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1. Introduction  
 

It can be noted that these days everybody in the science 

society is aware of crucial enhanced properties of 

functionally graded materials (FGMs). Indeed, this novel 

type of composite materials, which are typically consisted 

of two entirely different materials, possess lots of merits to 

be utilized in different fields (Birman and Byrd 2007). To 

this reason, FGMs are recently used by authors to study the 

mechanical responses of composite structures. For example, 

Ebrahimi and Rastgoo (2009) examined the electro-

mechanical vibrational responses of FG circular plates. Thai 

and Vo (2012) employed higher-order shear deformable 

beam theories to study the dynamic responses of FG beams. 

Moreover, Ebrahimi (2013) could exactly highlight the 

thermo-electro-elastic dynamic behaviors of FG plates. 

Investigation of the nonlinear thermal buckling 

characteristics of FG plates is performed by Esfahani et al. 

(2013). In addition, Kargani et al. (2013) presented an exact 

solution for nonlinear buckling analysis of piezoelectric FG 

beams under thermal loading. Ghiasian et al. (2014) 

developed a shear deformable plate theory to study the 

thermo-mechanical buckling responses of FG plates. In this 

attempt, the influences of temperature change on the 

material properties of plate are considered by employing 

temperature-dependent material properties. 

On the other hand, nanotechnology has achieved an 

unbelievable significant role in the newly designed  
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mechanical systems. According to this reality, it is a severe 

obligation for engineers and designers to know enough 

about the nano-mechanical behaviors of mostly used 

elements. As all of the readers know, the mechanical 

behaviors of devices in nano scale is totally different in 

comparison with the behaviors of those structures in macro 

scales. Actually, once the mechanical responses of nanosize 

elements are required, the size-dependent continuum 

theories shall be utilized. Eringen (1983) presented the first 

nonlocal theory to account for the scale effects, named 

nonlocal elasticity theory (NET). Up to now, lots of 

researchers applied the nonlocal relations of Eringen to 

examine the mechanical characteristics of nanostructures. 

Reddy and Pang (2008) presented a NET coupled with the 

beam theories to show the vibration and stability responses 

of carbon nanotubes (CNTs). Pradhan and Murmu (2010) 

investigated the stability analysis of nanoplates on the basis 

of NE. Another endeavor is devoted by Ansari et al. (2011) 

to capture scale effects while analyzing the vibration 

behaviors of double-layered graphene sheets (DLGSs). The 

thermo-elastic vibration analysis of CNTs is performed by 

Tylikowski (2012) utilizing Eringen's theory. Furthermore, 

Narendar and Gopalakrishnan (2012) tried to take in to 

consider the size-dependency in their paper dealing with the 

thermo-elastic wave dispersion behaviors of nanoplates. 

Also, Alzahrani et al. (2013) highlighted the size effects on 

the hygro-thermal bending analysis of embedded on elastic 

medium. Besides, Kiani (2014) mixed the NET with a shear 

deformable plate model to obtain the natural frequencies of 

nanoplates once the impact of induced magnetic force is 

included. The problem of nonlinear dynamic answers of 

viscoelastic double nanoplate systems (DNPSs) is solved by 

Wang et al. (2015) based upon NE. Meanwhile, Zenkour 
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(2016) probed the stability specifications of single-layered 

graphene sheets (SLGSs) embedded on a three parameter 

substrate employing the NET of Eringen. In another 

research, Ebrahimi and Hosseini (2016) analyzed the 

thermo-mechanical vibration responses of viscoelastic 

DNPSs in the framework of differential quadrature method 

(DQM). Most recently, Preethi et al. (2018) performed the 

nonlinear bending and dynamic analysis of rotating 

laminated nanosize beams. As mentioned above, NET is a 

reliable theory which can account for size-dependency of 

tiny elements and is utilized by many scientists since it is 

proposed by Eringen; however, this theory is not bare of 

deficiencies. In other words, some scientific attempts can be 

found which show the shortcomings of this theory (Fleck 

and Hutchinson 1993, Lam et al. 2003, Stölken and Evans 

1998). To be honest with you, NE only considers the 

decreasing influence of small size (stiffness-softening 

effect) and neglects the effect of strain gradient (stiffness-

hardening effect). Recently, Lim et al. (2015) incorporated 

these two influences to achieve a theory which is able to 

describe the size-dependency of nanodevices as well as 

possible. This newly developed theory, called nonlocal 

strain gradient theory (NSGT), is applied by many authors 

in the recent years because of its substantial efficiency in 

estimating scale effects. Li and Hu (2015) examined the 

stability characteristics of nonlinear nanobeams in the 

framework of NSGT. Farajpour et al. (2016) developed the 

NSGT to clarify the thermally affected buckling 

characteristics of orthotropic nanoplates. Moreover, Li et al. 

