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1. Introduction  
 

Many parts of different machines and structures are 

modeled as simply supported beams of variable cross-

section. The loading of the beam is assumed to be 

concentrated or continually distributed along the beam, but 

very often it is an assembly of two or more loadings. Due to 

static loading, the axis of the beam bends. Timoshenko and 

Goodier (1952) gave the formula for calculating the elastic 

curves, y(z), of the supported beams of variable cross-

section and loaded with bending moment M(z) in nonlinear 

case  

𝐸𝐼(𝑧)
𝑦"(𝑧)

(1 + 𝑦′2(𝑧))
3
2

= −𝑀(𝑧), (1a) 

and in linear case  

𝐸𝐼(𝑧)𝑦"(𝑧) = −𝑀(𝑧), (1b) 

where EI(z) is flexural rigidity of the beam, E is modulus of 

elasticity, I(z) is moment of inertia of the cross section 

about its neutral axis, M(z) represents the bending moment 

function of the beam, z is the position coordinate, while 

(‘)=d/dz and (“)= d2/dz2. Unfortunately, the relation (1a) is 

nonlinear and not easy to be solved.  
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In case of analytical solution, to overcome the problem 

for practical reasons, the relation is simplified and the 

nonlinearity is neglected. The obtained results are valid for 

the systems with small nonlinearity. Nowadays, when the 

beams are made from composites or metamaterials for 

example, the approximation of the linear type is not correct.  

Besides, the real systems require us to include the 

additional deformation effects like compression and shear 

into calculation of the elastic curve. Thus, in publications 

(Rojas 2014, Rojas and Espino 2015, Rojas et al. 2016), 

mathematical models of elastic curves for simply supported 

beams subjected to a uniformly distributed load and a 

concentrated load located anywhere along length of beam, 

where the shear effect is also considered, are presented. As 

it is well known, the traditional models of elastic curves and 

equations of slopes for tangents to the elastic curves for 

simply supported beams did not include the shear 

deformations. The developed models are more appropriate 

and realistic, but more complex. Usually, they are strong 

nonlinear and their analytical consideration is a heavy task. 

To simplify the nonlinear bending problem various 

linearization techniques are introduced and specified for 

solving differential equation of elastic curve: the locally 

transversal linearization method (Ramachandra and Roy 

2002, Roy and Kumar 2005), the multi-step linearization 

techniques (Kumar et al. 2004, 2006), the multi-step 

transversal and tangential linearization methods (Viswanath 

and Roy 2007, Merli et al. 2010).  

However, these nonlinear equations of elastic curves 

need to be solved numerically. The problem is a boundary 

value one (Ramachandra and Roy 2001, 2002), and the 

solution has to satisfy the boundary conditions. Very often 

the solutions are obtained using the shooting procedure. It  
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seems to be a simple method, but is quite stochastic and 

selection of the accurate initial conditions depends on the 

experience of the engineer. For this reason, its practical 

application is limited.  

To escape the mathematical barrier connected with the 

problem, we suggest a method which transforms the 

boundary value problem into the initial value problem 

which is much simpler for treating. The main part of the 

method is concentrated on determination of the initial 

conditions necessary for calculation. Then some direct 

integration schemes such Euler, Runge-Kutta, Adams-

Bashfort or Newmark which are incorporated into some 

software like the MATLAB finite difference solver, ANSYS 

and COMSOL with space discretization, Mathematica 

(Fertis 2006, Thankane and Stys 2009), etc. can be applied.  

In this paper the Euler method was applied. As it is well-

known for the numerical solution we need two initial 

values: the slope y’o and the displacement yo. The effective 

solution of boundary problems requires accurate values of 

initial conditions. In case of incorrect initial values the 

solution could diverge.  

In this paper applying a special kind of transformation 

the boundary value problem is transformed into the initial 

value problem. The essence of the matter is to calculate the 

initial values which satisfy the boundary conditions with 

high accuracy. Bíró and Cveticanin (2016) suggested a 

simple procedure for transformation of the boundary to 

initial value problem. The beam was supported on the left 

side and the initial deflection yo equals zero, because the 

support on the left side and the origin of the frame fixed to 

the beam coincide with each other. For this reason, a simple 

rotational transformation was enough to calculate the initial 

slope to start the numerical procedure.  

