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1. Introduction  
 

Functionally graded materials (FGMs) belong to a class 

of advanced engineered materials those are characterized by 

smooth and continuous variation in properties as the 

dimension varies. These are made up of ceramics and 

metals and are able resist high temperature gradient while 

maintaining structural integrity. Thus, they are preferred 

over conventional monolithic as well as laminated 

composite materials as the structure/structural components 

for extremely higher temperature environments. Explicitly, 

the delamination concern in case of laminated composite 

shell panels owing to the abrupt change in material 

properties between the interfaces of different layers is 

mitigated by the use of FGMs in which the microstructure is 

varied from one material to another material with a specific 

gradient by changing the volume fraction of constituent 

materials along thickness of panel.  

FG Sandwich structures are considered to be the most  
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functional forms of the composite structures developed in 

recent years that has conquered a wide acceptance in the 

weight sensitive and high-performance engineering 

applications due to its low specific weight along-side 

excellent flexural, vibrational and fatigue characteristics 

(Vinson 2001). As a consequence, extensive work has been 

carried out to study the static and dynamic characteristics of 

FG sandwich shell panels numerically as well as 

experimentally (Jha et al. 2013, Bousahla et al. 2016, 

Boukhari et al. 2016). We note, that the flexural and free 

vibration responses of FG sandwich panels have been 

studied from time to time by utilizing several kinematic 

models (Thai et al. 2015, Belabed et al. 2014, Thai et al. 

2014, Natarajan et al. 2012, Mantari et al. 2011, Bouderba 

et al. 2016, El-Haina et al. 2017, Bellifa et al. 2016) aiming 

at attaining the exact flexure of the structure. Lok, et al. 

(2001) proposed the closed-form solutions to the forced and 

free vibration responses of orthotropic sandwich panels 

with truss core. A similar work implementing finite element 

method (FEM) for the evaluation of the elastic constants of 

sandwich structures with various types of core has also been 

reported (Cheng et al. 2006). Khare and his colleagues 

(Khare et al. 2004, Garg et al. 2006) used a higher-order 

shear-deformation theory (HST) based FE approach to 

study the vibration characteristics of composite and 

sandwich curved laminates. Zenkour (2005a, b) utilized a 

sinusoidal shear deformation theory and presented 

analytical solutions to the bending, buckling and free 

vibration responses of FG sandwich plates. 3D elasticity 

solutions to the flexural (Kashtalyan and Menshykova 

2009), free vibration responses (Li, et al. 2008) of FG  
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sandwich plates with homogenous/FG core and cylindrical 

sandwich panel with FG core (Alibeigloo and Liew 2014) 

have also been reported in open literature. A hyperbolic 

shear deformation theory is proposed (Meiche et al. 2011, 

Abdelaziz et al. 2017) to investigate the buckling and 

vibration frequency parameters of the laminated sandwich 

plates. Further, the theory is adopted by Neves et al. (2012) 

including the zig-zag and warping effects for analysis of the 

flexural responses of FG sandwich panels. Additionally, 

four-unknown shear and normal deformation theories have 

also been implemented to examine the bending (Zenkour 

2013) and vibration responses (Hadji, et al. 2011) of FG 

sandwich plates. Further, a higher-order equivalent single 

layer theory is proposed by Tornabene et al. (2014) to 

compute the frequencies of the doubly-curved FG sandwich 

shell panels. Moreover, quasi-3D theories have been 

employed for studying the bending, buckling and vibration 

responses of FG plates (Neves et al. 2013) and FG 

sandwich beams (Osofero et al. 2016). Alipour and Shariyat 

(2012) performed the axisymmetric bending and stress 

analysis of circular FG sandwich plates subjected to 

transversely distributed load via an elasticity-equilibrium-

based zigzag theory. Additionally, the HST has also been 

extended to study the free vibration behaviour of sandwich 

plates with CNT reinforced composite face-sheets 

(Natarajan, et al. 2014). Studies investigating the bending, 

vibration an buckling responses of FG sandwich shell 

panels exposed to thermal environment (Zenkour and 

Alghamdi 2010) in the framework of higher-order (Houari 

et al. 2013, Bousahla et al. 2014, Ait Yahia et al. 2015, 

Sekkal et al. 2017, Menasria et al. 2017, Karami et al. 