(2016a) could exactly analyze the vibration problem of 

nanorods based on the NSGT. Li et al. (2016b) have also 

studied the wave propagation analysis of NSG based single-

walled carbon nanotubes (SWCNTs) with respect to surface 

effects and induced force due to the magnetic field. Lately, 

Mahinzare et al. (2017) considered both softening and 

hardening phenomena examining the vibration behaviors of 

fluid conveying SWCNTs on the basis of a numerical 

solution. 

Furthermore, the static and dynamic analysis of tiny FG 

structures has been performed a lot in the recent years by 

several researchers. Within these studies, various nonlocal 

continuum theories, homogenization models, external 

loadings and beam or plate theories are employed. Now, it 

is time to take a brief look on the former attempts 

performed by the researchers in the field of FG nanosize 

elements. Daneshmehr and Rajabpoor (2014) investigated 

the vibration characteristics of FG nanoplates employing a 

shear deformable plate theory incorporated with the NET. 

Hosseini and Jamalpoor (2015) highlighted the size and 

surface effects investigating the vibrational responses of FG 

viscoelastic DNPSs based on the NE. Ebrahimi et al. (2015) 

clarified the influence of linear and nonlinear temperature 

distributions on the thermo-mechanical vibration responses 

of FG nanobeams. Also, Hosseini and Rahmani (2016) 

presented a size-dependent theory in order to determine the 

vibrational properties of FG curved nanobeams. Moreover, 

Li and Hu (2016) described the nonlinear dynamic and 

stability behaviors of NSG FG beams. On the other hand, a 

NSG based higher-order beam theory is introduced by 

Ebrahimi and Barati (2016a) to study the hygro-thermo-

mechanical stability responses of FG nanobeams with 

respect to the induced magnetic force. In another research, 

Li and Hu (2017) analyzed the postbuckling problem of FG 

nanobeams based on the NSGT. Also, Zhu and Li (2017) 

implemented the integral size-dependent theorem to survey 

both longitudinal and torsional vibration problems of 

nanorods. Ebrahimi and Barati (2017c) presented a NSG 

based model for vibration analysis of a FG nanobeam in the 

presence of both thermal and magnetic loadings. In another 

endeavor, the hygro-thermally affected dynamic answers of 

viscoelastic FG nanobeams are reviewed by Ebrahimi and 

Barati (2017b) via a NSG based beam theory. Ebrahimi and 

Barati (2018a) performed the damped vibration analysis of 

viscoelastic FG nanobeam embedded on a three parameter 

viscoelastic medium based on the NSGT considering 

neutral axis’ exact position.  

It is obvious that vibration, bending and buckling 

responses of FG nanodevices are more studied in 

comparison with the wave dispersion properties of such 

elements. However, all of us know that wave propagation is 

of an indispensable significance in many industrial 

applications like defect detection processes. Hence, the 

wave propagation analysis of nanoscale structures shall be 

considered to obtain enough knowledge about the 

mechanical behaviors of dispersed waves. In the recent 

years, more attention is paid to this fact in the research 

society. Li et al. (2015) analyzed the transverse wave 

dispersion properties of FG nanobeams based on the NSGT. 

Thereafter, Ebrahimi et al. (2016b) employed the NET 

mixed with a refined shear deformable beam theory to 

analyze the wave dispersion specifications of rotating 

nanobeams in thermal environments. Afterwards, Ebrahimi 

and Barati (2016b) probed the influence of nonlinear 

thermal loading on the propagation characteristics of FG 

nanobeams. Moreover, Ebrahimi et al. (2016a), Ebrahimi et 

al. (2018) investigated the thermo-mechanical wave 

propagation properties of FG nanoplates applying refined 

shear deformable plate theories on the basis on two various 

nonlocal theories. Ebrahimi et al. (2017b), Ebrahimi et al. 