The paper contains five sections. In Sec.2, the corollary 

about transformation from the boundary to initial value 

problem for the equation of elastic curve is introduced and 

proved. In Sec.3 the procedure for numerical calculation of 

the initial conditions according to the corollary is specified. 

In Sec.4 two examples are discussed: the first one is a 

simply supported beam of variable cross-section and the 

second one is a beam of uniform strength having circular 

cross-section. The numerically calculated initial conditions 

for the linear elastic curve equations are compared with 

analytically obtained ones for the linearized elastic curve 

equations and results of finite element analysis. Paper ends  

with conclusions. This of method is applicable in case of 

small nonlinearity and small deformation. 

  

 

2. Transformation procedure of boundary value 

problems into initial value problems 

 

 

 

Fig. 2 Sketch of overhanging beam loaded on the end of the 

cantilever, the bending moment and the form of the elastic 

curve of the beam 

 

 

Corollary: The elastic curve of the arbitrary loaded 

simply supported beam in case of small deformation (Fig. 

1) can be determined according to Eq. (1b) as the initial 

value problem if the initial displacement and the 

corresponding slope of the end point of the beam are 

obtained based on the known boundary conditions.  

Active loading of the beam can be separated into two 

groups: forces acting on the cantilever of the beam or 

between its supports.  

Proof. To prove the Corollary two different types of 

simple supported beam are considered. Let us assume a 

simply supported overhanging beam (Fig. 2(a)) where the 

supports are in B and C and the active force F is located at 

the end A. The distance between supports is l and of the 

load to the support in B is k. The bending rigidity of the 

beam is EI. 

The bending moment and the form of the elastic curve 

in case of uniform cross-section can be seen in Fig. 2(b)) 

and 2(c)) in case of linearized model.  

As it can be seen in Fig. 2(c), yA is the initial deflection 

and y’A=A is the initial slope of end cross section. Drawing 

the tangent line to point A’ the length 𝐴′𝐶′̅̅ ̅̅ ̅  can be 

obtained.  

 

Fig. 1 Sketch of arbitrary loaded simply supported beam 
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Fig. 4 Sketch of simple supported beam loaded between its 

supports, moment functions and the form of the elastic 

curve 

 

 

This tangent line is axis z itself rotated by angle A and 

translated by distance yA. On the basis of Fig. 2(c) in case of 

small deformation and linearized model  

 

 

𝐵𝐵′̅̅ ̅̅ ̅ = 
𝐴

𝑘 − 𝑦𝐴,    𝐶𝐶′̅̅ ̅̅ ̅ = 
𝐴

(𝑘 + 𝑙) − 𝑦𝐴 . (2) 

After rearrangement  

𝐶𝐶′̅̅ ̅̅̅ − 𝐵𝐵′̅̅ ̅̅ ̅

𝑧𝐶 − 𝑧𝐵

= 
𝐴

, (3) 

i.e.,  


𝐴

(𝑘 + 𝑙) − 𝑦𝐴 − (
𝐴

𝑘 − 𝑦𝐴) = 
𝐴

𝑙. (4) 

As it can be noticed (4) is an identical equation. It is true 

for any values of dimensions k and l moreover for any 

values of initial deflection yA and slope y’A=A in case of 

small deformation and linearized model calculated for 

overhanging beam of any continuously variable cross-

section.  

Similarly to Fig. 2, in Fig. 3, the sketch of a simply 

supported overhanging beam of sectional variable cross-

section can be seen. The beam is loaded on the end of the 

cantilever.  

Applying notations of Fig. 3, the moment functions of 

real loading are  

𝑀1(𝑧) = 𝐹𝑧  , 𝑀2(𝑧) =
𝐹𝑘

𝑙
𝑧 (5) 

loaded by unit force 

𝑚1(𝑧) = 𝑓𝑧  ,𝑚2(𝑧) =
𝑓𝑘

𝑙
𝑧 (6) 

 

 

Fig. 3 Sketch of simple supported beam of sectional variable cross-section loaded on the end of the cantilever (ko=lo=0) 
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Fig. 6 Sketch of simple supported overhanging beam loaded 

on the end of the cantilever. The moment of inertia of the 

cross section about its neutral axis is continuous function of 

position coordinate z 

 

 

and finally, by unit moment  

𝑚1(𝑧) = 𝑚  ,𝑚2(𝑧) =
𝑚

𝑙
𝑧 (7) 