2018, Zine et al. 2018) hyperbolic (Kettaf et al. 2013, 

Hebali et al. 2014, Mahi et al. 2015, Zidi et al. 2017, 

Belabed et al. 2018,), refined (Tounsi et al. 2013, Meziane 

et al. 2014, Bennoun et al. 2016, Draiche et al. 2016, 

Bellifa et al. 2017, Attia et al. 2018, Fourn et al. 2018) 

shear deformation theories are also found in open literature. 

Past researchers also performed the nonlinear bending, 

vibration, and post-buckling analyses of sandwich panels 

with FG sheets exposed to elevated thermal loading (Wang 

and Shen 2011). We also note the inclusion of stretching 

effect (Bourada et al. 2015, Chaht et al. 2015, Hamidi et al. 

2015, Abualnour et al. 2018, Bouhadra et al. 2018, Younsi 

et al. 2018, Bouafia et al. 2017, Zaoui et al. 2019) in such 

analysis in an intention to accurately estimate the original 

flexure of the structure. Kolahchi and his colleague 

(Kolahchi et al. 2016, Arani et al. 2016, Arani et al. 2015, 

Hajmohammad et al. 2017, Hosseini et al. 2018) studied  

 

 

the responses of FG structure reinforced with CNTs from 

time to time with the aid of numerical as well as analytical 

models based on different existing and refined higher-order 

theories. 

We note that the analytical/numerical flexural and free-

vibration responses of composite and FG sandwich 

structure have got a lot of attention in past and though 

various mid-plane kinematic theories have been employed 

for analyses purpose, the accuracy of the approach is 

ominously reliant on the choice of element/shape function. 

However, majority of the studies focused on flat panels only 

and the studies highlighting the vibration characteristics of 

FG sandwich shell panel structures with curvature on both 

sides (spherical, elliptical and hyperboloid) are scarce. 

Additionally, no numerical study on the free vibration 

characteristics of FG sandwich single/doubly curved panels 

implementing HST with FEM has been reported till date. In 

this paper, the free vibration characteristics of curved FG 

shell panel structures are addressed using FEM and Reddy’s 

HST with nine-degrees of freedom. A nine-noded 

quadrilateral isoparametric element is utilized for 

discretization purpose. The convergence behaviour as well 

as the validity of the proposed scheme with those of the 

other 2D analytical/numerical models and 3D elasticity 

solutions is established by considering various parameters. 

Subsequently, numerical results are provided to investigate 

the influence of various design factors (curvature ratio, 

thickness ratio, aspect ratio, power-law index, support 

conditions and the FG sandwich symmetry type) on the 

natural frequency of FG sandwich curved panel structures 

followed by few useful concluding remarks. 
 

 

2. Problem formulation 
 

A general mathematical formulation for obtaining the 

flexural responses of doubly curved functionally graded 

sandwich shell panels is derived. The core is considered to 

be purely ceramic whereas the face sheets have material 

graded (from ceramic to metal) functionally along the 

thickness direction. The material properties (young’s 

modulus, density and Poisson’s ratio) vary as per the 

following relation (Zenkour 2005a) 

( )( ) ( ) n

m c m fP z P P P V= + −  (1) 

where, Pm and Pc are the material properties of metal and 

ceramic, respectively, 
( )n

fV  is the volume fraction of the 
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Fig. 1 Geometry and material variation in FG sandwich curved panels with ceramic core 
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ceramic (n=1,2,3) that varies through the thickness 

following power-law (Zenkour 2005a) 

 

(2) 

where, the thickness coordinate (z) levels h0, h1, h2 and h3 

are defined in Fig. 1 which illustrates the geometry of the 

shell panels. 