(2017a) have also examined the wave propagation answers 

of a rotating FG nanobeam in the framework of NET and 

NSGT. Also, Ebrahimi and Barati (2017a) considered the 

effects of induced force due to the magnetic field while 

analyzing the flexural wave dispersion responses of FG 

nanobeams via NSGT. In addition, Arefi and Zenkour 

(2017) performed the wave propagation analysis of FG 

nanobeams rested on a viscoPasternak elastic medium. A 

new general bi-Helmholtz NSGT is developed by Barati 

and Zenkour (2017) for FG porous double-nanobeam 

systems (DNBSs). Plus, Barati (2017) analyzed the wave 

dispersion responses of FG porous DNBSs on the basis of a 

general bi-Helmholtz NSGT with respect to the influences 

of induced magnetic force. Lately, Ebrahimi and Barati 

(2018b) presented a NE based model to capture size effect 

investigating the wave propagation behaviors of FG-DNBSs 

in the presence of magnetic field. Therefore, literature 

review reveals that although all of the aforementioned 

attempts, there is still a lack about the researches dealing 

with the wave propagation problem of double composite 

nanobeams once subjected to external thermal and magnetic 
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loadings. To cover this deficiency, present model is 

dedicated to survey the thermo-magneto-elastic wave 

propagation behaviors of FG-DNBSs for the first time. 

In this article, we are pleased to inform that NSGT is 

utilized to clarify the scale effects while analyzing the wave 

propagation behaviors of embedded FG-DNBSs subjected 

to thermo-magnetic loadings. The external loading which is 

imposed on the system is consisted of an induced force and 

a thermal loading. Effects of different relative motions of 

the beams are regarded, too. Material properties are 

homogenized according to the Mori-Tanaka scheme which 

is the best homogenization model for FGMs. Moreover, the 

kinematic relations are developed based on the Euler-

Bernoulli beam theory. Each of the nanobeams are 

connected to an elastic substrate from one side and attached 

to each other by an interlayer spring. By introducing two 

scale parameters, the size effects are supposed to be 

completely covered. The governing equations are solved 

analytically and after solving an eigenvalue equation, the 

wave frequencies and phase velocities are achieved. 

Influence of each parameter is described by presenting 

some diagrams. 
 

 

2. Theory and formulation 
 

2.1 Mori-Tanaka homogenization model for FGMs 
 

Based on this model, the effective material properties of 

FG structures can be defined based on the effective local 

bulk modulus (Ke) and shear modulus (μe) which can be 

expressed as 

( ) ( )1 4 3

e m c

c m m c m m m

K K V

K K V K K K 

−
=

− + − +
 

(1) 

( ) ( ) ( )( )1 9 8 6 2

e m c

c m m c m m m m m m m

V

V K K

 

       

−
=

− + − + + +

 
(2) 

where subscripts c and m stand for ceramic and metal, 

respectively. Also, the volume fractions of these two phases 

can be related to each other according to the following 

1c mV V+ =  (3) 

where 

1

2

p

c

z
V

h

 
= + 
 

 (4) 

in above equation, p denotes the gradient index which is 

used to determine the distribution of each phases through 

the thickness. So, the effective modulus of elasticity, 

Poisson’s ratio and density will be formulated in the 

following form 

( )
9

3

e e

e e

K
E z

K




=

+
 (5) 

( )
3 2

6 2

e e

e e
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z
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




−
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(6) 

( ) c c m mz V V  = +  (7) 

Besides, the thermal expansion coefficient can be 

calculated as 

1 1

1 1
e m e m

c m

c m

K K

K K

 

 

−
−

=
−

−

 (8) 

 

2.2 Kinematic relations 
 

The equations of motion for the FG beam are modeled 

in the present research according to the classical beam 

theory in the following form 

( ) ( )
( )

x

w x ,t
u x , z ,t u x ,t z

t


= −


 (9) 

( ) ( )zu x ,z ,t w x ,t=  (10) 

in which, u and w correspond with the axial displacement 

and bending deflection of the beam. In this research, the 

influences of thickness stretching are not included. 