Applying notations of Fig. 3 deflection (8) and slope (9) 

of the end cross-section of the beam of sectional variable 

cross-section applying of Betti-theorem are 

 

(8) 

 

(9) 

 

 

Fig. 7 Sketch of simple supported beam loaded between its 

supports. The moment of inertia of the cross section about 

its neutral axis is continuous function of position coordinate 

z 

 

 

As second case let us see the next simple supported 

beam loaded between its supports (Fig. 4). In Fig. 4 the 

form of the elastic curve of the beam and the tangent line to 

point A’ can be seen. This tangent line is axis z itself rotated 

by angle A. On the basis of Fig. 4 in case of small 

deformation and linearized model  

𝐵𝐵′̅̅ ̅̅ ̅ = 
𝐴

(𝑎 + 𝑏). (10) 

According to Eq. (10) the ratio 
𝐵𝐵′̅̅ ̅̅ ̅̅

𝐴

 is constant which 

equals to the distance between the supports. It can be 

noticed that the ratio is independent to dimensions a and b 

(position of loading) moreover it is true for any values of 

initial slope y’A=A in case of small deformation and 

linearized model calculated in case of anyhow continuously 

variable cross-section. 

In Fig. 5, the sketch of a simply supported beam of 

sectional variable cross-section loaded between its supports 

can be seen.  

Applying the notations of Fig. 5, the moment functions  

 

Fig. 5 Sketch of a simply supported beam of sectional variable cross-section loaded between its supports and moment 

functions (ao=bo=0) 
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of the real loading are  

𝑀1(𝑧) = −
𝐹𝑏

𝑎 + 𝑏
𝑧, 𝑀2(𝑧) = −

𝐹𝑎

𝑎 + 𝑏
𝑧 , (11) 

moreover, loaded by unit moment for two sections of the 

beam  

𝑚1(𝑧) =
𝑚(𝑧 − (𝑎 + 𝑏))

𝑎 + 𝑏
 , 𝑚2(𝑧) = −

𝑚

𝑎 + 𝑏
 𝑧. (12) 

Applying the Betti-theorem, with notations of Fig. 5, the 

slope of cross-section A of beam of sectional variable cross-

section  

 

(13) 

In some cases, the moment of inertia of the cross section 

about its neutral axis can be described as continuous 

function of position coordinate z.  

Applying the notations of Fig. 6 without going into 

details, according to Betti-theorem, the deflection and slope 

of cross-section A are  

𝑦𝐴 =
𝐹

𝐸
∫

𝑧2

𝐼𝑘(𝑧)

𝑘

0

𝑑𝑧 +
𝐹𝑘2

𝑙2𝐸
∫

𝑧2

𝐼𝑙(𝑧)

𝑙

0

𝑑𝑧 (14) 

𝜑𝐴 =
𝐹

𝐸
∫

𝑧

𝐼𝑘(𝑧)

𝑘

0

𝑑𝑧 +
𝐹𝑘

𝑙2𝐸
∫

𝑧2

𝐼𝑙(𝑧)

𝑙

0

𝑑𝑧 (15) 

In case of loading between its supports by the aid of Fig. 

7, the slope of cross-section A is 

𝜑𝐴 = −
𝐹𝑏

(𝑎 + 𝑏)2𝐸
∫

𝑧2 − (𝑎 + 𝑏)𝑧

𝐼𝑎(𝑧)

𝑎

0

𝑑𝑧

+
𝐹𝑎

(𝑎 + 𝑏)2𝐸
∫

𝑧2

𝐼𝑏(𝑧)

𝑏

0

𝑑𝑧 

(16) 

 

 

The Corollary is proved. 

Remark: Using the previous results it can be concluded 

that for the accurate initial conditions, independently on 

position of loading and dimensions of the beam, a 

numerical procedure for obtaining of the elastic curve can 

be developed. 

 

 

3. Procedure for numerical determination of the 
elastic curve in case of small deformation and 
linearized model  
 

The suggested procedure for determination of the initial 

conditions for calculation of the elastic curve of the simple 

supported beams is as follows: 

1. Constraining forces in the supports are calculated. 

2. Based on external load and constraint forces in 

supports the moment-position functions M(z) are 

determined. 

3. Substituting the moment-position functions into 

Equation (1b) the differential equation of elastic curves for 

each loading section are formed. 

4. The equations are solved numerically for assumed 

initial conditions  

𝑦o = 0, 𝑦o
′ = 0 𝑟𝑎𝑑. 