In the present analysis, curved panels with dimensions 

(a×b×h) m3and having a rectangular base (projection of the 

curved panel would be a rectangle) are considered. The 

thickness of the core is denoted as “hc” whereas the 

thickness of the bottom and top face sheets are denoted as 

“hf1” and “hf2”, respectively such that h=hc+hf1+hf2, hc=h2-

h1, hf1=h3-h2 and hf2=h1-h0. The principal radius of curvature 

along x and y direction is R1 and R2, respectively. The panel 

geometries are defined as: cylindrical (R1=R, R2=∞), 

spherical (R1=R, R2=R), elliptical (R1=R, R2=2R), 

hyperboloid (R1=R, R2= ̶ R) and flat (R1=R2=∞) on the basis 

of curvature, where Ris a constant. The displacement field 

(p, q and r) of the FG shell panel i.e., the displacements of a 

point along the x, y and z coordinates based on the HST 

kinematic relation is expressed as (Kant et al. 2002) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 3

0 1 2 3

2 3

0 1 2 3

0

, , , , ( , ) ,

, , , , ( , ) ,

, , ,

p x y z p x y zp x y z p x y z p x y

q x y z q x y zq x y z q x y z q x y

r x y z r x y

= + + +


= + + + 


= 

 
(3) 

where, p0, q0 and r0 are the mid-plane displacements of a 

point with respect to corresponding coordinates. p1 and q1 

are the rotations of transverse normal about the y- and x-

axes, respectively and p2, q2, p3 and q3 are the higher-order 

functions defined in the mid-plane of the shell.  

Now, the strain displacement field can be expressed as 

   

1 2 12

1 2

2
...

...

xx yy xy xz yz

p r q r p q r

x R y R y x R

p r p q r q

z x R z y R

     =

         
+ + + +      

          
=  

       
+ − + −             

(4) 

By substituting Eq. (3) in Eq. (4), the strain vector can 

further be written as 

0 1 2 3

0 1 2 3

2 30 1 2 3

0 1 2 3

0 1 2 3

xx x x x x

yy y y y y

xy xy xy xy xy
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k k k

k k k

z z zk k k

k k k

k k k

 

 
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 

        
        
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         
= = + + +         
         
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                  

 (5) 

The Eq. (5) can further be expressed in terms of the 

function of thickness coordinate [T] as 

 
(6) 

where, 

is the mid-plane strain vector. 

The present shell panel model is discretised using a nine 

noded quadrilateral Lagrangian isoparametric element with 

nine degrees of freedom associated with each node.  

The elemental displacement vector is given as 

   
9

0 0

1
ii

i

N 
=

=  (7) 

where, is the 

nodal displacement vector at node i. Ni is the shape function 

for the ith node and the details can be seen from the source 

(Cook et al. 2000). 

The mid-plane strain vector as expressed in Eq. (6) can 

be rewritten in terms of nodal displacement vectors as 

 

(8) 

where, [B] is the product form of differential operators and 

the shape functions in the strain terms. Thus, the stress-

strain relationship for the FG shell panel is given by 

   Q  =
   (9) 

where,     
T

xx yy xy xz yz     =  is stress vector and 

Q   is the reduced stiffness matrix. 

Now, the global displacement field vector as in Eq. (3) 

can also be expressed as 

      * 0f
T

p q r = =  (10) 

where,  *  is the global displacement vector, 

is the displacement vector at 

any point in the mid-plane and [f]
 

is the function of 

thickness coordinate. 

Thus, the kinetic energy (KE) of the vibrating doubly 

curved FG sandwich shell panel is given by 

   * *

1

2

T
KE dV  

• •

=   (11) 

where,  ,  *
•

are the mass density and first-order 

derivative of the global displacement vector with respect to 

time, respectively. Substituting Eq. (10) in Eq. (11), the 

expression for kinetic energy becomes 

      

    

/ 2

0 0

/2

0 0

1
f f

2

1

2

h
TT

A h

T

A

KE dAdz

m dA

  

 

• •

−

• •

 
=  

 

=



 



 
(12) 

where,      
/ 2

/2

f f

h
T

h

m dz
−

=  is the elemental inertia 

matrix. 
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The elemental form of kinetic energy of FG shell panels 

may be expressed as 

    0 0

1

2

T

e ei i
KE M dA 

• •

=  (13) 

where,       
1 1

1 1

T

eM N m N J d d 
− −

=    represent the 

elemental mass matrix at node i. 