However, this issue is well considered in a group of papers 

(Abualnour et al. 2018). Furthermore, a group of three-

variable plate models can be found which cover the 

influences of shear deformation. Therefore, the nonzero 

strains of the beam can be defined as 

0 0

xx xx xz  = −  (11) 

where 

2
0 0

2xx x

u w
,

x x
 

 
= =
 

 (12) 

Moreover, the Hamilton’s principle is applied to obtain 

the Euler-Lagrange equations of FG beam as follows 

0

( ) 0

t

U T V dt − + =  (13) 

where U, T and V account for strain energy, kinetic energy 

and work done by external forces, respectively. More 

information about the energy based variational methods can 

be seen in other references (Abdelaziz et al. 2017). Now, 

the variation of strain energy can be formulated as 

( ) ( ) ( )( )0 0

0

L

xx xx xx x

V

U dV N M dx    = = −   (14) 

in above equation, the axial force (N) and bending moment 

(M) can be defined as 

,xx xx

A A

N dA M zdA = =   (15) 
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Also, the variation of kinetic energy can be expressed as 

follows 

2 2 2 2

0 1 2

0

L
u u w w u w w u w w

T I I I dx
t t t t t x t x t t x t x t

    


              
= + − + +     

                   


 
(16) 

in which, the mass moment of inertias are defined as 

( ) ( )2

0 1 2, , 1, , ( )
A

I I I z z z dA=   (17) 

On the other hand, whenever the beam is supposed to be 

subjected to a magnetic field, the beam tolerates an applied 

force, named Lorentz force, which is induced due to the 

magnetic field. Here, the Maxwell’s equations are utilized 

to derive the mathematical formulation of induced Lorentz 

force. Here, the beam is presumed to be subjected to a 

longitudinal steady magnetic field with the intensity of H. 

Hence, the exerted body force produced by this field can be 

formulated as follows 

( )( )Lz

h

J

f u H H
 
 =    
 
 

 
(18) 

in which η, , h and J are the magnetic permeability of FG 

beam, gradient operator, small disturbance of applied 

magnetic field and current density vector, respectively. 

Here, the magnetic field can be expressed as follows 

( )0 0xH H , ,=  (19) 

Inserting Eqs. (9) and (10) in Eq. (18), the applied 

Lorentz forces per unit volume can be written as 

2
2

2x

w
f H

x



=


 (20) 

Integrating from Eq. (20) over the beam’s cross section 

area results in 

2
2

2Lz x

w
f AH

x



=


 (21) 

Now, the variation of the external work done by external 

forces can be written in the following form 

( )
2 2

2

2 2

0

L

T

w p x

w w
V k w k N AH dx

x x


  

  
= − + − − 

  
  (22) 

where kw and kp are Winkler and Pasternak coefficients of 

elastic medium, respectively. In addition, NT denotes the 

force generated due to the temperature rise which can be 

expressed as 

( ) ( )T

A

N E z z T dA=   (23) 

Also, more information about the thermo-mechanical 

analysis of continuum systems can be more studied by 

taking a look at the complementary references (Zidi et al. 

2014). Herein, once Eqs. (14), (16) and (22) are substituted 

in Eq. (13) and the coefficients of δu and δw are set to zero, 

the Euler-Lagrange equations of FG beam can be written as 

follows 

2 3

0 12 2

N u w
I I

x t x t

  
= −

   
 (24) 

2 2 2 3 4 2

0 1 22 2 2 2 2 2 2

T

Lz w p

M w w u w w
f N I I I k w k

x x t x t t x x

     
+ − = + − + −

       

 
(25) 

 

2.3 Nonlocal strain gradient elasticity 
 

According to this theory, two nonlocal and length scale 

parameters should be included in an efficient theory which 

is powerful enough to take into consider the scale 

influences. So, the initial form of this theory can be 

expressed as 

(1)
(0) i j

i j i j

d

dx


 = −  (26) 

where (0)
i j  and (1)

i j  are classical and higher order 

stresses which are related to the strain (εxx) and strain 

gradient (εxx,x), respectively. These stresses can be 

formulated as 

(0)
0 0

0
( , , ) ( )

L

ijk l k lij x x e a x dxC     =   (27) 

(1) 2
1 1 ,

0
( , , ) ( )

L

ijk l k l xij l x x e a x dxC     =   (28) 

in which  ijklC  is the elastic coefficient; 0e a  andare 1e a  

introduced to account for the nonlocality effects. Also, l 

captures the strain gradient effects. Once the nonlocal 

kernel functions 0 0( , , )x x e a  and 1 1( , , )x x e a 

satisfy the developed conditions, the constitutive relation of 

nonlocal strain gradient theory can be expressed as below 

( )( ) ( ) ( )2 2 2 2 2 2 2 2 2 2

1 0 1 01 ( ) 1 ( ) 1 ( ) 1 ( )ijk l k l ijk l k lije a e a e a l e aC C −  −  = −  − −  
 

