. When the dimension N is equal to 10, BB-BC fails to 

converge to the optimal solution for all the six functions, 

however, IBB-BC always does. This reveals that IBB-BC is 

applicable for functions with high dimension, and BB-BC 

no longer works. 

As a summary, the Benchmark tests show that IBB-BC 

is more efficient, effective and accurate than BB-BC, 

regardless of unimodal functions and multimodal functions 

in either low or high dimension. 

 

 

5. Structural damage detection using improved Big 

Bang-Big Crunch algorithm 
 

Both IBB-BC and BB-BC are employed for the damage 

detection of a simply supported beam and the European 

Space Agency structure respectively. The objective function 

is defined as a function of the natural frequencies and mode 

shapes of the structures. 

 

5.1 Parameterization of structural damage 
 

A general finite element model for a linear elastic 

structural dynamic system without damping can be 

described as the problem of generalized eigenvalue as the 

following equation 

(𝑲 − 𝜔𝑖
2𝑴)𝜱𝑖 = 0 (9) 

where 𝑲 and 𝑴 are the stiffness matrix and the mass 

matrix of the finite system respectively; 𝜔𝑖 and 𝜱𝑖are the 

i-th order nature frequency and mode shape respectively. 

For describing the damage of structure, parameters 𝛼 and 

𝛽 (called damage coefficients) are introduced to represent  

 

 

 

the decrease of stiffness and mass respectively. The 

relationship between the stiffness and the mass matrixes and 

the damage coefficients are illustrated as the following 

equation 

{
 
 

 
 
𝑲 =∑(1 − 𝛼𝑗)𝑘𝑗

e

𝑛e

𝑗=1

𝑴 =∑(1 − 𝛽𝑗)𝑚𝑗
e

𝑛e

𝑗=1

 (10) 

where 𝑛e is the number of elements; 𝑘𝑗
e and 𝑚𝑗

e are the 

stiffness and the mass matrixes of the j-th element 

respectively; 𝛼𝑗  and 𝛽𝑗  are the damage coefficient of 

stiffness and mass for the j-th element respectively, and 

0 ≤ 𝛼𝑗 , 𝛽𝑗 ≤ 1. If the element is completely destroyed in 

stiffness, the stiffness coefficient 𝛼𝑗 is equal to 1; 𝛼𝑗 is 

equal to 0 in the case where the element remains intact. 

Similarly, 𝛽𝑗 is defined as the values of 1 and 0 indicating 

a complete loss of mass and no loss at all, respectively. 

An objective function is established as the following 

equation based on frequency residue and modal assurance 

criteria (Kang et al. 2012) 

{
 
 
 
 

 
 
 
 𝑓 =∑[𝑤𝜔𝑖

2 ∆𝜔𝑖
2 + 𝑤𝜱𝑖

2 (1 −𝑀𝐴𝐶𝑖)]

𝑁𝐹

𝑖=1

∆𝜔𝑖 =
|𝜔𝑖

C − 𝜔𝑖
M|

|𝜔𝑖
M|

𝑀𝐴𝐶𝑖 =
(𝜱𝑖

C ∙ 𝜱𝑖
M)

2

‖𝜱𝑖
C‖

2
‖𝜱𝑖

M‖
2

 (11) 
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Fig. 5 Finite element model of a simply supported beam with 20 elements 

 

Fig. 6 Bar chart of the detection of the Simply Supported Beam with damage existed in stiffness only 
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where 𝜔𝑖
Cand 𝜱𝑖

C are the i-th order calculated frequency 

and modal shape respectively;  𝜔𝑖
M and 𝜱𝑖

M are the i-th 

order measured frequency and mode shape respectively; 

𝑤𝜔𝑖  and 𝑤𝜱𝑖  are the corresponding weight coefficients; 

NF is the number of orders selected for calculation. 

In practice, the environmental noise has a great 

influence on the detection of damage. Herein, the effect of 

artificial noise in damage detection is introduced as the 

following equation in the simulation (Mak 2001). 

{
𝜔𝑖
′ = 𝜔𝑖(1 + 𝜌𝜔𝑟𝑖)

𝜱𝑖
′ = 𝜱𝑖(1 + 𝜌𝜱𝑟𝑖)

 (12) 

where 𝜔𝑖
′ and 𝜱𝑖

′  are the i-th order natural frequency and 

mode shape affected by noise; 𝜌𝜔 and 𝜌𝜱 are the noise 

level for the natural frequency and mode shape; 𝑟𝑖 is a 

random variable subjected to the normal distribution. 