(These conditions correspond to a clamped-free beam.)  

5. Based on the obtained numerical values the initial 

slope φ is determined. It corresponds to the initial condition, 

i.e.,  

𝑦𝐴
′ = −. 

6. Calculation of the elastic curve is repeated for initial 

conditions 

𝑦𝐴
′ = −, 𝑦𝐴 = 0. 

7. The obtained displacements for the supports are equal 

to yS =const. and represent the negative value of the initial 

displacement 

𝑦𝐴 = −𝑦𝑆 . 

 

Fig. 8 Cantilevered simply supported beam 

 

Fig. 9 Shape of the simply supported beam (top view). The height of cross-section is constant: h=140 mm 
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Fig. 10 Moment-position functions of the cantilevered 

simply supported beam 

 

 

Fig. 11 Elastic curve of the cantilever for initial conditions 

y’o=0 and yo=0 

 

 

Fig. 12 Elastic curve for initial values: 𝑦𝐴 = 0 𝑚𝑚, 𝑦𝐴
′ =

0,00266887 𝑟𝑎𝑑 

 

 

8. Finally, the nonlinear differential equations calculated 

numerically with initial conditions  

𝑦𝐴
′ = −, 𝑦𝐴 = −𝑦𝑆, 

give the elastic curve for the simple supported beam.  

 

 

4. Examples 
 

As an example, the task is to determine numerically the 

elastic curve of cantilevered simply supported beam shown 

in Fig. 8. The following numerical data are given: a=1000 

mm, b=2000 mm, E=210 GPa, F=5000 N. Top view of the 

beam can be seen in Fig. 9.  

For the given numerical values the constraining forces  

 

Fig. 13 Elastic curve determined based on numerically and 

analytically obtained initial conditions 

 

 

Fig. 14 Displacements of the simple supported beam as 

result of finite element analysis 

 

 

of the supports 

𝐹𝐵 =
1

2
𝐹, 𝐹𝐶 =

5

2
𝐹, (17) 

and the moment-position functions are calculated and 

plotted in Fig. 10.  

Three segments along the beam are evident and the 

differential equations according to (1b) of the elastic curve 

for each segment are formed.  

The obtained relations are 

0 ≤ 𝑧 ≤ 𝑎,       𝑦1
" = −

𝐹𝑧

𝐸𝐼1(𝑧)
, (18) 

𝑎 ≤ 𝑧 ≤ 𝑎 + 𝑏, 𝑦2
" = −

𝐹

2 𝐸𝐼2(𝑧)
(𝑧 + 𝑎), (19) 

𝑎 + 𝑏 ≤ 𝑧 ≤ 2𝑎 + 𝑏,      𝑦3
"

= −
𝐹

 𝐸𝐼3(𝑧)
(−2𝑧 + 3𝑎 + 2,5𝑏). (20) 

Let us solve the above equations numerically for initial 

values y’o=0 and yo=0. Namely, it is assumed that the left 

end of the beam is fixed and corresponds to a cantilever. 

Thereat, the moment-displacement function is not varied. 

The obtained result is plotted in Fig. 11.  
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Fig. 16 Elastic curve determined based on numerically and 

analytically obtained initial conditions 

 

Table 1 Comparison of deflections of cross-sections A and 

D obtained in different ways (Example 2) 

 yA, mm yD, mm 

Numerical transformation 

method 

-rotation and translation 

-transformation of the boundary 

value problem into the initial 

value problem 

-18.0716 -15.7878 

Betti-theorem for beams of 

variable cross-section 
-18.0633 -15.7871 

Finite element analysis -18.08 -15.85 

 

 

Obviously, the shape of the elastic curve is not suitable 

to the real loading and the constraint relations. In order to 

get the accurate initial values let us carry out the following 

transformations.  

Rotation around axis perpendicular to xy plane  

Creating the ratio of differences between deflections of 

cross-sections B and C and between their positions 

coordinates an angle can obtained 

 =
𝑦𝐶 − 𝑦𝐵

𝑧𝐶 − 𝑧𝐵

=
 −5,7146733𝑚𝑚 − (−0,3769307)𝑚𝑚

3000 𝑚𝑚 − 1000 𝑚𝑚
= −0,00266887 𝑟𝑎𝑑. 