(29) 

in which 2 denotes the Laplacian operator. Considering 

e1=e0=e, the general constitutive relation in Eq. (29) 

becomes 

( ) ( )2 2 2 21 1ijk l k lij C  −  = −   (30) 

where µ=ea and λ=l are nonlocal and length scale 

parameters, respectively. Moreover, once the thermal 

influences are regarded, the former equation can be 

rewritten in the following form 

( ) ( )( )2 2 2 21 1ijkl kl ijTij C   −  = −  −  (31) 

where αij is thermal expansion coefficient. In addition to the 

aforementioned relations, it should be regarded that 

influences of thickness are of high importance once probing 

the nano-mechanical responses of tiny structures (Li et al. 

2018). Now, the final nonlocal relations of normal forces 
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and bending moments can be achieved by integrating from 

Eq. (31) over the cross section area of the beam as 

( ) ( )
2

2 2 2 2

2
1 1

u w
N A B

x x
 

  
−  = −  − 
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 (32) 

( ) ( )
2

2 2 2 2

2
1 1

u w
M B D

x x
 

  
−  = −  − 

  
 (33) 

where 

( ) ( )2, , 1, ,
A

A B D z z dA=   (34) 

Now, once Eq. (32) is inserted in Eq. (24), the following 

explicit form will be achieved 

( )
2 3 4

2 2 2

0 12 2 2 2
1

u w u w
N A B I I

x x t x x t
 

      
= −  − + −   
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(35) 

Similarly, substituting Eq. (33) in Eq. (25) results in 

( )
( )

2 3 4

2 0 1 22 2 2 2
2 2 2

2 2

2

1
T

w p Lz
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x
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(36) 

Now, the final governing equations of FG-DNBSs can 

be achieved by substituting Eqs. (35) and (36) in Eqs. (24) 

and (25) 

( ) ( )
2 3 2 3

2 2 2 21 1 1 1

0 12 3 2 2
1 1 0

u w u w
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in above equations, K0 is the interlayer stiffness which 

couples the motion of nanobeams. 
 

 

3. Solution procedure 
 

First, it shall be mentioned that DNBSs experience three 

kinds of motion: 

• Out-of-phase ( 1 2 0relw w w= −  ). 

• In-phase ( 1 2 0relw w w= − = ). 

• One nanobeam fixed ( 1 0relw w= = ). 

Table 1 Material properties of constituent materials of FG 

nanobeams 

 Property 

 E (GPa) ρ (kg/m3) ν 
6(10 1 )K −  

Aluminum 70 2707 0.3 23 

Alumina 380 3800 0.3 7 

 

 

In fact, whenever the relative motion of the nanobeams 

with respect to another one is synchronous, the in-phase 

motion appears. On the other hand, once the relative motion 

of nanobeams is asynchronous, the out-of-phase situation 

happens. Finally, once one of the nanobeams is stationary, 

the motion of a single-layered nanobeam obtains. Here, an 

analytical solution method is applied to solve the governing 

equations. More information about the solution of wave 

propagation problem of structures can be more studied 

referring to the other references (Boukhari et al. 2016). The 

displacements are supposed to be 

( )

( )

exp

exp

U i x tu

w W i x t

 

 

 −      
=   

−      

 (41) 

where, U and W are wave amplitudes, β is wave number 

and ω is the circular frequency of dispersed waves. 

Substituting for u and w from Eq. (41) in the Eqs. (37)-(40), 

the following equation is obtained 

   ( )2
0

0

U
K M

W


   
− =   

   
 (42) 

Solving the above equation results in finding the circular 

frequency. Once this value is divided by wave number, the 

phase velocity can be reached as 

pc



=  (43) 

Also, once wave number is set to zero (β=0), the cut-off 

frequency is achieved. In this research, cut-off frequency is 

independent of all of the involved parameters except 

Winkler coefficient (kw) and mass moment inertial (I0) and 

can be calculated as 

0

wk
F

I
=  (44) 

 

 

4. Results and discussions 
 

In this part, the wave dispersion characteristics of FG-

DNBSs are doing to be investigated numerically in order to 

understand the influence of various parameters. In the 

present article, FG nanobeams are presumed to be consist of 

a metallic phase (Aluminum) and a ceramic phase 

(Alumina). The material properties of constituent materials 

are tabulated in Table 1.  
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Fig. 2 Comparison of phase velocity variations of FG 

nanobeams with respect to wave number between two NSG 

based models ( 100 1 1 0 2h nm , p , nm , . nm = = = = ) 

 

 

An illustrative comparison between the phase velocity 

curves of present model and a published work is presented 

to show the accuracy of this newly introduced model. 