The strain energy of the curved shell panel can be 

expressed as  

   
1

2

T

v

U dV =   (14) 

Substituting strains and stresses from Eq. (6) and Eq. 

(9), Eq. (14) is conceded as 

 

(15) 

where,      
/2

/2

h
T

h

D T Q T dz

+

−

 =   .      

The elemental form of strain energy (as given by Eq. 

(15)) can be rearranged by substituting Eq. (8) in it to have 

the following form 

       ( )0 0

1

2 i i

T T

e

A

U B D B dA =   (16) 

Eq. (16) can further be expressed as 

   0 0

1
[ ]

2 i i

T

e eU K =  (17) 

where,       
1 1

1 1

T

eK B D B J d d 
− −

=     represents the 

elemental stiffness matrix. 

The governing differential equation for the freely 

vibrating composite sandwich curved shell panel is obtained 

by using the Hamilton’s principle which is designated as 

2

1

( ) 0

t

t

KE U dt − =  (18) 

On substituting the expressions for kinetic energy, KE 

and strain energy, U from Eqs. (13) and (17), the elemental 

form of governing equation can be represented as 

 
(19) 

The global form of the equilibrium equation for free 

vibration analysis is obtained by assembling the elemental 

matrices and conceded as 

 
(20) 

The eigenvalue form of Eq. (20) is expressed as 

    2 0K M−  =  (21) 

Table 1 Configuration in different FG sandwich panel 

symmetries
 

Symmetry h0 h1 h2 h3 

1-2-2 -h/2 -3h/10 h/10 h/2 

2-1-3 -h/2 -h/6 0 h/2 

1-1-3 -h/2 -3h/10 -h/10 h/2 

2-1-4 -h/2 -3h/14 -h/14 h/2 

4-1-3 -h/2 0 h/8 h/2 

3-1-4 -h/2 -3h/8 0 h/2 

 

 

where, 
 
is the eigenvalue (natural frequency) and   is 

the corresponding eigenvector. Eq. (21) is solved to obtain 

the free vibration responses of the system. 

 

3. Numerical results and discussion 
 

The proposed HST based FE scheme is now exploited to 

evaluate the free vibration characteristics of FG sandwich 

structures. The natural frequencies of curved higher-order 

FG sandwich shell panels are computed by means of 

personalized MATLAB computer code prepared for the 

implementation of the present model. The cylindrical, 

spherical, hyperboloid, elliptical and flat shell panel 

geometries are considered for the current study. The modal 

analysis is conducted by considering two combinations of 

metal and ceramic materials namely, Aluminum/Alumina 

[Al/Al2O3] and Aluminum/Zirconia [Al/ZrO2]. The material 

properties of the metal and the ceramic in the 

aforementioned combinations are (Aluminum: E=70 GPa, 

ρ=2700 kg/m3, ν=0.3, Alumina: E=380 GPa, ρ=3800 kg/m3, 

ν=0.3, Zirconia: E=151 GPa, ρ=3000 kg/m3, ν=0.3). The 

symmetry of FG panels is defined in terms of the ratio of 

face and core thickness and represented as
1 2f c fh h h− − . 

The core-face thickness ratio (CFR) is defined as the ratio 

of thickness of core to the thickness of face (CFR=hc/hf, 

where, hf1= hf2= hf). The panels are assumed to have the 

following properties throughout, unless specified otherwise: 

h=0.005m, a/b=1 and power-law index, k=2. The 

Aluminum/Alumina (Al/Al2O3) material properties are 

utilized, if not stated explicitly. The various symmetry 

schemes of the panels considered in the present analysis are 

summarized in Table 1. The variation of volume fraction 

along the panel thickness for various power-law indexes are 

also portrayed in Fig. 2. The fundamental frequencies are 

expressed in non-dimensional form by using the equation

( )2

2,/ /f fa E h  = . The model is first tested for 

stability and accuracy via suitable convergence and 

validation of the results. Thereafter, several numerical 

examples are solved to highlight the influence of various 

structural parameters on the free vibration characteristics of 

FG sandwich curved shell panels. 