 

5.2 Numerical examples 
 

5.2.1 A simply supported beam 
A simply supported beam with 20 elements is applied in 

damage detection in this section. Fig. 5 shows its finite 

model with 21 nodes and 20 elements. The density of the 

material is 2800 kg/m3 and the Young’s modulus is 3.4×1010 

N/m2. Two damage cases are considered: one assumes the 

damage existed in stiffness only, and the other assumes both 

stiffness and mass having damages. 

Case 1. Damage existed in stiffness only 

In this case, it is assumed that the damage of the  

 

 

structure only causes the decrease of stiffness, and the mass 

remains intact, that is, 𝛽𝑗 = 0  (𝑗 = 1,2,3, … , 𝑛e). 

The assumed damage conditions and the results of 

simulation are exhibited in Fig. 6. Elements 2, 5, 7, 8, 11, 

12, 13 and 15 are assumed to be damage with various 

degrees of the reductions of stiffness respectively. The 

number of candidates n in each Big Bang phase, the 

maximum of iteration kmax and the maximum number of 

mass centers NT are chosen to be 50, 5000 and 2 

respectively. Parameter γ is set as 0.2 and a is 2. The first 

six natural frequencies and mode shapes of the whole 

deflection are selected for the objective function (Eq. (11)), 

and their noise levels are 1.0% and 10% respectively. 

Fig. 6 shows that IBB-BC can detect the location of 

damage, while BB-BC gives many false identifications. The 

extent of the damage can be identified accurately by IBB-

BC with the maximum relative error between the actual 

data and the identified data less than 0.9%. Even in the 

influence of the artificial noise, the relative error is within 

1.3%. These show that IBB-BC is effective and accurate to 

the structure damage detection and insensitive to noise. 

Case 2. Damage existed in stiffness and mass 

It is assumed that the damage of the structure leads to 

the decrease both in the stiffness and mass at the same time. 

In this case, the number of damage parameters to be 

identified is two times of that in Case 1. Besides, Eq. (10) is 

more difficult to solve due to the coupling of damage 

parameters. 

The damage elements in stiffness are the same as that in  

 

(a) Result of stiffness 

 

(b) Result of mass 

Fig. 7 Bar chart of the detection of the simply supported beam with damage existed in both stiffness and mass 
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Case 1, and damages in mass are extra introduced in 

elements 1, 2, 3, 5, 12, 13 and 19 with amplitude varying 

from 0.05 to 0.1 times their corresponding elementary 

masses. For practice, the damages in mass are two times 

less than that in stiffness in the same element. Parameters of 

IBB-BC and BB-BC are equal to that in Case 1 except that 

the maximum number of mass centers NT is increased to 3. 

The first ten natural frequencies and mode shapes of the 

whole deflection are chosen for the calculation of the 

objective function. 

As shown in Fig. 7, BB-BC cannot detect the damage of 

the structure, and IBB-BC successfully identifies the 

location and extent of structural damage. The maximum 

relative error of the results without the influence of noise is 

1.12%. The error of the results with noise is within 0.53%. 

These show the accuracy of IBB-BC for damage detection 

and its insensitivity of noise. It is also confirmed that IBB-

BC is applicable to the case of detecting the structure 

damage existed in both stiffness and mass. 

 

5.2.2 The European Space Agency structure 
The European Space Agency structure studied in this 

section is shown in Fig. 8. It is divided by 44 nodes and 

connected by 48 frame elements. Each node has 3 dofs, 

resulting in a total of 132 dofs in the structure. The density 

of the material is 2800 kg/m3 and the Young’s modulus is 

7.5×1010 N/m2. Similar to the previous example, two cases 

are considered with one having damage in stiffness and the 

other in both stiffness and mass. 

 

 

Case 1. Damage existed in stiffness only 

The structure damage only exists in stiffness in this 

case. The assumed damage conditions and the results of 

simulation are exhibited in Fig. 9. Elements 1, 16, 17, 39, 

40, 43, 44 and 45 are assumed to have certain degrees of 

damage in stiffness varying from 5% to 30%. These 

elements cover most of possible damaged elements in the 

structure, among them element 1 and elements 16 and 17 

are adjacent to the joints of the truss structure, elements 39 

and 40 are in a vertical member, and the rest of elements are 

in a diagonal member. The number of candidates n, the 

maximum of iteration kmax and the maximum number of 

mass centers NT are equal to 50, 8000 and 3 respectively. 

Parameter γ is 0.2, and a is 1. The first eighteen natural 

frequencies and mode shapes of the whole displacement in 

y direction are selected for the objective function (Eq. (12)), 

and their noise levels are 1.0% and 10% respectively.  