Fig. 2 is allocated to show the accuracy of presented 

research. In this diagram variation of phase velocity versus 

wave number is plotted for FG nanobeams modeled by 

present work and Li et al. (2015). Based on the diagram, it 

is concluded that the developed model has enough merits to 

show the wave dispersion characteristics of propagated 

waves. 

Moreover, in the Fig. 3 influences of material 

distribution parameter and scale effects are coupled while 

plotting variations of phase velocity versus wave number. It 

is obvious that phase velocity responses become smaller 

whenever gradient index is assumed to be added. In is 

interesting to note that effect of changing gradient index 

from p=0 to p=0.5 is more remarkable in comparison with 

the condition of changing it from p=1 to p=5. On the other 

hand, phase velocity experiences four different shapes 

depending on the relative situation of nonlocal and length 

scale parameters. Indeed, in the case of NE (λ=0, µ≠0), the 

curvature is similar to a dome. However, once the NSGT in 

utilized, three different probability can occur. Similarity of 

these three conditions is in the initial raise of phase velocity 

as wave number increases. Afterwards, phase velocity can 

be lightened or strengthened if length scale parameter is 

smaller (λ<µ) or bigger (λ>µ) than nonlocal parameter, 

respectively. Final form happens whenever these two scale 

coefficients are arranged to possess identical values (λ=µ) 

and corresponds with an unchangeable magnitude for phase 

velocity. 

Fig. 4 is plotted to highlight the effects of nanobeams' 

thickness incorporated with the impact of magnetic field 

intensity on the phase velocity of FG-DNBSs is a 

synchronous relative motion. It should be expressed that 

this diagram is plotted for the case of NE. According to the  

 
(a) p=0 

 
(b) p=0.5 

 
(c) p=1 

 
(d) p=5 

Fig. 3 Variation of phase velocity versus wave number for 

various nonlocal and length scale parameters and different 

gradient indexes ( 14 15

05 10 1 10w ph nm,k ,k ,K= = = = ) 
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(a) h=5 nm 

 
(b) h=10 nm 

 
(c) h=20 nm 

 
(d) h=50 nm 

Fig. 4 Variation of phase velocity versus wave number for 

various amounts of magnetic field intensity and different 

thickness values ( 14 15

00 1 0 2 10 1 10w p. , , p ,k ,k ,K = = = = = = ) 
 

 
(a) µ=0.1, λ=0 

 
(b) µ=0.1, λ=0.05 

 
(c) µ=0.1, λ=0.15 

Fig. 5 Variation of phase velocity versus wave number for 

various amounts of temperature gradient and different 

continuum theories ( 14 15

05 2 10 1 10w ph nm, p ,k ,k ,K= = = = = ) 

 

 

figure, phase velocity can be affected once the value of 

magnetic field intensity is varied. 

In other words, if magnetic field intensity is added, 

phase velocity can be amplified in a finite range of wave 

numbers. As a matter of fact, in wave numbers smaller than 
91 10 =   one of the effective ways of generating an 

increase in the magnitude of phase velocity is to strengthen 

the intensity of magnetic field. The other illustrated affect in 

this figure is the influence of beam's thickness on the phase 

velocity values. Obviously, the dome shape of curvature 

becomes influenced once the thickness of nanobeams is 

changed. Actually, it is clear that an increase in the  
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(a) One nanobeam fixed 

 
(b) Out-of-phase 

Fig. 6 Influence of Interlayer stiffness on the phase velocity 

of FG DNBS for (a) One nanobeam fixed and (b) Out-of-

phase motions ( 145 2 10 1 0 1 0 05w ph nm, p ,k ,k , . , . = = = = = = ) 

 

 
Fig. 7 Influence of Interlayer stiffness on the wave 

dispersion answers of FG DNBS for different kinds of 

relative motions ( 14 85 2 10 1 0 1 10w ph nm, p ,k ,k , . ,  = = = = = = = ) 

 

 

thickness value results in more wave numbers with a same 

phase velocity amount. This phenomenon can be easily 

understood comparing the diagrams once the thickness is at 

first 5 nm and then changed to 50 nm. 