The solutions are computed using different sets of 

support conditions in the combination of clamped (C), 

simply-supported (S) and free (F) supports to avoid rigid 

body motion and to reduce the number of unknowns. The  
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restricted field of variables at the panel edges corresponding 

to each condition is given as: 

Simply-supported (S) 

 

 

Clamped (C) 

 

Free (F) 

 

Based on this definition, the combinations such as: (a) 

All sides simply supported [SSSS], (b) All sides clamped 

[CCCC], (c) Two opposite sides simply supported and 

others free [SFSF], (d) Two opposite sides simply supported 

and others clamped [SCSC], (e) Two opposite sides 

clamped and others free [CFCF] and (f) Cantilever (one 

side clamped, others free) [CFFF] condition has been 

attained. The corresponding boundary conditions have been 

mentioned wherever they are utilized throughout the present  

 

 

analysis. 

 

3.1 Model convergence and validity assessment 
 

As a very first step, the convergence behaviour of the 

present structural model has been studied. The 

nondimensional fundamental frequency is computed for 

different mesh sizes by considering Aluminum-Alumina 

(Al/Al2O3) and Aluminum-Zirconia (Al/ZrO2) FG sandwich 

spherical and cylindrical shell panels under diverse support 

conditions ([SSSS], [CCCC] and [SCSC]). The physical 

property for the Al/Al2O3 sandwich panels is: h=0.005 m, 

a/b=1, a/h=20, R/a=5, CFR=3 and k=5, whereas the 

corresponding properties for the Al/ZrO2 panels is: h=0.005 

m, a/b=1, a/h=80, R/a=20, CFR=25 and k=10. Fig. 3(a) and 

(b) depicts the variation of nondimensional fundamental 

frequency with increasing mesh size for Al/Al2O3 and 

Al/ZrO2 sandwich panels, respectively. It is evident that the 

present results converge well with mesh refinement not only 

for both of the materials considered but also under different 

end conditions as well. Inferentially, a (6×6) mesh is 

utilized for the computation purpose throughout the present 

analysis. 
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Fig. 2 Variation of volume fraction along the panel thickness for various power-law indexes: (a) 1-2-2, (b) 2-1-3, (c) 1-1-3, 

(d) 2-1-4, (e) 4-1-3, (f) 3-1-4 FG sandwich panel 
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Subsequently, the validity of the natural frequencies 

obtained via the current HST based FE approach is 

e x a m i n e d  b y  c o m p a r i n g  t h e m  w i t h  t h e 

analytical/numerical/3D elasticity solution values for flat 

panel cases (flat panels are considered to be the simplest  

 

 

form of shell panels) reported in open literature. Firstly, the 

nondimensional fundamental frequencies of simply 

supported FG sandwich flat panels (h=0.1 m, a/b=1, 

a/h=10, k=0.5, 1, 5 and 10) as considered by Zenkour 

(Zenkour 2005b) are reproduced for different symmetries  
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Fig. 3 Convergence of nondimensional fundamental frequency of spherical and cylindrical panels: (a) Al/Al2O3, (b) Al/ZrO2 

 

Table 2 Comparison of nondimensional fundamental frequencies of FG sandwich flat panels with different power-law indexes 

k Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0.5 

CPT (Zenkour 2005b) 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722 

FSDT (Zenkour 2005b) 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274 

TSDT (Zenkour 2005b) 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451 

SSDT (Zenkour 2005b) 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450 

3D (Zenkour 2005b) 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668 

Present (HST) 1.4442 1.4840 1.50624 1.5191 1.5470 1.5743 

1 

CPT (Zenkour 2005b) 1.26238 1.32023 1.3715 1.37521 1.43247 1.46497 

FSDT (Zenkour 2005b) 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722 

TSDT (Zenkour 2005b) 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934 

SSDT (Zenkour 2005b) 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931 

3D (Zenkour 2005b) 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137 

Present (HST) 1.2433 1.3003 1.3335 1.3535 1.3958 1.4394 

5 

CPT (Zenkour 2005b) 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867 

FSDT (Zenkour 2005b) 0.94256 0.97870 1.07156 1.04183 1.14467 1.17159 

TSDT (Zenkour 2005b) 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397 

SSDT (Zenkour 2005b) 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399 

3D (Zenkour 2005b) 0.94476 0.98103 1.02942 1.04532 1.10983 1.17567 

Present (HST) 0.9454 0.9815 1.0298 1.0448 1.1090 1.1745 

10 

CPT (Zenkour 2005b) 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614 

FSDT (Zenkour 2005b) 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067 

TSDT (Zenkour 2005b) 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314 

SSDT (Zenkour 2005b) 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460 

3D (Zenkour 2005b) 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466 

Present (HST) 0.9278 0.9423 0.9908 0.9954 1.0608 1.1237 

726



 

Modal analysis of FG sandwich doubly curved shell structure 

 

 

 

(1-0-1, 2-1-2, 2-1-1, 1-1-1, 2-2-1 and 1-2-1) using the 

present scheme and listed in Table 2 alongside the reference 

values. 

Further, to justify the capability of the present scheme to 

accurately capture the influences of physical conditions 

such as material property gradient and the stress variation 

along the thickness and material discontinuity at the core-

face interface on the free vibration responses simply 

supported square FGM sandwich plates with homogeneous 

core as considered by Natarajan and Manickam (2012) are 

analyzed. The fundamental frequency parameters are 

computed by using the geometry, material properties and 

support conditions analogous to that of the reference 

(Natarajan and Manickam 2012) and presented in Table 3. 

The results in both the comparison studies clearly show 

the close conformance of the current values with the 

reference data. However, it is noted that the present values 

are marginally smaller while compared to the higher-order 

solutions reported by Zenkour (2005b) and Natarajan and 

Manickam (2012). However, the present results are showing 

higher values in comparison to the 3D elasticity (Li et al. 

2008) solutions for each type of parameters i.e., the 

thickness ratio and power-law index values.  
 

 

 

3.2 Parametric study 
 

In this section, the parametric studies have been carried 

out to investigate the impact of several design parameters 

such as curvature ratio, thickness ratio, aspect ratio, power-

law index, support conditions and the FG sandwich 

symmetry type on the natural frequency of FG sandwich 

curved shell panel. Several numerical examples are solved 

with the aid of the present higher-order FE model and the 

typical results are shown and discussed in detail.  

Firstly, the influence of curvature ratio (R/a=1, 2, 5, 10, 

25) on the frequency response of symmetric FG sandwich 

curved panels under [SCSC] support conditions is 

investigated. The nondimensional fundamental frequencies 

are computed for increasing CFR and illustrated in Fig. 4(a) 

and (b) for spherical, cylindrical , and elliptical, 

hyperboloid, geometry, respectively. It can clearly be 

observed that the frequency parameters decrease with 

increasing curvature ratio whereas increase with increasing 

CFR for all of the geometries considered. However, the 

decrease in the natural frequency is relatively larger at 

lower curvature ratios in comparison to that at higher 

curvature ratios. It is important to mark that for the present 

configuration the frequency values for the spherical and 

hyperboloid shell panels are higher than the corresponding 

Table 3 Comparison of nondimensional fundamental frequencies of FG sandwich flat panels with different thickness 