Fig. 9 shows that IBB-BC can identify the structural 

damage precisely with maximum errors less than 6.1% 

without noise and 6.0% with noise. The BB-BC is not 

effective for the detection on the contrary. Although the 

number of dofs of the European Space Agency structure is 

larger than the simply supported beam in Section 5.2.1, and 

the IBB-BC is still practicable and accurate for the damage 

detection and not sensitive to noise. 

Case 2. Damage existed in stiffness and mass 

In this case, both BB-BC and IBB-BC are compared in 

terms of accuracy and noise-sensitivity in the damage 

detection of the European Space Agency structure when the  
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Fig. 8 Finite element model of the the European Space Agency structure 

 

Fig. 9 Bar chart of the detection of the European Space Agency structure with damage existed in stiffness only 
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stiffness and mass damage occur simultaneously. Similar 

damages in stiffness are set as the same as Case 1, and 

damages in mass are extra introduced to elements 1, 20, 21, 

31, 32, 42 and 43. The maximum of iteration kmax and the 

maximum number of mass centers NT are increased to 

12000 and 12 respectively in Case 2, and other parameters 

of IBB-BC and BB-BC are the same as that in Case 1. The 

first thirty-one natural frequencies and mode shapes of the 

whole displacement in y direction are chosen for the 

calculation of the objective function. 

Fig. 10 shows that a great discrepancy of the actual 

value can be found in the results of BB-BC, while the 

results of IBB-BC are rather promising with a maximal 

error of 1.09%. Being consistent with previous 

observations, the influence of noise induces less than 0.10% 

error which is neglectable. 

 

5.2.3 Discussions 
The BB-BC and IBB-BC are employed in the damage 

detection of simply supported beam and the European 

Space Agency structure. Two conditions are considered: 

damages only exist in stiffness and damages exist in both 

mass and stiffness. The BB-BC is trapped into the local 

optimal solution as the radius of explosion reduces rapidly. 

This also renders BB-BC to converge to the optimal 

solution nearby the initial candidate, instead of the global 

optimal solution. Thus, all results of BB-BC are far away 

from the actual results. However, the improvements in IBB-

BC overcome the inherent shortcomings of BB-BC.  

 

 

The IBB-BC can accurately detect the locations and extent 

of the structural damages in mass or/and stiffness. The error 

between the actual results and that of IBB-BC is minor. In 

addition, IBB-BC is insensitive to the artificial noise. 

 

 

6. Experimental validation 
 

An experimental cantilever beam in the reference 

(Hjelmstad and Shin 1996) is considered to validate the 

effectiveness of IBB-BC for structural damage detection. 

Fig. 11 shows the finite model of the experimental beam 

where a single crack is in Element 5. Because the height-to-

length ratio of the beam is 1/15 greater than 1/20, the shear 

effect is considered and the beam is model by Timoshenko 

beam elements. The material properties are that density ρ = 

7800 kg/m3, Young’s modulus E = 206 GPa and Poisson’s 

ratio ν = 0.3. The first three frequency of the damaged 

experimental beam can be extracted from the reference 

(Hjelmstad and Shin 1996), and they are measured as 171, 

987 and 3034 Hz respectively. The parameter of the IBB-

BC is set as follows: the number of candidates n = 50, the 

maximum of iteration kmax = 3000 and the maximum 

number of mass centers NT = 3. Parameter γ is 0.2, and a is 

2. The damage of the beam is caused by the crack in 

Element 5. Thus, it is supposed that the damage only 

generates the decrease of stiffness of Element 5.  

The results of the experimental cantilever beam using 

both BB-BC and IBB-BC are displayed in Fig. 12. For IBB- 

 

(a) Result of stiffness 

 

(b) Result of mass 

Fig. 10 Bar chart of the detection of the European Space Agency structure with damage existed in both stiffness and mass 
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BC, the damage coefficient of stiffness of Element 5 𝛼5 =
0.6507 and that of other elements is equal to almost zero, 

perfectly agreeing with the true experimental damage. 

However, the location and extent of structural damage 

cannot be detected using BB-BC. 

 

 

7. Conclusions 
 

An improved Big Bang-Big Crunch algorithm was 

proposed in this study. Two improvements have been 

introduced: one is to prevent the local optimum, and the 

other is to increase the speed of convergence. The improved 

algorithm performs more applicably, efficiently and 

accurately compared with the original one. The locations 

and extents of various structure damages can be detected 

accurately in the structures studied in this paper by 

employing the improved Big Bang-Big Crunch algorithm. 

The improved algorithm shows its insensitivity of noise and 

its good capacity for engineering practice. 
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