In addition, Fig. 5 is presented to illustrate the 

influences of temperature rise on the phase velocity of FG-

DNBSs with respect to size effects. Obviously, it can be 

seen that an increase in the magnitude of temperature rise 

can generate smaller phase velocities in a limited range of  

 
(a) h=5 nm 

 
(b) h=10 nm 

 
(c) h=20 nm 

 
(d) h=50 nm 

Fig. 8 Variation of cut-off frequency versus Winkler 

coefficient for various gradient indexes considering the 

influence of plate’s thickness 
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wave numbers, nearby inside 90 2 10. =  . It is clear that 

phase velocity amounts cannot be influenced in high wave 

numbers and it is impossible to change this variant by 

increasing temperature rise. Moreover, it can be observed 

that length scale parameter plays an increasing role for 

phase velocity values in each desired value of nonlocality. 

Figs. 6 and 7 are drawn in order to highlight the effect of 

interlayer stiffness on the phase velocity of DNBSs 

especially in the cases of out-of-phase and one nanobeam 

fixed conditions. It is evident that this stiffness cannot affect 

the phase velocity values once the beams are moving 

synchronously. In fact, on the basis of Fig. 6, whenever the 

interlayer stiffness is added, phase velocity can be increased 

in tiny wave numbers. It is worth mention that changing the 

interlayer stiffness can change phase velocity of the DNBSs 

in the out-of-phase case compared to the one nanobeam 

fixed condition. Besides, Fig. 7 shows the sensitivity of FG-

DNBSs to the interlayer stiffness in a certain wave number. 

As a predictable trend, changing the value of this variant 

has no impact on the phase velocity of the system in the 

case of synchronous motion (In-phase motion). 

Unlike, phase velocity can be motivated by changing 

this stiffness coefficient in both Out-of-phase and one 

nanobeam fixed conditions. Clearly, wave dispersion 

answers are influenced by adding the interlayer stiffness 

whenever out-of-phase situation is happened compared to 

the case of one nanobeam fixed. 

Finally, Fig. 8 is allocated to investigate the effects of 

thickness and gradient index on the cut-off frequency of 

FG-DNBSs by plotting the variations of cut-off frequency 

versus Winkler coefficient. It can be figured out that cut-off 

frequency becomes greater as Winkler coefficient increases. 

It is remarkable that an increase in the thickness value will 

be answered with a decrease in the magnitude of cut-off 

frequency. The marvelous outcome of this diagram is surely 

the unbelievable increasing influence of gradient index on 

the cut-off frequency. In the former illustrations, gradient 

index played a decreasing role, but this case is a bit 

different. Actually, cut-off frequency depends on only two 

dependent variants, Winkler coefficient and effective 

density of FG nanobeams. In other words, in a certain 

Winkler coefficient, cut-off frequency has an inverse 

relation with the density function. As we know, increasing 

gradient index reveals lower densities and this phenomenon 

assigns bigger amounts to the cut-off frequency. 

 

 

5. Conclusions 
 

In this paper, the thermal effects on the propagation 

answers of acoustic waves dispersed in a FG-DNBS are 

studied once the system is subjected to a longitudinal 

magnetic field. Equations of motion are derived on the basis 

of Euler-Bernoulli beam model and exchanged to the 

governing equations by mixing with the relations of NSGT. 

Homogenization process is performed utilizing Mori-

Tanaka scheme. Here, the most crucial impacts are 

reviewed again. Nonlocal parameter decreases the phase 

velocity of the system, whereas, the length scale parameter 

affects this variant increasingly. Furthermore, wave 

dispersion responses of the system can be changed in the 

small wave numbers by changing some of the involved 

parameters. For instance, phase velocity can be decreased if 

material distribution parameter is added or temperature rise 

is aggrandized. On the other hand, an increase in the phase 

velocity can be obtained by applying greater magnetic field 

intensities. It is worth mention that phase velocity of the 

system can be amplified by generating a change in the value 

of interlayer stiffness for out-of-phase and one nanobeam 

fixed situations and in the case of in-phase motion phase 

velocity remains constant in all stiffness values. Moreover, 

cut-off frequency can be raised by employing bigger 

Winkler coefficients, smaller thicknesses and greater 

gradient indexes and is independent of any other variant. 
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