ratios 

a/h Theory 
1-1-1 2-2-1 

0 0.5 1 5 0.5 1 5 

5 

HST13 Natarajan and 

Manickam (2012) 
1.6774 1.4219 1.2778 0.9986 1.4455 1.3144 1.0565 

HST11 Natarajan and 

Manickam (2012) 
1.6774 1.4219 1.2778 0.9988 1.4455 1.3144 1.0566 

HST9 Natarajan and 

Manickam (2012) 
1.6774 1.4152 1.2714 0.9937 1.4387 1.3078 1.0510 

FSDT Natarajan and 

Manickam (2012) 
1.6689 1.4076 1.2628 0.9860 1.4320 1.3002 1.0444 

3D (Li et al. 2008) 1.6771 1.4218 1.2777 0.9980 1.4454 1.3143 1.0561 

Present (HST) 1.6680 1.4135 1.2699 0.9927 1.4009 1.2500 0.9736 

10 

HST13 Natarajan and 

Manickam (2012) 
1.8269 1.5214 1.3553 1.0455 1.5494 1.3977 1.1100 

HST11 Natarajan and 

Manickam (2012) 
1.8269 1.5214 1.3553 1.0456 1.5494 1.3977 1.1100 

HST9 Natarajan and 

Manickam (2012) 
1.8245 1.5193 1.3553 1.0441 1.5472 1.3957 1.1084 

FSDT Natarajan and 

Manickam (2012) 
1.8242 1.5168 1.3506 1.0418 1.5451 1.3932 1.1064 

3D (Li et al. 2008) 1.8268 1.5213 1.3552 1.0453 1.5493 1.3976 1.1098 

Present (HST) 1.8237 1.5191 1.3535 1.0448 1.5062 1.3335 1.0298 

100 

HST13 Natarajan and 

Manickam (2012) 
1.8884 1.5605 1.3852 1.0631 1.5904 1.4300 1.1303 

HST11 Natarajan and 

Manickam (2012) 
1.8884 1.5605 1.3852 1.0631 1.5904 1.4300 1.1303 

HST9 Natarajan and 

Manickam (2012) 
1.8883 1.5605 1.3851 1.0631 1.5904 1.4300 1.1302 

FSDT Natarajan and 

Manickam (2012) 
1.8883 1.5605 1.3851 1.0631 1.5904 1.4299 1.1302 

3D (Li et al. 2008) 1.8883 1.5605 1.3851 1.0631 1.5903 1.4299 1.1302 

Present (HST) 1.8985 1.5691 1.3928 1.0691 1.5561 1.3727 1.0561 
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values for the cylindrical elliptical panels, respectively and 

hyperboloid panels exhibit the highest frequency. This is 

attributed to the presence of positive and negative 

curvatures in the longitudinal and the transverse directions, 

respectively that makes the panel stiffer in comparison to 

the other geometries. 

The clamped FG sandwich square shell panels (R/a=20) 

are considered for studying the influence of CFR on 

fundamental frequency responses. The thickness of core and 

face is varied keeping the overall thickness (h) of the panels 

as constant so as to attain the CFR values as 0, 1, 3, 5, 10 

and 25. The nondimensional fundamental frequency values 

are calculated using the above CFR values for all types of 

geometries and depicted in Fig. 5. With increasing CFR  

 

 

 

values the core becomes thicker thereby increasing the 

stiffness of the panels and as a result of that the natural 

frequency increases. Also, it is evident that the influence of 

CFR on the vibration responses for a particular value of 

thickness ratio is more pronounced as the panels tend to 

become thin. In consistence with the results in the preceding 

subsection, the hyperboloid shell panels are stiffer 

compared to other shell geometries and the same is evident 

from the higher frequency values as illustrated in Fig. 5(b). 

Fig. 6 shows the variation in nondimensional 

fundamental frequency values of FG sandwich curved shell 

panels under [CFCF] support condition with increasing 

aspect ratio (a/b). In this example, “a” is varied by keeping 

“b” constant so as to have the values of aspect ratios (a/b)  
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Fig. 4 Variation of nondimensional fundamental frequency with curvature ratio: (a) Spherical and Cylindrical, (b) Elliptical 

and Hyperboloid FG sandwich shell panels 
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Fig. 5 Variation of nondimensional fundamental frequency with core-face thickness ratio (CFR): (a) Spherical and 

Cylindrical, (b) Elliptical and Hyperboloid FG sandwich shell panels 
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as a/b=0.5, 1, 1.5, 2 and 2.5.  It is evident that the 

fundamental frequency parameter follows a decreasing 

trend with increasing aspect ratio and the spherical as well 

as the hyperboloid shell panels are more susceptible to 

variation in aspect ratio in contrast to other geometries for 

which the frequency remains near constant over the range 

of aspect ratios values considered. 