(21) 

This angle with opposite sign can be treated as initial 

slope of cross-section A, i.e.,  

𝑦𝐴
′ = − = 0,00266887 𝑟𝑎𝑑. (22) 

The numerical calculation of differential equations of 

the elastic curves is repeated with initial values  

𝑦𝐴 = 0, 𝑦𝐴
′ = 0,00266887 𝑟𝑎𝑑. (23) 

The obtained elastic curve is plotted in Fig. 12.  

It can be noticed that for initial conditions (23) the 

values of deflection at supports B and C are equal: 𝑦𝐵 = 

 

Table 2 Comparison of deflections of cross-sections A and 

D obtained in different ways (Example 2) 

 yA, mm yD, mm 

Numerical transformation method 

-rotation and translation 

-transformation of the boundary 

value problem into the initial value 

problem 

-18.0716 -15.7878 

Betti-theorem for beams of 

variable cross-section 
-18.0633 -15.7871 

Finite element analysis -18.08 -15.85 

 

 

𝑦𝐶 = 4,83944 𝑚𝑚. After this recognition translation along 

axis y seems to be obvious.  

Translation along axis y 

Now, the curve is translated along y axis for the 

value  𝑦𝐴 = −𝑦𝐵 = −𝑦𝐶 = −2,29194771 𝑚𝑚, to move the 

supports in the position with zero deflection.  

Starting with numerical procedure and applying the 

calculated initial values 𝑦𝐴 = −2,291937473 𝑚𝑚, 𝑦𝐴
′ =

0,00266887 𝑟𝑎𝑑  the elastic curve of the beam are 

obtained and plotted in Fig 13. In order to check the 

obtained results the finite element analysis (Fig. 14) and 

Betti-theorem (Table 2) are applied.  

The Finite Element Analysis was made by Autodesk 

Inventor 2012 which was produced for solving only linear 

problems (linear material properties, deflection and stress 

are linearly proportional) with static load and small 

deformation. During the analysis the Convergence was set 

to 10%, the Average Element Size 0.02, Minimum Element 

Size: 0.2, Grading Factor: 1.5, Maximum Turn Angle: 60.0 

deg with Curved Elements as well. Refinement Threshold 

(0 to 1): 0.75.  

Results obtained in different ways are compared to each 

other and summarized in Table 1.  

Example 2 Cantilevered simply supported beam of 

uniform strength having circular cross-section 

The sketch of the cantilevered simply supported beam 

can be seen in previous example. In this case there is a 

beam of uniform strength having circular cross-section, 

other input data are the same. 

Starting with numerical procedure again and applying 

the calculated initial values 𝑦𝐴 = −18,071617 𝑚𝑚, 𝑦𝐴
′ =

0,028785 𝑟𝑎𝑑 the elastic curve of the beam of uniform 

strength are obtained and plotted in Fig. 15. In order to 

check the obtained results the finite element method (Figs. 

17-18) and Betti-theorem are applied.  

Results obtained in different ways are compared to each 

other and summarized in Table 2. Comparing the results 

obtained numerically and analytically for the linearized 

system moreover applying finite element analysis it can be 

concluded that the difference between them is negligible  

 

Fig. 15 Shape of the simply supported beam of uniform strength having circular cross-section (side view) 
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Fig. 18 Displacements of the simple supported beam of 

uniform strength as result of finite element analysis 

 

 

(Tables 2-3). 

 

 

5. Conclusions 
 

Applying the proposed numerical transformation 

procedure the linearized boundary value problems of elastic 

simply supported beams of variable cross-section can be 

transformed into initial value problems. The procedure is a 

special and effective application of the shooting method to 

calculate the elastic curve.  

Initial values of boundary problems of beams are 

deterministic ones. As a result of consequent application of 

rotation and translation the initial values (slope and 

deflection of end cross-section) of the beam can be obtained 

with high accuracy and using them the elastic curve can be 

determined in traditional numerical way. The method is 

stable and simple to use, and its applicability is proved in 

the paper.  

Initial values calculated numerically for the differential 

equation of the elastic curve are compared with those 

obtained analytically for the linearized model of the elastic 

curve, moreover with results of finite element analysis. The 

difference between values is negligible.  

The above method is applicable in nonlinear case (Eq. 

(1b)) and small deformation. In this case additional iteration 

step in numerical procedure is necessary to reach the 

demanded accuracy.  
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Fig. 17 Stress sheet of the simple supported beam as result of finite element analysis (side view) 
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