Simply supported curved FG sandwich square shell 

panels (a/h=25 and R/a=20) are now examined to bring out 

the influence of power-law index on their free vibration 

response. The power-law index is varied as k=0, 0.5, 1, 2, 5 

and 10 and the frequency values are calculated for diverse  

 

 

 

CFR values (CFR=0, 1, 3, 5, 10 and 25) corresponding to 

each value of k. It can be observed from the results 

presented in Fig. 7 that the fundamental frequency 

decreases monotonously with increasing power-law index. 

However, the decrease in frequency for all of the considered 

geometries is much significant for lower CFR values. 

Further, in the present case the difference in frequency 

values for spherical and cylindrical panels as compared to 

the elliptical and hyperboloid panels respectively is 

insignificant. 

In order to investigate the effect of various support 

conditions ([SSSS], [CCCC], [SCSC], [CFCF] and  
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Fig. 6 Variation of nondimensional fundamental frequency with aspect ratio (a/b): (a) Spherical and Cylindrical, (b) Elliptical 

and Hyperboloid FG sandwich shell panels 
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Fig. 7 Variation of nondimensional fundamental frequency with power-law index (k): (a) Spherical and Cylindrical, (b) 

Elliptical and Hyperboloid FG sandwich shell panels 
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[HHHH]) on the free vibration responses, FG sandwich 

curved square shell panels (R/a=10 and a/h=10) are 

analyzed. It is observed that the increasing number of 

constraints has a stiffening influence on the panels and the 

same is evident from the plot of nondimensional 

fundamental frequency values with respect to diverse CFR 

values as shown in Fig. 8. The panels exhibit highest and 

lowest frequency values corresponding to [CCCC] and 

[SSSS] support condition, respectively irrespective of their 

geometries. Also, the fundamental frequency increases with 

increasing CFR for all the geometries and under every 

support conditions. Interestingly, the [SCSC] and [CCCC] 

case have identical behavior in case of elliptical and 

hyperboloid geometries corresponding to all CFR values. 

Finally, the influence of sandwich symmetry type on the 

free vibration responses of simply supported FG sandwich  

 

 

 

spherical square shell panels is studied. The Al/Al2O3 and 

Al/ZrO2 panels with a/h=10 and R/a=5 are considered. The 

1-2-2, 1-1-3, 2-1-4, 2-1-3, 4-1-3 and 3-1-4 schemes are 

considered. The nondimensional fundamental frequencies 

are computed for increasing power-law index (k) and 

plotted in Fig. 9. The thickness of the core relative to the 

thickness of the face sheets is observed to have a direct 

influence on the frequencies. The 1-2-2 scheme has the 

thickest core and so has the highest fundamental frequency 

of all the schemes for both of the material combinations. 

The 4-1-3 and 3-1-4 schemes exhibit identical behavior 

specifically for lower k values. It is worthy to note that, the 

Al/ZrO2 panels are stiffer in comparison to the Al/Al2O3 

panels and exhibit higher values of frequency 

corresponding to all of the power-law index values. 
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Fig. 8 Variation of nondimensional fundamental frequency with support conditions: (a) Spherical and Cylindrical, (b) 

Elliptical and Hyperboloid FG sandwich shell panels 
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Fig. 9 Variation of nondimensional fundamental frequency of spherical shell panels with sandwich symmetry 
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4. Conclusions 
 

In this article, the free vibration responses of FG 

sandwich doubly curved shell panels are investigated 

numerically in the framework of the HST based mid-plane 

kinematics relation with nine degrees of freedom via own 

FE code developed in MATLAB environment. The core 

layer is made of a fully ceramic layer whereas the face 

layers are considered to be an isotropic material with 

material properties varying smoothly in the thickness 

direction only. The convergence and validation study 

confirmed the competency of the present formulation for 

reliable estimation of the natural frequencies of FG 

sandwich shell panels. From the results obtained in the 

parametric study it is revealed that the fundamental 

frequencies decrease with increasing curvature ratio 

whereas increase with increasing CFR values. In similar 

line, the sandwich symmetry type with the thickest core 

exhibits highest frequency. Moreover, irrespective of the 

panel geometries, the simply supported and clamped 

support condition leads to least and value of frequencies, 

respectively. 
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